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Abstract: A numerical approach to locate motor units in human muscles by hig density surface
EMG measurements is presented. For this purpose a mathematical model has been derived which
can be evaluated by finite element computations. On that basis an optimal control problem is
specified that can be solved by a function space oriented optimization method. Numerical results
are reported for a test problem.
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1. INTRODUCTION

High density surface Electromyography (sEMG), is a
non-invasive method of measuring the activity of muscle
whereby an array of electrodes is placed above the skin and
a spatially and temporally resolved measurement of the
electric potential on the skin is obtained. Recent advances
in high-density sEMG measurement have opened the pos-
sibility of extracting information about single motor units
(groups of muscle fibers controlled by the same motor
neuron) from the sEMG signal.
While significant advancements have been made in iden-
tifying the activity of individual motor units from the
surface EMG signal through EMG decomposition methods
(cf. e.g. Kleine et al. (2007)), a reliable and accurate
method to determine where the motor units are located
and where the trajectory of the muscle fibers run from the
sEMG signal is not yet available. Previous works consider
spatial data only [van den Doel et al. (2008, 2011); Liu
et al. (2015)] or use simple parametric models within a
least squares approach [Mesin (2015)].

In this work we describe an approach to automate the iden-
tification of motor units using techniques from numerical
simulation and non-linear optimization.
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2. CONDUCTION OF ACTION POTENTIALS

The basis of our approach is a mathematical model for the
physiology and for the physical situation.

2.1 Propagation of eletric fields in the human body

Consider some part of the body, e.g. a limb or a part
of the head, represented by a Lipschitz domain Ω ⊂ R3

with sufficient smooth boundary Γ. We denote the spatial
variable by x ∈ Ω and the temporal variable by t ∈ [0, T ].
We are interested in the electric potential Φ(x, t) in Ω
caused by a given distribution of electric charge ρ(x, t).

The human body consists of various types of tissue with
different physical properties. We assume that the different
tissues behave like a volume conductor [Stegeman et al.
(2000) and Lowery (2016)]. This means Ohm’s law is
applicable and thus Φ(x, t) can spread out in the domain
and can therefore be measured at the surface. Like the
majority of previous sEMG simulation studies we assume
that at the frequencies of interest the tissue is purely
resistive and its conductivity σ(x) is independent of Φ
[Stegeman et al. (2000), Lowery (2016) and Gootzen et al.
(1991)]. For skin and subcutaneous fat tissue we assume
that σ is isotropic [Stegeman et al. (2000),Lowery (2016),
Andreassen and Rosenfalck (1981) and Gootzen et al.
(1991)]. For muscle tissue however one assumes that the
conductivity is anisotropic, i.e. that the conductivity is
higher along the fiber axis.

On Γ we impose different kinds of boundary conditions.
In the part of the boundary Γ0 where skin is adjacent
to air we note that in general the electrical potential in
air is zero. Further we assume that there are no sources
outside of the domain and thus we get the following Robin-
boundary condition

∂νΦ(s, t) = −µΦ(s, t) at Γ0 (1)

with skin conductivity µ. In addition, since we only model
a part of the body, there are artificial boundaries Γ\Γ0 that
result from removing the rest of the body. We assume that
the potential is zero for all points which are far away from
the inner source and thus we get homogeneous Neumann
boundary conditions.
As usual we can write now the electric potential equation
and the boundary conditions in the weak form with a



solution Φ(·, t) ∈ H1(Ω)∫
Ω

ρ(x, t)v(x)dx =

∫
Ω

σ(x)∇Φ(x, t)∇v(x)dx

+

∫
Γ0

µΦ(s, t)v(s)ds ∀v ∈ H1(Ω)
(2)

We remark that the left hand side is is well defined,
for ρ(·, t) ∈ L2(Ω). However, this equation can still be
formulated rigorously for concentrated charges, i.e., if
ρ(·, t) is a measure on Ω, if v is chosen in W 1,p(Ω) with
p > 3. Then it is known (cf. e.g. Haller-Dintelmann
et al. (2009); Alibert and Raymond (1997)) that Φ(·, t) ∈
W 1,p′(Ω) for 1/p+ 1/p′ = 1.

In our model the charge distribution ρ(·, t) in (2) is
caused by ionic activity, the so called action potential that
propagates along the muscle fiber of a motor unit and
activates the contraction of the muscle. Its definition will
be explained in the following two subsections.

