

1

FORENSIC ANALYSIS OF THE EXFAT ARTEFACTS

Yves Vandermeer, Nhien-An Le-Khac, Joe Carthy and Tahar Kechadi

School of Computer Science, University College Dublin, Ireland

yves.vandermeer@ucdconnect.ie, {an.lekhac, joe.carthy, tahar.kechadi}@ucd.ie

ABSTRACT

Although keeping some basic concepts inherited from FAT32, the exFAT file system introduces many

differences, such as the new mapping scheme of directory entries. The combination of exFAT mapping

scheme with the allocation of bitmap files and the use of FAT leads to new forensic possibilities. The recovery

of deleted files, including fragmented ones and carving becomes more accurate compared with former

forensic processes. Nowadays, the accurate and sound forensic analysis is more than ever needed, as there is

a high risk of erroneous interpretation. Indeed, most of the related work in the literature on exFAT structure

and forensics, is mainly based on reverse engineering research, and only few of them cover the forensic

interpretation. In this paper, we propose a new methodology using of exFAT file systems features to improve

the interpretation of inactive entries by using bitmap file analysis and recover the file system metadata

information for carved files. Experimental results show how our approach improves the forensic

interpretation accuracy.

Keywords: exFAT, Microsoft, File System, Bitmap, Forensic, Recovery

1. INTRODUCTION

Today, computer forensics are more than ever used

to gather evidence for all type of crimes. In addition,

the file system forensics approaches have

contributed to successfully solve many criminal

cases. However, the evaluation of the accuracy of

digital forensic tools is still a challenge. If the

accuracy of computer forensics tools is part of the

quality of the process, a level of understanding by

the practitioner on “how” artefacts are created is

required to explain “why” such content was

recoverable and provide valuable contextual

information to the given case.

The exFAT file system, protected by Microsoft

Patent in June 2009 [1][2] has tailored to address

limitation issues from previous FAT16 and FAT32

file systems by allowing larger volumes and larger

files sizes and avoid some inappropriate behaviours

of existing FAT and NTFS when installed on NAND

storage devices. As the most recent removable

storage devices are mainly NAND memory, exFAT

operating system drivers try to reduce as much as

possible the “write” operations to preserve device

lifetime [3], especially in critical disk areas that are

allocated to file systems.

Today, new SDXC memory cards make extensive

use of exFAT to address new storage requirements.

Several manufacturers, like car companies, already

signed cooperation agreement with Microsoft to use

exFAT for their embedded multimedia systems

[4][5][6][7]. Only available on Microsoft Windows

Operating Systems initially, exFAT is now well

handled by Apple Mac OS X and quite recently by

Linux distributions.

Moreover, the FAT systems are analysed by forensic

practitioners for decades and extended literature

covers description of FAT12, FAT16 and FAT32

structures describing how file systems artifacts can

be interpreted for common events including file

deletion. The FAT area plays a dual role; describing

how clusters are chained and allocated. This leads to

a perilous and often questionable interpretation of

carved files.

Digital forensic tools have been developed with the

view to investigate exFAT by using former FAT

systems combined with an undocumented “magic

science”; used algorithms being kept secret as

2

competitive sale features [21]. The result is that the

generated reports are sometimes inaccurate and

always hermetic to practitioner’s understanding on

how some file status attributes were guessed [22].

The difference between a deleted and a renamed file

is a good example of such issue. As an example,

XWays provides for exFAT’s unused set of entries a

single and vague info “file moved or renamed”.

Hence, the forensic analysis using a dedicated

software tool needs to be built on a methodology that

could make the most of exFAT specifications. By

following the same methodology, practitioners will

then be able to interpret the status and history of

reported file in court of justice. However, file history

interpretation soundness can be improved by

comparing information on the cluster chaining from

the FAT area with respective allocation status

gathered from the bitmap allocation file. Therefore,

in this paper, we aim to propose:

(i) a sound interpretation of inactive exFAT

directory entries with references to the bitmap

cluster allocation file.

(ii) a sound carving process based on exFAT

structures, allowing to associate the remaining file

system metadata with recovered file content.

