
1

Forensic Analysis of Virtual Hard Drives

Abstract—The issue of the volatility of virtual machines is
perhaps the most pressing concern in any digital investigation
involving a virtual machine. Current digital forensics tools do
not fully address the complexities of data recovery that are posed
by virtual hard drives. It is necessary, for this reason, to explore
ways to capture evidence, other than those using current digital
forensic methods. Data recovery should be done in the most
efficient and secure manner, as quickly, and in an as non-intrusive
way as can be achieved. All data in a virtual machine is disposed
of when that virtual machine is destroyed, it may not therefore be
possible to extract and preserve evidence such as incriminating
images prior to destruction. Recovering that evidence, or finding
some way of associating that evidence with the virtual machine
before destruction of that virtual machine, is therefore crucial.
In this paper we present a method for extracting evidence from a
virtual hard disk drive in a quick, secure and verifiable manner,
with a minimum impact on the drive thus preserving its integrity
for further analysis.

Index Terms—Virtual Machine, Digital Forensics, Virtual
Machine Forensics

INTRODUCTION

It is very rare to find a crime scene where a digital
device of some description has not been used. Whether
it is a tablet computer, a phone or perhaps portable digital
storage device like a USB key or external hard drive, if
they are Unix, Linux or Windows based systems, physical
devices can be taken possession of for examination [1]. The
data within them can be catalogued, classified, extracted
and subject to detailed examination. They constitute a
physical connection between the user/owner of the device,
those data that are on it and how those data were used
in a crime. The real, physical nature of these devices is
invaluable to an investigator, but is absent where a virtual
machine (VM) is involved, yet the goal of a digital examiner
remains the same - to secure as much evidence as possible [2].

How evidence is collected is important to the integrity of
that evidence and the subsequent conduct of any investigation.
What happens to that evidence after collection is crucial,
how it is saved, how it is handled and processed, and
how it is related to an offence or misconduct is vitally
important to an investigation. Traditional digital forensics
has developed tried and tested methods of achieving these
goals and tools have been developed for these purposes.
Applying these to VM forensics may involve developing,
or enhancing these tools or methods further, or designing
new tools to take account of the absence of physical hardware.

A VM possesses all the characteristics of true hardware [3] -
the virtual hard drive (vHDD) is formatted to the specifications
of the operating system being used, the virtual RAM (vRAM)
has all the expected attributes that true RAM has, as do the

other virtual devices associated with a VM, e.g. NICs, USB
controllers, graphics processors, etc. Nonetheless recovering
evidence from a VM is more difficult not only because we
are investigating one process of the host operating system
(OS), but also because of the volatility of a VM. Evidence in
a VM can be lost easily when that VM is moved[6] or deleted.

The ’throwaway’ nature of VMs also allows their use as
anti-forensics tools, as discussed by Barrett and Kipper in
[6]. They further propose that in future a truly disposable
operating system (OS) may be created for single session use,
using hypervisor functions and applications moved to the
Web to create that OS, and dismantled completely when shut
down. This prospect will defeat any forensics tool not in
a position to capture the OS and data, prior to shut down -
nothing being left to analyse after the session is finished.

Cloud computing provides users with a flexibility that
traditional computing lacks. It allows organisations to
manage their computing needs on an on-demand basis,
rather than a lead-in time of perhaps weeks or months if
installing physical hardware. It allows a company to balance
its workload very quickly, maintain secure images of their
data, and ensure resilience against hardware failure [4]. This
business model enables costs to be controlled - you pay for
what you use. Cloud computing models, such as SaaS1,
DaaS, IaaS all rely on virtualisation to deliver their services
[5]. These components form the basis of cloud computing,
including high speed bandwidth, and distributed computing
[6]. We focus on virtualisation in cloud computing. Cloud
computing, and the ability to create a computing instance
when required, pose Law Enforcement (LE) with a difficult
investigation model. The multi-tenancy [7] nature of much
of cloud computing and the sharing of resources, adds to the
investigation difficulties.