2.2 Motor units

A motor unit is a bundle of muscle fibers which are
innervated by the same motor neuron. The motor unit
is the smallest controllable unit of muscle. If now a
muscle fiber is activated, two action potentials propagate
in opposite directions from the neuro-muscular junction to
the ends of the muscle fiber. The velocity v with which
the action potential propagates is almost constant. In
general the neuro-muscular junction lies approximately in
the middle of the fiber. In Figure 1 one can see a schematic
view of such a motor unit. As all of the fibers within a

Fig. 1. Sketch of a motor unit [Stegeman et al. (2000)]

motor unit are activated simultaneously, we can treat a
bundle of muscle fibers in a motor unit as a single fiber.
For such a fiber we assume that the radius (a few µm) is
much smaller than its length (several cm) [Andreassen and
Rosenfalck (1981) and Gootzen et al. (1991)] and thus we
can represent the trajectory of the moving action potential
along the fibers by a pair of regular curves

u1, u2 : [t0, t1] 7→ Ωm

u1, u2 ∈ V := H1([t0, t1])3.

The point u1(t0) = u2(t0) represents the neuro-muscular
junction and u1(t1) and u2(t1) represent the fiber ends.
With u̇k(τ) := d

dτ uk(τ) we denote the tangent vector of the
curves and with sk(τ) := |u̇k(τ)| the speed of the curves.

2.3 Propagating action potentials

Before we define the action potential and thus also the
source density we make some assumption. First we assume

that only one motor unit is active and thus the support of
the source density ρ is included in the curves, i.e.

ρ(x, t) = 0 ∀t ∈ [0, T ] , x /∈ uk([t0, t1]), k = 1, 2. (3)

Therefore ρ is a measure with support on uk. Furthermore
we assume that the source density fulfills the condition∫

Ω

ρ(x, ·)dz = 0 (4)

which expresses the conservation of charge in the human
body.
We now consider that the source density is a spatially
distributed signal, the so called action potential, which
propagates along a trajectory of a motor unit. Similar to
Rosenfalck (1969) we define the action potential in terms
of an artificial real variable z as follows:

im(z − z0(t)) :=

σinπr2 d
2Vm(z − z0(t))

dz
if z ≤ z0

0 if z > z0

(5)

where d2Vm(z)
dz = −96 exp(z)(6z + 6z2 + z3) is the second

spatial derivative of the transmebran potential, σin is
the intracellular conductivity and r is the radius of the
motor unit. Here we changed the orientation of the action
potential, by replacing z through −z in Vm, and added
the origin of the signal z0(t) := v(t − t0). With this
modification we generate a signal which propagates in time
from left to right along the artificial axis as the time t
increases. This moving action potential can be seen in
Figure 2 for three different times.

Fig. 2. Moving action potential at different times t

For fixed t we can now uniquely identify each point on
the trajectory uk with a point z̃ ∈ [0, Lk] by the arc
length of the corresponding curve segment. Here Lk is the
the length of the trajectory uk. Thus we can define the
diffeomorphism

z(uk(τ)) :=

τ∫
t0

|u̇k(ξ)|dξ. (6)

If we combine now (3), (5) and (6) we get for the source
density

ρ(x, t) =

{
im(zk(τ)− z0(t)) if x = uk(τ)

0 else
. (7)



One can now easily proof that the source density fulfills
the condition (4).

End-effects. By the simulation of sEMG it is well known
that if the fiber length is finite so called end-effects can
appear [Gootzen et al. (1991)] and thus we have to correct
our model of the source density. Before we can correct the
model of the source density we have to explain when and
why those end- effects appear. To this end we simulated an
sEMG measurement with our current model. In Figure 3
one can see the result of a simulation with the current
model (red graph). Here we simulated a straight fiber
and the electrode was positioned in the middle between
the neuro-muscular junction and one end of the fiber.
Comparing the simulation with real measurements one
can easily see that there appear some unphysical peaks
at the left and right end of the measurement. We have
noted before in the modeling that the integral over the full
support of the action potential is zero (compare (4)), but
since the signal is represented through a moving stationary
source it can happen that not the full support of the signal
lays on the curve which leads to an imbalance of charges
in the tissue. There are two possible situations when such
an imbalance can appear, namely when the signal arrives
at the neuro-muscular junction (t ∈ I0) and when the
signal vanishes at the fiber end(t ∈ I1). One possibility for
correcting this imbalance is given in [Gootzen et al. (1991)]
by adding a term g that represents stationary sources at
the fiber-ends. These term has then to be chosen such that∫

uk

ρ(x, t)dx+ g(uk(t0), t) + g(uk(t1), t)dx
!
= 0.