(iii) a simple validation process to recover the

previous content of some shortened existing files.

The rest of this paper is organised as follows:

Section 2 looks at the literature survey and relevant

works that have already been conducted in the field

and some remaining open questions. Section 3

describes the protocol used to generate different

types of files and observe associated artefacts on

exFAT volumes. Section 4 describes the main

components of the exFAT structure that are related

to this research. Section 5 presents the proposed

forensic methodology to recover deleted files and

file system metadata. Finally, Section 6 concludes

this research work and highlights some future work

directions.

2. RELATED WORK

Sound File Systems forensics reference was first

described by Carrier in 2005 [8] with details on the

FAT chaining and other structures. Carrier proposed

volume reconstruction processes, like NTFS, and

facilitated by available bitmap information.

However, until 2005 exFAT did not exist yet and the

advantage of co-existence of a FAT and a bitmap file

on same file system was not covered.

After the introduction of exFAT, SANS institute

published a research work [9] about exFAT

structure. In that paper, Shullich highlighted the risk

of not being able to provide an accurate

interpretation until exFAT is “well known” and

comparable expertise as with FAT16 and FAT32 is

achieved. After a detailed description of exFAT

structures, the author explained how it would be

possible to recover a deleted fragmented file by

using the remaining FAT data but did not cover

common events, like file move or renaming and in

what way bitmap analysis may improve the forensic

interpretation accuracy.

Two years later, based on Shullich work, an article

[10] on how exFAT may improve file system

efficiency and reliability was published. It described

and proposed to enhance exFAT structure but did not

tackle any forensic uses.

In 2015, Ma, Wang and Cheng [11] described how

to improve the reconstruction of deleted file on

exFAT systems, based on file characteristics and file

combined with statistical analysis. Although

focusing on file reconstruction, with excellent

statistical results when compared with some digital

forensic software, the research does not provide

ways to interpret unused entries and file status or

metadata artifacts.

Recently, several researches provided an enhanced

carving methodology [13][14], focusing on file

reconstruction. The carving uses mainly files

properties to improve the recovery, as proposed by

Uzun and Sencar [15] on JPEG files fragments and

developed in some detailed process, like by De Bock

and De Smedt [16] on how to automatically recover

deleted files.

Alhussein et al. proposed FFS_exFAT [17], a

modified fuse exFAT driver to improve fragmented

file recovery. However, the proposed solution does

not meet exFAT implementation specifications

encountered on real world volumes to be

forensically analysed in criminal cases

investigations.

Moreover, all the detailed description of exFAT

structure and carving processes are mainly based on

reverse engineering research. Existing research in

the literature do not provide clear answers to

3

questions raised by a forensic analyst. These

questions are as follows:

 How to make the difference between a file

deleted, moved or renamed?

 How to improve findings interpretation accuracy

with existing information embedded in system

files?

 How to relate carved files with remaining

directory inactive entries and associated

metadata?

Without any answer to these questions, forensic

practitioner’s reports will lack soundness, keeping

file history vague and unexplained. Although such

approach may be welcome in a data recovery

process, it is obvious that it will not be acceptable as

court evidence. This issue was already raised in 2004

by Buchholz and Spafford [18], explaining clearly

the relevance of metadata for forensics to explain:

 who performs action on files?

 where files are coming from?

 when and how it did happen?

 what was done on the file?

In order to address these questions, we follow a

structured research approach providing an

innovative methodology.

3. EXFAT STRUCTURE

3.1 FAT before exFAT

Former popular FAT16 and FAT32 file systems

were largely covered in previous researches. Carrier

[8] provided a clear explanation about the dual-

purpose of FAT in terms of cluster allocation and

chaining. To facilitate further reading of this paper,

we will recap some basic FAT concepts.

Each FAT starts with 8 (FAT32) or 4 (FAT16) bytes

used by the system to save other information. Next

bytes, grouped in FAT cells, represent all volume

clusters starting with cluster 2 as first cluster on a

FAT volume is always numbered 2. While FAT16

uses the 2 bytes (16 bits) cells, FAT32 cells uses 4

bytes (but only 28 bits of it). All values are stored

using little endian encoding.