In this paper we propose a method for gathering evidence
from a VM’s vHDD, reducing the volume of data being
gathered, and minimising intrusion on a suspect VM. In the
circumstances of remote acquisition of a VM’s data, physical
access to the hardware that a VM resides on is difficult, but
will not be necessary in the context of what we propose.
Our paper is organised as follows: Firstly we outline what
technologies are currently available to carry out a digital
forensic examination on a VM. In Section 2 we examine
how to best gather data from a vHDD. We then describe our
approach to VM forensics and how we implement it. Section
4 looks at how best to optimise software execution, evidence
gathering, and the consequences of these for both the suspect
and investigator. We support our optimisation techniques

1Software as a service, Desktop as a Service, Infrastructure as a Service



2

with metrics of execution times before and after optimisation.
Finally we will conclude by outlining further research.

VIRTUAL MACHINES

VM technologies fall into two categories - Type I and Type
II VMs [3]. Type I virtualisation involves a hypervisor, or
virtual machine manager, (VMM) using a thin code layer to
manage resources in real-time. They run directly on the hard-
ware and are commonly known as ’bare-metal’ hypervisors,
examples include XenServer from Citrix, ESXi from VMware
and Hyper-V from Microsoft. They reduce the overhead
needed by the hypervisor itself, provide good performance,
availability and security.

Type II hypervisors run as an application on top of an OS.
They are very popular and are usually used to emulate another
OS, e.g. running Windows within Linux, or vice versa. They
are usually found on home computer systems where security
and efficiency are less critical, examples include VirtualBox
from Oracle and Microsoft’s VirtualPC.

VM Forensics - Current State of the Art

VMs were introduced in the 1960’s [8] but declined in
demand due mainly to the decline in popularity of mainframes
and the wider accessibility of personal computers [27]. Their
recent re-emergence and use by different entities, such as
public, private and individuals, has brought with it many
challenges for Law Enforcement [9], and it is very likely
that investigators will encounter increasing numbers of cases
where VMs are used. VM digital forensics challenges are
similar to those of traditional digital forensics, such as host
log analysis and data capture and analysis, but recovering
those data from a VM operating on a cloud platform can
pose a challenge. Methods and tools exist to recover data
from traditional computer systems and their hard drives, but
although the methods of capturing VM data are essentially the
same, collecting evidence from a vHDD is more problematic.

In a traditional digital investigation capturing the data on
a hard drive usually involves capturing the suspect computer
and seizing the hard drive. However, seizing the hard
drive, both physical and virtual, that a VM uses is less
straightforward. If the VM is operating in the cloud through
a service provider, accessing the hard drive could involve
removing it from the data centre, and then examining it. This
is likely to take time, running the risk of data being altered,
removed, deleted or destroyed, and may also reveal other
users data on the hard drive, giving rise to data protection
issues. There are also few tools to assist in investigating a
vHDD, apart from LibVMI [15]. If the VM is operating
in a desktop machine, in VirtualBox or KVM/QEMU for
instance, it may be impossible to gain access to the hard drive.

VM Introspection

The most important VM forensics technology to date has
been Virtual Machine Introspection [10] (VMI). VM intro-
spection uses the virtual machine manager (VMM) to view
what is happening inside a VM. It was originally introduced
as a method of implementing intrusion detection systems,
allowing a VM to be monitored from outside to assess what
is happening inside, but it can also be used in the forensic
investigation of VMs. VMI describes how a VMM adminis-

trator can inspect what is occurring inside a VM, view the VM
memory, its processes, its network settings, installed OSes,
applications and services. This powerful feature of VMI has
allowed criminal investigation of VMs to take place and data
to be captured which might otherwise have been lost.

Nance et al. [11] describes VMI as falling into two cat-
egories - those that monitor a VM and those that interfere
with a VM. Using VMI to monitor the runtime state of a
VM effectively allows such monitoring to take from outside
the guest system, without the knowledge of that guest system
[11]. Furthermore, without knowledge of VMI monitoring
it is therefore neither possible to prevent it, nor possible to
interfere with that monitoring [11]. Interference, on the other
hand, comprises a different set of circumstances, for instance,
when VMI interferes with a VM it responds to some condition
in the VM that requires a response, such as a detected threat,
by terminating the affected process. This interference with
the guest system may alter data, and should be avoided as
any change to the system being inspected could effectively
alter evidence and thus possibly provide a different forensic
outcome to that of an unaltered system. This will have
consequences for any evidence recovered and may cause that
evidence to be ruled inadmissible. VMI VMI does not affect
a VM in any other way as it does not draw on any of the
VM’s resources.