Furthermore we assume that

g(uk(t0), t) = 0 if t ∈ I1
g(uk(t1), t) = 0 if t ∈ I0

holds, which means that only one correction term is not
equal to zero at the same time. This assumption is only
sufficient if the lengths of the curve is longer than the
support of the action potential. In our model problems we
will assume that this is always true. With this assumption
we get for the correction terms

g(uk(t0), t) =


−

1∫
0

|u̇k(τ)|im(z(uk(τ))−z0(t))dτ if t ∈ I0

0 else

g(uk(t1), t) =


−

1∫
0

|u̇k(τ)|im(z(uk(τ))−z0(t))dτ if t ∈ I1

0 else

If we now add these correction terms to the source density
and simulate again the measurement, one can see that the
end effects has almost vanished (see green graph in Figure
3).

3. ADJOINT APPROACH

In the previous section we have described a mapping
(u1, u2) → Φ, where Φ is defined on the space-time cylin-
der Ω×[0, T ]. Although our problem is merely quasi-static,
the evaluation of this mapping for reasonably high tem-
poral and spatial resolution is computationally expensive,

Fig. 3. Comparing the corrected simulated measure-
ment(green) with the uncorrected one (red)

in particular if this evaluation has to take place multiple
times within an optimization algorithm.

However, by sEMG measurements, only part of the infor-
mation that is present in Φ is actually used. Measurements
are taken only at finitely many electrodes Di ⊂ Γ0 on the
skin, given by

ỹi(t) =

∫
Di

Φ(s, t)ds for t ∈ [0, T ].

For fixed t each measurement is thus a linear functional
li : H1(Ω)→ R with argument Φ(·, t).
To reduce the numerical effort of evaluating ỹi we now in-
troduce an alternative way to compute the measurements.
The scalar quantity

ỹi(t) = li(Φ(·, t)) for t ∈ [0, T ]

can be evaluated efficiently by the following formula

ỹ(t) =

∫
Ω

w(x)ρ(x, t)dx (8)

where w is the solution of the adjoint problem∫
Ω

σ(x)∇w(x)∇v(x)dx+

∫
Γ0

µw(s)v(s)− 1Dv(s)ds = 0.

(9)

This formula follows from the following simple abstract
computation: Let Φ ∈ V satisfy:

a(Φ, v) = r(v) ∀v ∈W,
where a : V ×W → R is bilinear and r ∈W ∗ is linear. Let
further w satisfy:

a(φ,w) = l(φ) ∀φ ∈ V,
then

l(Φ) = a(Φ, w) = r(w).

4. OPTIMAL CONTROL PROBLEM

Now we assume that we have a measurement array with
J electrodes. For each of these electrodes we can compute
a weight function wj by solving the adjoint problem (9).
If we now define the vector w = (w0, ..., wJ) we can, by
using the model (8), compute the vector valued potential
with the vector valued integral



y(t, u) =

2∑
k=1

[ 1∫
0

w(uk(τ))|u̇k(τ)|im(zk(Θk(τ), t))dτ

+ w(uk(0))g(uk(0), t) + w(uk(1))g(uk(1), t)

]
(10)

such that the potential at the electrode j is the j-th
component of y. Furthermore with ym(t) some measured
potential at the electrodes is given. For our optimal control
problem we then want to minimize the L2-norm of the dis-
tance between measurement and simulation. Furthermore
we add a penalty term which shall ensure that the speed
of the curve is nearly constant and equal in magnitude to
a given reference velocity vr. We get then the following
optimization problem

min J(u) = ‖y(u, t)− ym(t)‖2L2([0,T ]) +
α

2
c(u) (11)

with

c(u) =

t1∫
t0

(|u̇(τ)| − vr)2dτ

5. NUMERICAL IMPLEMENTATION

In this section we want to take a closer look on how to solve
the above stated optimization problem. Therefore we first
specify the geometric setting. As domain Ω we choose a
cuboid with size 1cm × 10cm × 1cm. This cuboid shall
represent an idealized piece of some limb. We divide this
cuboid into two horizontal layers where the lower layer has
a thickness of 8mm and represent the muscle tissue. The
second layer is 2mm thick and represent a fat layer under
the skin. Furthermore we define the upper boundary as
Γ0 where the domain is bounded by skin. At the other
boundaries we assume that the domain would continue.
One can see a schematic view of this cuboid in Figure 4.