 FAT cluster allocation role

Each cell represents a cluster. The cluster is

considered as unallocated if the cell is full of 0x00.

Any other cell value other than 0x00 means that the

cluster is allocated or considered as bad.

 FAT cluster chaining role

The first cluster of each file is saved in the associated

directory entry. The value saved in the FAT

indicates whether the cluster is the only one used by

the file 0xFFFF for FAT16 and 0x0FFFFFFF for

FAT32 (all possible bits sets on 1). If more clusters

are used by the file, the value of each FAT cells

points to the next cluster number, thereby creating a

“chain”. In FAT16 and FAT32, chaining is used for

all files, ignoring whether the file is fragmented or

contiguous. A straight consequence of the chaining

indicates that associated clusters are flagged as

allocated.

When a file is deleted, all FAT cells associated with

the formerly used clusters are replaced with 0x00,

flagging the associated cluster as unallocated. With

common FAT file system drivers, the deleted file

entry is flagged by changing the first byte, but the

first cluster and the file size are still available until

they are overwritten by a new file entry. This

behaviour allows to recover contiguous deleted files

and at least the first segment of fragmented files.

3.2 General structure of an exFAT volume

Shullich [9] provided a detailed description of the

exFAT structure. We only highlight the features

related to this work.

exFAT, like any file system, provides key

information in the Volume Boot Record (VBR).

VBR is located at sector #0 of the volume.

Unlike former FAT systems working with two twin

FATs, exFAT makes use of only one FAT, still

located in the system area (before cluster heap). The

offset of the Root Directory can be then localized

with the following formula:

ROOTDIRoffset = HEAPs + (ROOTc * Csize),

where ROOTDIRoffset is the offset in sectors of the

Root Directory relative to the volume start, HEAPs

is the amount of sectors reserved for the “system”

zone, ROOTc the first cluster allocated to the Root

Directory and CSize the amount of sectors in a

cluster. An additional useful parameter is provided

by the VBR: SSize, sector size, usually set to 512

bytes.

4

3.3 FAT area of exFAT filesystem

The FAT area starts at the sector specified at offset

0x50 in the VBR. Like FAT32, exFAT clusters

chaining values are saved in 4 bytes (double-word

little endian) cells. However, FAT32 uses only 28 of

the 32 bits, exFAT uses the full 32-bits range.

A notable difference with FAT32 is that the FAT

area is no more used for allocation, as the BITMAP

file takes care of it, although FAT is still used for

cluster chaining in case of fragmented files.

Additionally, system files like Root Directory and

BITMAP file are always flagged as allocated into the

FAT too. For all other files the driver should avoid

using FAT area whenever possible.

When a file is NOT fragmented, the first cluster

number (Cn) and file size in bytes (FILEsize) saved

in the file entry, provide enough information to

allow a driver to load the file content by reading

FILEsize bytes starting from the first cluster.

As a consequence of this new FAT handling, a FAT

cluster cell does not provide information about

associated cluster allocation. When a FAT cell is

filled with 0x00, the associated cluster can be either

unallocated or allocated to a non-fragmented file.

Moreover, we will see later that even if it contains

some value, it is possible that the associated cluster

is unallocated. The cluster allocation is now fully

handled by the BITMAP and the FAT is dedicated

to a single task: cluster chaining.

3.4 Root Directory

Like FAT16 and FAT32, the exFAT root directory

and all sub-directories are made of sequences of 32-

byte entries. However, that is where the similarity

ends. The exFAT directory entries structure is totally

different from the former FAT implementation.

Beside the regular files and folders entries, the Root

directory contains unique 32-byte entries. The

volume label entry starts with 0x83, the Bitmap

starts with 0x81 and the Uppercase table starts with

0x82.

3.5 Bitmap file

The Bitmap file, unnamed but referenced in the Root

Directory, is identified by its entry first byte (0x81).

This entry provides the first cluster (double-word

(Dword) at 0x14) and the file size in bytes (two

double-word (Qword) at 0x18). Within the BITMAP

file, each cluster allocation is flagged by a single bit.