Semantic Awareness: Th semantic gap that exists between
raw data an its natural language representation, is recognised
as the greatest challenge facing VM forensics. Nance et al.
describe semantic awareness [11] as the VM’s knowledge of
its guest operating system (OS), and by Joshi et al. [28] as
the level of abstraction naturally used and that exposed by a
virtual machine. Bridging that gap is not a trivial process

and is made more difficult by the failure of an OS being
inspected to follow certain semantic expectations. However
that awareness is dependent upon the OS following the known
data structures and syntax of that OS. Bridging that gap is
very much dependent upon the target OS following the known
data structures and syntax of that OS. By failing to follow
those structure and syntax’s, Bahram et al. [13] described
how to subvert VMI in such a way that any data recovered
through VMI renders those data to be questionable. This can
be achieved through the simple assumption that data on the
suspect system conforms with the expected data structures
and syntax of that kernel, failure to adhere to that assumption
can cause those data to be suspect. This means that to



3

evade VMI a completely different view of the system can be
presented to VMI, than that which is seen by the user. This
approach can cause those data to be obfuscated in such a way
that reversal of that obfuscation may be computationally very
complex and very expensive, and without prior knowledge of
how it is achieved, it would make tools such as The Volatility
Framework of little use in analysing those subverted memory
files. Compromisation can be achieved by various means,
including using a rootkit, possibly causing any data recovered
to be unsound, with significant implications for the value of
evidence gathered from those data.

The Volatility Framework: The Volatility Framework[14]
is used in forensic memory analysis. It provides an analysis
platform for a wide range of file types, including core dumps,
from various OSes, including Linux kernels from 2.6.11
to 4.2.3, OS X from 10.5.x to 10.11.x and most Windows
OS’s from Windows XP SP2 to Windows 10, and various
virtual machine managers (VMMs), including VMware and
VirtualBox. Linux core dumps can be dumped into ELF
file format which can be parsed using Volatility. However
accessing the vHDD is not possible using Volatility, as it is a
memory inspection tool.

Another very useful memory acquisition and inspection tool
is LibVMI [15]. This is a tool that allows reading from and
writing to a VM’s memory. It was developed for the Xen
VMM, but has been extended to other VMMs. As Volatility
was originally intended for use on static memory images
the developers of LibVMI have extended its functionality to
live memory address spaces by writing a Python wrapper for
Volatility for use by LibVMI [15]. Although this is a powerful
addition to the digital forensic examiners toolkit it is very
likely to suffer a latency issue between when data are present
in RAM and the when LibVMI captures them. This could
cause data to be swapped out of memory, or be overwritten
before LibVMI captures those data.

Best Practice Guidelines

The Association of Chief Police Officers of the UK
(ACPO) [16], ISO Standard 27037 [17], U. S. Department
of Justice Office of Justice Programmes National Institute of
Justice [18] and the EU publication Guidelines on Digital
Forensic Procedures for OLAF Staff [19] have set guidelines
to be followed when examining digital evidence.

The ACPO have published four simple principles to be
followed, Principles 1 and 2 are most relevant to our work.
Briefly described, these are: Principle 1 expressly disallows
changes to original data, Principle 2 describes how data should
only be accessed by a qualified person, but allows an examiner
to explain the reasons for any action taken that may have
changed the original data, this second principle is important
in the context of our approach to VM forensics. Principles 3
and 4 are not relevant to our work at present. These principals
have been accepted as best practice by the Courts in the UK

and Ireland and have influenced the drafting of the EU OLAF
guidelines.

COLLECTING DATA FROM A VHDD

There are many tools available to examine data on a physical
hard drive, e.g. EnCase [20], the SANS Investigative Forensics
Toolkit [21], FTK [22], TSK [23], these have varying degrees
of functionality. What they all have in common is that they
require that the hard disk be available to be examined, or an
image of that hard disk, something not necessarily possible
where a VM is concerned. It is possible to obtain an image
of a vHDD when a VM is captured while still live, but
the volatility of VMs can still make this a difficult process.
Typically VM data are captured through a snapshot of the
VM, via the VMM, it preserves the VM at a specific time, but
is limited in that it is a fixed image and will fail to capture
data subsequent to the snapshot. The VM must also be live
when taking a snapshot, rather than in the digital forensics of
a standard computer where off-line capture is possible. The

ACPO Good Practice Guide for Digital Evidence and the US
Department of Justice Special Report of April, 2004[18] are
two very important reports and were written to contribute to
a framework for ensuring gathered evidence and the methods
used to recover that evidence, meet a minimum standard. They
were originally intended to guide examination of standard
computer systems, but these guidelines equally apply to VMs.