Furthermore on the time interval [0s, 0.015s] gener-

Fig. 4. Schematic view of the domain

ate artificial measurements by forward simulation. The
action potential is active in the subinterval [t0, t1] =
[0.0025s, 0.0125s], which is the domain of the trajecto-
ries. Finite element discretization of the spaces H1(Ω)
and H1([t0, t1])3 is performed as follows. We choose a
triangulation T of Ω and a triangulation I of the interval
[t0, t1]. The domain Ω is thereby divided into tetraheda,
whereas the I is simply divided into n intervals. Using
this triangulation we can then define the space of lin-
ear ansatz functions for H1([t0, t1])3 and the space of
quadratic ansatz functions for H1(Ω) by

Vn := {v : [t0, t1] 7→ R3 | v|K ∈ P1(K)∀K ∈ U} ⊂ V
Wn := {w : Ω 7→ R | w|K ∈ P2(K)∀K ∈ T} ⊂ H1(Ω)

The corresponding finite element method is implemented
with the help of the finite element Toolbox Kaskade7
[Götschel et al. (2012)].

5.1 Solving the adjoint problem

For the optimization it is essential to compute the weight
functions w by solving the adjoint problem and be able
to evaluate them at each point in the domain Ω. Since we
have to compute, store and evaluate the weight functions
efficiently, we decided to use a hierarchically and adap-
tively built triangulation of Ω. Therefore we first generate
a coarse grid and refine it first globally to a certain mesh
size. After that we refine then the area where the electrodes
are placed and the the area where the optimal solution is
expected to be. One possible triangulation can be seen
in Figure 5. We then uses a Galerkin-Method to solve

Fig. 5. Mesh with about 750000 tetrahedra. In the critical
region the mesh has been refined, a-priori.

the adjoint problem (8), which as usual this leads to the
discrete replacement problem

find wn ∈Wn s.t.

a(wn, η) = r(η) ∀η ∈Wn (12)

With the usual techniques one can show that the bilinear
a(·, ·) is V-elliptic and since r is a bounded linear func-
tional we know from the Lemma of Lax-Milgram that the
problem (12) has then a unique solution.
After finite element discretization we end up with an
large sparse linear system of equation that is solved by
the preconditioned conjugate gradient method. We use a
BPX-preconditioner [Bramble et al. (1990)], which takes
advantage of our hierarchic grid.

5.2 Evaluation of weight functions

As we have seen in (10) and (11), the objective function
of our optimal control problem depends on line integrals
that involve the weight functions wj , evaluated along given
trajectories. For optimization purposes we also have to
evaluate spatial derivatives of w, i.e., wx and wxx to
compute the derivative and the hessian of the objective,
since a small perturbation of uk leads to a perturbation of
the points, where w is evaluated.

Since w is only available as a finite element function we
cannot expect wx to be continuous. Even more, wxx is
only defined in the interior of the tetrahedra, and may not
properly reflect the global curvature of the solution. For



example wxx = 0 for linear finite elements. Nevertheless,
there are theoretical results available (cf. Ovall (2007))
that indicate that second derivatives of finite element func-
tions of order higher than one asymptotically approximate
second derivatives of regular solutions of elliptic PDEs.
In our numerical experiments, see Figure 8 below. The
convergence behaviour of our optimization algorithm de-
pends on the resolution of the finite element discretization.
We observe fast linear convergence, the finer the grid, the
faster the rate. The deeper understanding of this interest-
ing phenomenon is subject to current inverstigations.

The evaluation of the line integrals is performed by numer-
ical quadrature along uk. The necessary evaluation of the
finite element function w at a quadrature point x requires
a search for the thetrahedron where x is located. To do
this efficiently we exploit that the quadrature points are
ordered along the trajectory and thus use a neighborhood
search. If this fails, we fall back to a hierarchic search over
the whole grid.

5.3 Numerical solution of the optimization problem

To solve the minimization problem we use a simple SQP
line search method. This means in each step we compute
a direction of descent δu and a sufficient step size β. For
the step computation we establish a quadratic model of
the functional by

J(u+ δu) ≈ mu(δu) := J(u) + J ′(u)δu+
1

2
qu(δu, δu).

The bilinear form

qu(δu, δu) = J ′′(u)(δu, δu) + γ‖δu‖2V×V .
employs second order information of J . The term γ‖δu‖2V×V
is added to overcome possible indefiniteness of J ′′(u).
So γ is chosen adaptively to make qu positive definite,
if J ′′(u) isn’t. We thus have a modified Hessian-method
which differs from classical modified Hessian methods by
the choice of regularization term.
To get the direction of descent from this model one has
then to minimize mu(δu) over δt which is equivalent to
solving the variational problem

find δu ∈ Vn × Vn s.t.

q(δu, η) = J ′(u)η ∀η ∈ Vn × Vn (13)

Since u is defined on a one dimensional domain this
problem is of moderate size after discretization and can
thus be solved by a Cholesky factorization.