The first byte of the BITMAP file represents the 8

first clusters, starting with cluster 2 (the first real

cluster). Cluster 2 allocation flag is saved in the least

significant bits and Cluster 9 in the most significant

bits. The flag of the allocation status of Cluster 10

flag is saved in the least significant bits of the second

byte. Knowing that the allocation status in the

BITMAP file starts with the status of cluster 2, the

flag position of any cluster Cn within that BITMAP

file can be computed by using the following

formulas:

Byte position value = int((Cn – 2)/8)

Bit position within that byte = Cn – (8 * int((Cn-2)/8))

3.6 Regular files and folders entries

Each file or folder is described in its parent folder by

several 32-byte entries. The first byte of the entry is

used to determine what the entry is describing.

A directory entry, (Figure 1, highlighted in red),

starts with 0x85. The next byte describes how many

sub-entries are part of the set, followed by a hash

value of the file name, DOS attributes and date-time

metadata about the file creation, modification and

last access.

Figure 1. Sample set of exFAT entries for a single

file.

First entry is to be considered as the “main” entry

describing a file or a folder.

Table 1. Directory entry structure (partial)

Table 2. Allocation extension structure (partial)

Offset Length Value Description

0x00 1 byte 0x85 Entry type descriptor

0x01 1 byte Set entries count

0x02 2 bytes File name hash sum

0x04 1 byte Dos attributes flags

0x08 4 bytes DOS Date-Time creation

0x10 4 bytes DOS Date-Time modification

Offset Length Value Description

0x00 1 byte 0xC0 Entry type descriptor

0x01 1 byte Flags (at bit #1 FAT use)

0x03 1 byte File name length

0x14 4 bytes Cn First cluster number

0x18 8 bytes FILEsize File size in bytes

5

The Allocation extension, (Figure 1, highlighted in

green) follows straight the Directory entry and starts

with 0xC0. This entry provides information about

file allocation.

The first cluster number (Dword at 0x14) and the file

size (FILEsize) in bytes (Qword at 0x18) are self-

explanatory. The second bit from second byte is a

flag about FAT usage for that file. If the bit is set, it

means that FAT is not used for the cluster chaining.

It also means that the file is not fragmented and can

be retrieved by loading FILEsize bytes from the first

cluster position. If the bit is not set, it means that

FAT is used for cluster chaining. The file then needs

to be loaded by using FAT chaining as for FAT32.

We will explain later how the same process may also

allow to recover deleted files. During this research

while using Windows 10 driver we only encountered

an unset exFAT usage bit when the files were really

fragmented. At stage 5 of our forensic experiments

(cf. Section 4), we observed that when a fragmented

file is shrunk to fit in only one fragment, flag in bit

2 of the second byte is set, meaning that FAT is not

used anymore.

Because the FAT cells were not updated, one can try

to forensically rebuild the former FAT chaining

starting from the first cluster and use it to get

previous content of the file. We will explain later

how to improve the interpretation of the results. This

allocation extension provides, at offset 0x03, a

single byte with the file name length. All file names

are obviously limited to 255 Unicode characters.

File name extension(s): One or several extensions

will follow the allocation extension, depending of

the file name length. All these extensions start with

0xC1 and contain a maximum of 15 Unicode

characters each. In our sample, a simple file name

“colors.jpg” is highlighted in yellow (Figure 1).

3.7 Inactive entries

There are several reasons for an entry, or a set of

entries to become “inactive”. This is related with

exFAT driver minimizing writings as much as

possible.

An entry is set as inactive by un-setting the most

significant bit of the entry, changing the first byte

original value 0x85, 0xC0 or 0xC1 into 0x05, 0x40

or 0x41, respectively.

In our experiments (Section 5), we observed and

verified that when a filename is modified to get a

longer name that does not fit anymore into the

existing available 0xC1 associated extensions, the

driver will set all existing entries related to the file

(0x85, 0xC0 and 0xC1’s) as inactive. A fully new

set of entries will be saved at the end of the folder’s

existing entries. This avoids reorganizing the whole

folder by moving all other entries and limits the

update process to the replacement of the first byte of

each former entry and the creation of the new entry

set. This allows some highly interesting forensic

interpretations about the file renaming. Former file

name may be found, as it shares unmodified

information with the new set of entries: the same

first cluster, date-time information and file size.