Data recovered from a VM can be processed in the same
manner as those recovered from standard systems. In our
proposal we create and recover the md5 signatures of data
and propose using these signatures to match against data sets
of known hash signatures of known files. For example by
matching the recovered hash against those in repositories,
such as the National Software Reference Library (NSRL), it
is possible to identify those files where the hash signatures
exist in that library. This method of file identification can be
efficient, because files are identified by means of using a hash
signature, reducing the data to be recovered from several MiB
to 32B. We recognise that any alteration to the original data
will result in a different hash signature, to that from unaltered
data. This could be addressed through sub-file forensics, but
we do not examine this in this research.

EVIDENCE SEARCH THROUGH INJECTED CODE

Our approach to VM forensics involves injecting forensic
software into a VM and executing that software. In their
paper, WITHHELD [24] described how code injection into a
VM could be used to execute known benevolent code to carry
out digital forensics in that VM, they elaborated on some
benefits of doing this. In this paper part of this proposal is
implemented and the results are described.

We have built a simple, but effective search engine for this
purpose, which will have minimal impact on the host system.
The purpose of this system is to search a hard drive, or



4

partition, for pre-defined file types using their file signature,
create an md5 hash of each file found that satisfy the search
criteria, and save that hash signature to a separate file for
extraction by VMI software. This approach allows very
fast searching of a hard drive, reduces the volume of data
for extraction and minimises interference with the host system.

Evidence integrity can be compromised by writing data to
a hard drive, whether virtual or physical. Preventing this in
a digital forensics laboratory invariably means interfacing a
write-blocker between the hard drive and the forensics tool.
Using a write-blocker is not possible in the VM forensics
approach we propose. To solve this problem we have written
a software writ-blocker for use with this search engine. We
create a small RAM disk, then install the tool into RAM disk,
execute it from there and save all data found to file within
that RAM disk. This prevents any data being written to the
vHDD, and because the RAM disk is a reserved area of RAM
no changes will occur to data in RAM. The small size of the
RAM disk used, 8 MiB, has very little impact on the VM and
its performance.

Our approach has some important advantages. First it
significantly scales down the volume of data needed to be
extracted, second it provides an investigator with a forensically
sound fingerprint of a file used or distributed. Code can be
tailored to suit any purpose required, it can be customised to
search for and recover files, and export them for extraction by
VMI software, and by using the OS semantics can help bridge
the semantic gap. It can help escape kernel data structure
manipulation, as described by Bahram et al. [13] by identifying
the means of such manipulation.

Using an md5 signature to effectively identify file we can
reduce the volume of data to 32 B per file, from a jpeg file
of approximately 5 MB, a reduction in data size of approx.
1.5 x 104 is achieved, giving a very significant reduction in
data volume to be extracted. Much more significant gains can
be made with other file types, e.g. 10 TIFF files occupying
50 MB each, give a total of 500 MB of data for recovery,
whereas 10 md5 signatures of those same files will occupy
only 320 B. This result in extraction of a much smaller data
footprint, reduce the bandwidth necessary to recover those data
and minimise the risk of corruption

Providing an md5 signature of a file allows that file to
be matched against databases of hash signatures of known
files. The NIST National Software Reference Library (NSRL),
among others, currently provide a Reference Data Set against
which md5 signatures can be referenced and their correspond-
ing files identified. This is a very fast and secure method of
identifying files. Furthermore hash signatures can be used to
identify files shared between users where those files are not
catalogued by the NSRL, or where files are recovered from
other computers and suspected to have originated from the
system being inspected.

Overcoming the semantic gap is not a trivial matter, it
is expensive and computationally complex. Using software

injected into an OS, in the manner we describe it, and
executing that software natively on the suspect machine, we
are using the original data in the file system, the semantics of
the target OS and the data structures of that OS. By accessing
the file data present on the system we can recover those files of
interest, there is no need to convert data from its raw state to
its natural language representation, there is no need to address
the data structures. This is a very significant advantage of
our approach, as it helps reduces the time needed to examine
a system, saves investigator time and reduces the data to be
recovered.