For the so computed direction it remains to compute a suf-
ficient step-size. We do this by using a simple backtracking
algorithm with Armijo acceptance criterion as one can find
it e.g. in [Nocedal and Wright (2006)]. Finally we get the
followin simple optimization algorithm 1:

Algorithm 1. (line search).

choose u0

while J ′(u)δu > ε do
solve q(δu, η) = −J ′(u)η
compute step length β
uk+1 = uk + βδu

end while

6. NUMERICAL EXAMPLE

To test the above described algorithm we first simulate
a measurement for a reference trajectory ũ. Therefore we
choose a measurement array of 63 electrodes, which are
placed in three rows of 21 electrodes above the reference
trajectory. The electrodes have the shape of circles with
diameters of 2mm and the distance between the cen-
ters of two neighbouring electrodes is 4mm. In Figure 6
we illustrate the setting, by plotting the the position of
the electrodes at the skin (black circles) and the refer-
ence trajectory (green). We divide then our time interval
[0.0025s, 0.0175s] into 150 time steps and compute for each
electrode the potential yi(tk) at each time step tk. From
this measured potential one can then make an initial guess
for the starting trajectory by placing it in the regions
were the highest potential is measured. This is also a good
option in practical applications. In Figure 6 one can also
see our choice for the starting trajectory (red).

From this measurement we identify the reference trajec-
tory by our optimization algorithm. For this example we
assume that we know the interval [t0, t1], the velocity v
of the signal, which is 4ms , and the position of the neuro-
muscular junction u1(t0) = u2(t0). The position of the
fiber ends u1(t1) and u2(t2) and the depth of the trajectory
are unknown and shall be identified during the optimiza-
tion.
We stop the algorithm when the energy norm of the gra-
dient is sufficiently small, i.e. J ′(u)δu ≤ 10−9. In Figure 6
one can see the computed solution (dashed blue) compared
to the reference trajectory (green). One can see that the
reference trajectory is identified very well by the solution
of our optimization problem, the two graphs coincide.

To assess the influence of the discretization of the weight
functions we performed the optimization with two different
grids for the computation of w. In the first run we used
approximately 750000 tetrahedra. In a second run we
reduced the mesh of 142000 tetrahedra. It can be observed
that both solutions are quite similar in accuracy, but the
rate of convergence differs significantly. For the coarse
solution, about 14 iterations are needed, while the fine
solution requires only 8 steps. We attribute this behaviour
to the fact that more accurate second order information is
available for the fine solution. To illustrate this we compare
in Figure 8 the energy norm of the gradient for the different
mesh sizes.

Fig. 8. Comparison of the energy norm of the gradient for
750000 tetrahedra (blue) and 142000 tetrahedra (red)



Fig. 6. Position of the electrodes and comparison of the reference trajectory (green), the start trajectory (red) and the
computed solution (dashed blue) in the xy-plane.

Fig. 7. Simulated measurement data of the array of electrodes. In each square the temporal signal of the corresponding
electrode is displayed.

7. CONCLUSION

We have constructed a numerical algorithm that can take
into account the full spatio-temporal information, gained
by high-density sEMG measurements in order to locate
motor units in human muscles. It is based on an accurate
finite element model of the physiological situation. An
adoint approach makes the problem tractable numerically.
For a test problem our optimization method converges in
a few iterations and yields accurate results.

In future research our method has to be applied to real
measurement data to assess the accuracy of our forward
model and the influence of modelling errors and noisy data
on the identified solution. From a numerical point of view,
adaptive solution techniques for the computation of the
weight functions as well as for the trajectories will be
explored. Finally, a deeper understanding of the accuracy
of the spatial derivatives of w is desirable, giving rise to
further theoretical investigations.

REFERENCES

Alibert, J.J. and Raymond, J.J. (1997). Boundary con-
trol of semilinear elliptic equations with discontinuous
leading coefficients and unbounded controls. Numeri-
cal Functional Analysis and Optimization, 18(3-4), 235–
250.

Andreassen, S. and Rosenfalck, A. (1981). Relationship
of intracellular and extracellular action potentials of
sceletal muscle fibers. CRC CriticalReviews in Bioengi-
neering, 267–306.

Bramble, J.H., Pasciak, J.E., and Xu, J. (1990). Parallel
multilevel preconditioners. Math. Comp., 55(191), 1–22.

Gootzen, T., Stegeman, D., and Van Oostrom, A. (1991).
Finite limb dimensions and finite muscle length in
a model for the generation of electromyographic sig-
nals. Electroencephalography and clinical Neurophysi-
ology, 152–162.

Götschel, S., Weiser, M., and Schiela, A. (2012). Solv-
ing optimal control problems with the Kaskade7 fi-
nite element toolbox. In A. Dedner, B. Flemisch, and
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