When a file is moved to another folder in the same

exFAT volume, the associated set of entries in the

former folder are simply flagged as inactive and an

entire set is created into the new folder. Again, the

same forensic interpretation can be carried out to

identify the location from where the existing file was

moved by comparing “active” entries with

“inactive” ones in other folders.

In our experiments, we observed that when a file is

deleted all related entries and extensions are set as

inactive. All the bits in the Bitmap file associated

with the clusters and previously allocated to that file

are set to 0.

As a consequence, the interpretation that a file was

deleted cannot only be based on the fact that the

entry is inactive: it is possible that the file was

renamed or moved.

4. FORENSIC EXPERIMENTATION

In this section, we describe how we reverse

engineered the exFAT file structures that were

created and modified by Windows native exFAT.sys

driver.

In this research, we consider a file as not fragmented

if its content is sequentially stored within a set of

contiguous clusters. A file is considered as

fragmented if its content is stored in at least two non-

contiguous clusters.

The created file structure includes files among which

are renamed, moved or deleted. We applied the

following protocol in order to check the impact of

each action at the file level and updates on entries.

6

 Stage 1: Volume creation and formatting

We create an empty Windows 10 VHD virtual

volume file. The created volume is then formatted by

using the command line “format” utility specifying

exFAT as the file system and with the cluster size of

1024 bytes. The partition was named at the

formatting time. The short file name creation

mechanism is disabled by default.

 Stage 2: Adding files and folder

Several JPEG and PDF files with different sizes are

copied on the volume and a single folder named

“subfolder” is created. To facilitate later fragmented

files creation, the empty clusters space is then filled

by adding dummy files full of zeroes.

 Stage 3: Adding fragmented files

The non-contiguous small files and dummy files, are

deleted from the command line and two files were

added to occupy previously freed fragmented area.

As there are not enough contiguous clusters, both

files are fragmented.

 Stage 4: File renaming and moving

Two files are renamed with a longer name (i.e.

longer than 16 chars) and two other files are moved

to the subfolder.

 Stage 5: File content shortening

The existing fragmented text file added at Stage 3

was shortened so that the total file size will be able

to fit into contiguous clusters originally allocated to

this file.

 Stage 6: File deletion

Several files, including non-fragmented and

fragmented files, were deleted, using the “del”

command line utility.

 Stage 7: Subfolder is deleted

To guarantee artefacts reproducibility and mimic the

real driver behaviour, the volume is unmounted after

each stage and the exFAT partition extracted by

using the “dd” Linux command line utility. The

resulting exported file is then set in read-only mode.

The low level forensic analysis in the dd raw files

was performed at byte level by using their own

forensic tool [12], combined with the xxd command

line Linux hexadecimal viewer. Some scripts were

developed to facilitate a cross-check of findings to

toggle between the FAT associated word value and

the BITMAP file associated bit. The observed

artefacts and drivers inhabits were then cross-

checked by generating similar set of files and folders

on different devices with different partition sizes.

5. REBUILD DELETE FILES

METHODOLOGY

Based on the observed modification on the directory

entries, BITMAP file and FAT cells during the

experiments, we propose a methodology to improve

interpretation of observable artefacts.

When a file is deleted, two different cases are

possible:

• The file did not use FAT chaining (bit set). In this

case, the file is not fragmented, and the file content

can be recovered by using the available information

on the first cluster and FILEsize. The recovery will

then be done by saving all bytes starting from the

first cluster as referenced into the allocation

extension directory entry. Compared with usual

carving features, the proposed methodology

preserve associated metadata and guarantee that

whole file content is recovered.

• The file did use FAT chaining. While this is not

possible in FAT16 and FAT32, it is possible in

exFAT as, by deleting the file, the file system driver

will only update associated clusters in the Bitmap

allocation file and avoids updating the FAT to

minimize unnecessary writings on the device. In this

case, the cluster chain must be rebuilt and list all

concatenated clusters content. The last cluster

content needs to be truncated in accordance with file

size.