We can also overcome the subversion techniques described
by Bahram et al [13]. In the same way as we describe
overcoming the semantic gap, we also use the kernel data
structures of a compromised operating system to our advan-
tage, by processing data inside that compromised system. We
must be very cautious that by using a compromised OS we
run a significant risk of compromising data recovered, but it
is possible to determine the method of manipulation used and
by doing so reverse that manipulation and recover the data
uncompromised.

EXPERIMENT

Code Optimisation

Optimising code execution is best achieved through careful
design of the algorithms used, making best use of available
hardware, reducing user interaction and selective targeting of
data for processing. We have used CPU affinity to make the
best use of the available CPUs and CPU cache, by pinning
our tools to one CPU core and timing execution.

In view of the volatility of VMs and their storage, we must
avoid alerting a user to external activity on their VM as this
can quickly result in the destruction of the VM and loss of all
data. Therefore speed of execution of our injected software
is important.

Test Environment

To build our software engine and the investigation
environment we used KVM/QEMU v1.3.2 running on
Sabayon Linux v15.11, kernel 4.2.0 and created a VM using
the same Sabayon Linux version as the host system. We
used an Intel i7 processor, at 1.7 GHz, with 4 GB RAM,
and an SSD at 540 MB read speed. We used a relatively
low power processor to mirror as closely as possible the
performance of an Amazon T2 medium EC2 instance, to
measure how our software might operate on such an instance.
We gave our VM with 1,024 MB of RAM, 20 GB of SSD
and 2 vCPUs. We copied a data set of 2.5 GB - 12,808
files, in 4642 directories - into the guest and used this as our
test data. Allocating two vCPUs allowed us to manipulate
our test platform to our own specifications. The purpose
was to make comparison between two different management
scenarios, one where the OS managed the vCPU allocation



5

and one where we pinned our program to one vCPU. We
executed our program in these two management environments
to find which one returned the best performance and gave the
best results in terms of execution speed.

Description

To achieve our aims we built a tool to search a hard drive.
The tool searches a file system for files, recursing into sub-
directories. It then uses the Linux utility file to extract the
file type, from any files found. We then grep’ed the file
command’s output to identify text files. The program then
builds the full path to the files found and uses the Linux
command md5sum to calculate the md5 hash of the files found.
The ’md5sum’ output is then save to file on the RAM drive.

We developed this tool on the host system described above
and compiled it using the Gentoo Hardened 4.9.3 p1.1 version
of gcc. We took this route building our own search engine
in preference to using the Linux terminal utility ’find’. The
find command is very useful and can be tailored to a users
specification by customising the path to be searched and
the files to be searched for, however initial testing showed
that this utility consumed a lot of CPU time, resulting in
longer execution times than our own search engine when we
compared those times.

The POSIX interface library contains a header file, ’ftw.h’,
used to recursively search a file system tree. We wrote a
program using this header file, to be used as a comparison. We
used this program to make comparisons between its execution
time and our custom program execution time. It was important
to us to design our tool to replicate the functionalities of both
find and ftw.h exactly, and we successfully did this. Our
tool recursively calls directories in a file system tree, searches
those directories for files appropriate to the search criteria
and processes those files as required. It continues until the
directory is fully searched at which point it will exit the search
of that directory branch to resume its search of the parent
directory.

Tool Execution

In our example we sought text files, identifying them using
the Linux terminal command file, and generated an md5 hash
for each file found. We closed all open processes prior to
the test runs. We ran both programs, our search program,
Tool_1, and the one using ftw.h - Tool_2 - 10 times and
took the mean execution time. Initial execution times were
consistently within a range that indicated that further testing of
both programs would not significantly influence those results.
Our VM was provisioned with two vCPUs and we carried out
two separate sets of tests. In the first test run we pinned our
programs to one vCPU in the VM and timed 10 runs of both
tools, in the second test run we allowed the VM operating
system manage CPU balancing while executing our programs.

We saved the output from both sets of tests to files, and the
full path to the file.

