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Validating Two Novel Equivalent Impedance Estimators
Paul Cuffe, Member, IEEE, and Federico Milano, Fellow, IEEE

Abstract—Certain approaches to appraising voltage stability
use an equivalent impedance to characterise the wider power
system. This letter proposes two new ways of inferring an appro-
priate equivalent impedance from a power system’s admittance
matrix. Continuation power flow simulations are used to validate
the quality of the new estimators, and to benchmark them against
some extant approaches.

I. INTRODUCTION

C IRCUIT theory shows that the maximum power deliverable
to a load will occur when its impedance matches the

complex conjugate of the feeding Thévenin impedance, and
this concept underpins various approaches to appraising a bus’
voltage stability [1]–[3]. Such indices, whose relative merits are
beyond the modest scope of the present letter, typically infer an
equivalent impedance using sequential samples of local voltage
and current [4]. A recent review [5] noted one shortcoming of
such approaches: “these indices are very sensitive to the small
change of the data” and went on to suggest that future work
in voltage stability should propose a measure that “considers
the Thévenin network impedance and is insensitive to the small
change of the two consecutive measurement data.”

Accordingly, the present letter proposes and validates two
new ways to directly infer an equivalent impedance from a
system’s admittance matrix. While an equivalent impedance
alone cannot capture all aspects of voltage stability (due
to e.g. machine reactive power limits) their more accurate
estimation can offer insights on how network structure affects
bus loadability.

II. METHODOLOGY

Alongside the two novel approaches, two established tech-
niques are also used to populate the vector of network equivalent
impedance estimators as seen by each load, zL.

A. Proposed new estimators
1) Load submatrix impedance: The Y bus is reordered, per

[1], such that the m generator buses and n load buses are
grouped together:[

iG
iL

]
=

[
Y GG Y GL

Y LG Y LL

] [
vG

vL

]
(1)

Manipulation of (1) gives:

vL = ZLLiL + FLGvG (2)
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Where ZLL = Y −1LL and FLG = −ZLLY LG. Recent work
[6] has shown that the rows of FLG sum close to one with
negligible imaginary components: it thus shows the different
participation each generator has in establishing the no-load
voltage at a particular bus. Therefore, the diagonal elements of
ZLL have a clear interpretation as system effective impedances
at each bus, as they explicitly describes the voltage drop
caused by local current consumption (see [7] for more on
this paradigm.) Therefore, an impedance estimate is given by:

zSub
L = diag(ZLL) (3)

2) Klein resistance distance: The Zbus matrix (elements zij)
is the inverse of the Y bus matrix. According to Klein [8], the
Thévenin impedance between buses i and j is calculated using
these elements of the Zbus matrix:

zkij = zii + zjj − zij − zji (4)

Various works have used the intuition that the electrically-
nearest generator to a load represents information relevant to
creating a Thévenin equivalent [9], [10]. While those works used
approximations, the full Zk matrix of internode impedances
allows the extraction of the explicit Thévenin distance between
each load and its nearest generator:

zNear
L = min

j∈L
zkij , i = 1, ...,m (5)

B. Benchmark estimators
1) Shortest path impedance: Work in [9] used network

traversal techniques to find the shortest topological path between
each load and its nearest generator. The sum of branch
impedances along this geodesic path was used in [9] as an
estimate of the system equivalent impedance: zTopo

L .
2) Driving point impedance: The main diagonal of the Zbus

matrix contains driving point impedances which describe the
short circuit power available at a bus. Some authors have likened
these with a Thévenin equivalent of the system, at least under
faulted conditions [11].

zDriving
L = diag(Zbus) (6)

C. Estimator quality assessment
As a validation exercise in the domain of one potential

application, each estimator is used to predict the maximum
loadability of each load bus within a test system. At a unity
power factor, the forecasted maximum active power point is
given as function of zL(= rL + jxL) by [12]:

p+ =
v2
L

2(
√

r2L + x2
L + rL)

(7)

To validate the quality of the p+ forecast, and the zL

equivalent it derives from, the empirical steady state loading
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Fig. 1. Scatterplots showing the predictive efficacy of each estimator versus maximum active power loadability for each bus within nesta_case118_ieee