Figure 2. Set of inactive directory entries describing

a file making use of the FAT

In the example in Figure 2, the allocation entry is

flagged as using FAT chaining, and the file content

starts at cluster 9461 (0x24F5).

7

Figure 3. Associated FAT cells

Looking into the FAT at associated FAT 4-byte cell,

with relative offset 37844 chaining is still available

(Figure 3), describing next clusters as 0x24F6,

0x24F7 and beyond.

The filename and the file system metadata can be

recovered, as well as date-time values from the

Directory entry and the first cluster and file size from

the available extensions.

There is, however, an assumption that the file is

effectively deleted and that the content is not

overwritten. If in most criminal cases the recovered

content is obvious, in some circumstances a more

robust methodology must be applied, for example

when recovering and analysing huge log files.

5.1. Validation of the file recovery process

Based on exFAT file system properties, and

considering how drivers try to minimize writings

whenever possible, some cross-checks need to be

done to allow an accurate interpretation of the file

status and history:

 Checking the cluster allocation state in the

Bitmap file: The list of clusters included in the

recovery process needs to be checked within the

Bitmap file. If one cluster state is allocated (bit

set), then this has to be reported. Such situation

may occur when a deleted file was partially

overwritten by a more recent one. Depending of

the nature of the recovered file, overwritten or

reallocated clusters can be replaced by dummy

ones, full of null bytes, or simply ignored.

 Checking the cluster chaining in the FAT area:

If the file was fragmented (let’s call it file1), the

cluster chain rebuild needs to be done by the use

of the remaining FAT cells. However, a sound

analysis of the FAT chaining needs to be carried

out to identify potential reuse of the cluster by

a more recent file, also being deleted. Identified

FILEsize in combination with file content

coherence may help during this process.

 Checking the files with similar properties: To

avoid wrong interpretation of “deletion” of file,

a check must be done in the folder and all other

folders to detect potentially renamed or moved

file.

Figure 4 Inactive entry

Some helpful properties are the file first cluster, the

file size, and the file name. Although all these

properties are helpful, a double check will often be

needed.

The set of inactive entries in Figure 4 describes a file

with the first cluster at 0x02F7 (from the little endian

Dword at offset 0x14 of the allocation entry) for a

0x4BAA68 FILEsize.

The file content always starts at the same offset. The

first cluster is the most trustable information to be

used for similar properties. The file size property is

subject to its modification after the move. In the last

case, a deeper analysis on date-time values needs to

be done, by comparing the creation date-time

(should be identical) and the modification date-time

(new location would be the most recent one).

Figure. 5 Matching active entry in another folder

The file name can be checked through all the volume

using the file name extensions or, to speed up the

process, the file name checksum word stored at

Offset 0x02 of the directory entry. Although this

quick check can provide a good indication, it is still

possible to have more files with the same name in

different folders. In the case of file renaming,

checking the file extension will provide an

additional confirmation, if needed.

5.2. Carving process

Same exFAT properties may be used to define a

simple and efficient carving process. Instead of

starting from the inactive directory entries analysis,

we propose to start from the bitmap file analysis.

As the deleted files clusters are always flagged as

unallocated in the bitmap, it is obvious that looking

only at unallocated clusters will speed up the carving

8

process and avoid to “recover” existing and

allocated files.

Moreover, we observed in our experiments that

Windows exFAT driver avoids creating fragmented

files. The availability of information from the bitmap

allocation file allows to quickly identify where

contiguous space is available to save file content.

When FILEsize is known by the Operating System

API before file writing process it becomes easy for

the exFAT driver to identify that a group of

unallocated clusters is large enough to save the file

un-fragmented.

This file system driver behaviour needed to be

addressed in our experiments by adding Stage 2 (cf.

Section 4) to allow later creation of fragmented files

by fully filling the available volume space and then

deleting small non-contiguous files, so forcing to

save larger fragmented files.