Pinning a process to one CPU, vCPU or core forces the
execution of that process to be carried out exclusively on that
CPU or core, CPU affinity can result in greater efficiency
[25]. Efficiency can arise by optimising cache performance
and reducing cache miss rates [29], task data does not
need to be cycled, leading to efficiency and therefore time
savings. Table 1 illustrates the results we obtained from
our tools runs, we have labelled the data appropriately -
pinned meaning pinned to one vCPU, unpinned meaning OS
managed balancing.

Test Results
pinned unpinned

Tool_1 47.48s ± 0.5s 55.59s ± 1.6s
Tool_2 1 m 41s ± 2.1s/4.1s 1m 31.05s ± 2.5s/10s

Table 1. Timing of program runs of the two tools used showing ranges +/-

mean.

Our test results show that our tool ran significantly faster
than that using ftw.h and was faster again when CPU affinity
was applied. CPU affinity had an appreciably positive out-
come for execution time for our tool. An unexpected outcome
of our experiments showed that there was smaller divergence
from the mean execution time when our tool, Tool_1, was
measured, compared with a wider divergence range when
Tool_2 was tested.

We ran further tests to verify that the correct md5 hashes
were being returned by our tool by taking random entries
from the results files and separately calculating md5 hashes
of these files. Those results confirmed to us that our tool was
executing as expected. Figure 1 is an extract of the md5um
output that was saved to file.

af9efe495c3332991faf2f49275438c6 /home/patt/.config/user-dirs.locale

Figure 1. Example of one md5 and the file name saved to file.

The same file with an md5 calculated from a terminal
window is shown in Figure 2, with the output from the ’file’
command showing that it is a text file.

Figure 2. File type and md5 signature of file shown in Figure 1 re-calculated
in terminal.

The same C program wrapper and standards were used
on both tools to measure execution time. Comparison of the
results show that our tool runs faster than the alternative tool.
In the context of our tests and the volume of data used the time
differences do not appear to be of significance, but scaling to
much larger file systems we would expect the disparity to be
more profound and to become more apparent.



6

PERFORMANCE AND ANALYSIS

Linux maintains a page cache to accelerate access to
files. Data can very quickly be read from cache rather than
re-reading the data from storage, this facility is also known
as disk buffering[26]. This valuable feature can significantly
increase the performance of processes by reading data once
from disk, caching it to fast main memory and reading it
from the main memory for subsequent operations involving
those data, rather than accessing the very much slower disk.

In our experiments while pre-testing our tool, cached data
produced very slightly anomalous results each time we timed
our program operation. This occurred because we were re-
using data from the first program run on subsequent runs, thus
accelerating data access and misstating true run times. We
corrected this feature by clearing the cache each time we ran
the processes.

Time is of critical importance in VM forensics and any
method that can reduce the time taken to recover evidence
from a VM should be availed of. Our tool indicates that a
tailored solution to this issue can have significant benefits in
terms of run time reduction.

CONCLUSION

VM forensics is in its infancy, but with the projected growth
in VM use, the problem of forensically examining VMs will
only grow too. This problem will become more critical if
throw away VMs as described by Barret and Kipper [6]
become commonplace. We were careful to ensure that the tool
we produced impacted the system being examined in a very
insignificant way by writing just one file to RAM disk. We
have shown that our tool has a number of important qualities,
it executes in an efficient, controlled and verifiable manner, it
is simple, fast and forensically sound.

Our approach to VM forensics will allow us to tailor our
tool to probe any system, whether it be a VM or standard
computer system, any hardware platform or any software
platform. It will not be dependent on a compiler or interpreter
to be present on the target system, we inject an executable
program. We can customise our tool to recover evidence,
data, including the password files, log files, PID lists, etc.
We are currently examining ways to recover data from open
and running processes and ways of cloaking our software
execution from a user, presenting a view of the system where
it appears only user processes are running.

Our software has a small footprint, it is compact and
efficient. One feature of our tool is it’s flexibility and we
are investigating extending it to OS’s other than Linux. As
future work we are looking at how best to extract or export
our results file from the VM in a forensically secure manner.