TABLE I.
QUALITY OF LOADABILITY FORECASTS p+ USING EACH zL ESTIMATOR

System Name zSub
L zNear

L zTopo
L zDriving

L

nesta_case30_ieee 16 26 46 89
nesta_case39_epri 27 35 38 74
nesta_case57_ieee 12 14 40 80
nesta_case73_ieee_rts 14 28 37 52
nesta_case89_pegase 20 52 53 100
nesta_case118_ieee 7.7 25 39 47
nesta_case162_ieee_dtc 46 24 41 187
nesta_case189_edin 40 43 41 69
nesta_case300_ieee 24 28 38 49

limits at each load bus are calculated. This is achieved using
simple continuation power flow techniques [13], where each
load is individually increased. The increasing load is served
from its local generators, as identified from the non-zero
entries in the relevant row of the FLG matrix. This analysis
is undertaken solely to determine which estimator of zL most
accurately encapsulates the network through which the load
sources its increasing power requirement: as such, machine
active and reactive power limits are ignored, and vL is
uniformly set = 1.

III. RESULTS & CONCLUSIONS

Empiric loadabilities were calculated for every load bus in
each of nine test systems [14]. This rich dataset [15] is then
compared against the corresponding loadabilites p+ that were
predicted according to each of the four zL estimators: the
quality of these predictions is shown in Table I, which shows
their Mean Average Percentage Error. For instance, considering
every load bus in the nesta_case30_ieee system, the p+

loadability prediction that was based on zSub
L typically deviated

from the empiric value by 16%.
The zSub

L estimator consistently delivers the best loadabil-
ity predictions. The zNear

L estimator also performs well; it
outperforms zTopo

L , which doesn’t properly account for the
parallel nature of impedances within a meshed transmission
system. Finally, Table I shows that zDriving

L is wholly unsuited
to predicting loadability limits.

A more granular view of the data is given in Fig. 1,
which plots predicted versus empiric loadabilities at each load
bus in the nesta_case118_ieee system. The clear linear
trend for the zSub

L estimator is apparent, with most datapoints
clustered tightly around the regression line. In conclusion, the
ZLL matrix is not sensitive to small changes in operating

conditions, and it contains information useful for bus loadability
analysis.

REFERENCES

[1] P. Kessel and H. Glavitsch, “Estimating the voltage stability
of a power system,” IEEE Transactions on Power Delivery,
vol. 1, no. 3, pp. 346–354, 1986.

[2] I. Smon, G. Verbic, and F. Gubina, “Local voltage-stability
index using Tellegen’s theorem,” IEEE Transactions on Power
Systems, vol. 21, no. 3, pp. 1267–1275, 2006.

[3] A. Wiszniewski, “New criteria of voltage stability margin for
the purpose of load shedding,” IEEE Transactions on Power
Delivery, vol. 22, no. 3, pp. 1367–1371, Jul. 2007.

[4] K. Vu, M. M. Begovic, D. Novosel, and M. M. Saha, “Use of
local measurements to estimate voltage-stability margin,” IEEE
Transactions on Power Systems, vol. 14, pp. 1029–1035, 1999.

[5] J. Modarresi, E. Gholipour, and A. Khodabakhshian, “A com-
prehensive review of the voltage stability indices,” Renewable
and Sustainable Energy Reviews, vol. 63, pp. 1–12, 2016.

[6] I. K. Dassios, P. Cuffe, and A. Keane, “Visualizing voltage
relationships using the unity row summation and real valued
properties of the FLG matrix,” Electric Power Systems Re-
search, vol. 140, pp. 611–618, 2016.

[7] S. M. Abdelkader, D. J. Morrow, and A. J. Conejo, “Net-
work usage determination using a transformer analogy,” IET
Generation, Transmission Distribution, vol. 8, Jan. 2014.

[8] D. J. Klein and M. Randić, “Resistance distance,” Journal of
mathematical chemistry, vol. 12, no. 1, pp. 81–95, 1993.

[9] B. Genêt and J.-C. Maun, “Voltage-stability monitoring using
wide-area measurement systems,” in Power Tech, 2007, IEEE,
2007, pp. 1712–1717.
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