REFERENCES

[1] Casey, E., 2011. Digital evidence and computer crime: Forensic science,
computers, and the internet. Academic press

[2] Dykstra, J. and Sherman, A.T., 2012. Acquiring forensic evidence from
infrastructure-as-a-service cloud computing: Exploring and evaluating
tools, trust, and techniques. Digital Investigation, 9, pp.S90-S98

[3] Goldberg, R.P., 1974. Survey of virtual machine research. Computer,
7(6), pp.34-45

[4] Kremer, J., Cloud Computing and Virtualization. White paper on virtu-
alization

[5] Cusumano, M., 2010. Cloud computing and SaaS as new computing
platforms. Communications of the ACM, 53(4), pp.27-29

[6] Barrett, , Kipper,G., Virtualization and Forensics: A Digital Forensic
Investigators Guide to Virtual Environments: Syngress, Burlington,
Massachusetts, USA, 2010

[7] Cai, H., Wang, N. and Zhou, M.J., 2010, July. A transparent approach
of enabling SaaS multi-tenancy in the cloud. In Services (services-1),
2010 6th world congress on (pp. 40-47). IEEE.

[8] http://www.vm.ibm.com/vm40hist.pdf retrieved 25.1.2016
[9] Birk, D., 2011, January. Technical challenges of forensic investigations

in cloud computing environments. In workshop on cryptography and
security in clouds (pp. 1-6).

[10] Garfinkel, T. and Rosenblum, M., 2003, February. A Virtual Machine
Introspection Based Architecture for Intrusion Detection. In NDSS (Vol.
3, pp. 191-206)

[11] Nance, K., Bishop, M. and Hay, B., 2008. Virtual machine introspection:
Observation or interference?. IEEE Security & Privacy, (5), pp.32-37

[12] Carrier, B. and Spafford, E.H., 2003. Getting physical with the digital
investigation process. International Journal of digital evidence, 2(2),
pp.1-20.

[13] Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Srinivasan, D.,
Rhee, J. and Xu, D., 2010, October. Dksm: Subverting virtual machine
introspection for fun and profit. In Reliable Distributed Systems, 2010
29th IEEE Symposium on (pp. 82-91). IEEE

[14] http://www.volatilityfoundation.org/#!about/cmf3, accessed 25.1.2016
[15] Payne, B.D., 2012. Simplifying virtual machine introspection using

libvmi. Sandia Report
[16] http://www.cps.gov.uk/legal/assets/uploads/files/ACPO_guidelines_

computer_evidence[1].pdf, accessed 27.1.2016
[17] https://www.iso.org/obp/ui/#iso:std:iso-iec:27037:ed-1:v1:en, accessed

27.1.2016
[18] https://www.ncjrs.gov/pdffiles1/nij/199408.pdf, accessed, 27.1.2016
[19] http://ec.europa.eu/anti_fraud/documents/forensics/guidelines_en.pdf,

accessed 27.1.2016
[20] https://www.guidancesoftware.com/encase-forensic?cmpid=nav_r
[21] http://digital-forensics.sans.org/
[22] http://accessdata.com/solutions/digital-forensics/forensic-toolkit-ftk
[23] http://www.sleuthkit.org/sleuthkit/
[24] Tobin, P. and Kechadi, T., 2014, March. Virtual machine forensics by

means of introspection and kernel code injection. In Proceedings of
the 9th International Conference on Cyber Warfare & Security: ICCWS
2014 (p. 294).

[25] Squillante, M.S. and Lazowska, E.D., 1993. Using processor-cache affin-
ity information in shared-memory multiprocessor scheduling. Parallel
and Distributed Systems, IEEE Transactions on, 4(2), pp.131-143

[26] http://www.tldp.org/LDP/sag/html/buffer-cache.html, accessed
27.1.2016

[27] Reuther, A., Michaleas, P., Prout, A. and Kepner, J., 2012, September.
HPC-VMs: Virtual machines in high performance computing systems. In
High Performance Extreme Computing (HPEC), 2012 IEEE Conference
on (pp. 1-6). IEEE.

[28] Joshi, A., King, S.T., Dunlap, G.W. and Chen, P.M., 2005, October.
Detecting past and present intrusions through vulnerability-specific
predicates. In ACM SIGOPS Operating Systems Review (Vol. 39, No.
5, pp. 91-104). ACM

[29] Love, R, 2003. Kernel Korner: CPU affinity. Linux Journal, 2003(111),
p.8