Considering real world cases, for such exFAT

volumes created on SD memory cards in digital

cameras, the fragmentation will probably seldom be

encountered. However, if encountered, the use of

FAT chaining, whenever available, will still improve

the carving process.

When files are modified, and file content becomes

too large to fit within the already allocated space,

additional clusters are allocated to the file and the

file will then become fragmented.

 Identifying the file start by file type header: Like

regular carving process the first step is to

identify files by the “well known” list of file type

headers (i.e. 0xFFD8 for JPEG files). When the

speed is essential, the option is to limit the

search at the beginning of each cluster, or if

VBR info is not available for each sector. This

approach, based on the fact that a file always

starts at the beginning of a cluster, will not carve

files embedded in other files. Photorec [19]

software already allows to “scan for files from

exFAT unallocated space only” and provides the

first sector number in the resulting XML report.

 Searching for all directory entries for identified

starting cluster: Now that the starting sector is

identified from the results of the carving

process, the search for this sector number should

be carried on all directory entries, in all folders

of the volume, including deleted ones. Searching

for a pattern starting with byte 0x40 (deleted

allocation extension file entry), ignoring 21

indifferent bytes, and checking if next 4 bytes

match the starting sector value (little endian). In

the case of some tools output (e.g. Photorec), the

conversion from Sector to Cluster needs to be

computed, by taking the exFAT system area and

the cluster size into account. As the bitmap

shows that the cluster is unallocated, no existing

file would match this pattern. Depending the

volume file activity, it is possible that several

entries match the pattern.

 Select the most recent directory main entry: If

multiple matches are possible, it can be

explained by moved or renamed files before

deletion or by multiple files overwrite. As the

carving will extract content from the most recent

file, it will then be important to compare

matches and deduce the most recent entry

update. Unlike NTFS MFT record updates,

exFAT does not provide such information.

However, available date-time values (creation,

last content modification, and last access) may

be used to establish the most recent directory

entry. A simple script may scan the volume to

gather all sequences of bytes matching exFAT

main directory entry pattern. Ideally, such

search would be saved in a database to facilitate

and speed up multiple files carving.

 Recover file size from allocation entry: Carving

tools often use the file embedded metadata,

when available, or the existence of file type well

know footer (like 0xFFD9 for JPEG files) to

identify or compute real file size. We advise to

compare carved content size with information

available in the identified file associated

allocation entry (0x40). In some exceptional

cases the file may be fragmented and carved

content size will not match FILEsize value. The

forensic analyst will then be able to explain why

values do not match by showing “do not use

FAT” flag bit on “0”. Moreover, it will be

possible to provide a more accurate file content

recovery by using potentially remaining FAT

chaining as early demonstrated.

 Document carved file with the available

metadata: Previous stages already allowed to

recover metadata concerning file size, date and

time values. The remaining associated file name

entries (0x41) will allow to rebuild, at least

partially, carved file name.

9

5.3. Recover former content from existing file

When a file content is shortened, resulting in the

lower FILEsize value in the allocation entry, exFAT

properties will allow to get “a bit more” content.

When identifying a deleted or existing file related to

the case, forensic analyst may look at the bitmap area

and FAT cluster chains.

 A bit more from shortened fragmented file:

When shortening a fragmented file, the driver

will only update FILEsize value, former FAT

chaining cells will not be updated. A simple

rebuild based on FAT chaining may allow to

recover former file content. In this case only

clusters flagged as unallocated in bitmap

allocation file are to be considered.

 A bit more from shortened non-fragmented file:

Another interesting use of bitmap cluster

allocation file analysis is to check for whether

contiguous clusters to the identified existing file

logical end are flagged as unallocated.

Let’s suppose that the analysed non-fragmented file

starts at cluster 530 with an actual FILEsize

requiring use of 2 clusters. Associated bitmap bits

for clusters 530 to 537 are:

1 1 0 0 0 0 1 1

Clusters 532 to 535 being unallocated, it would be

possible that it contains previous version of the file,

when it was larger. This may be validated by

checking the next folder file entries. If next file entry

shows that the first cluster value is cluster 536, it

indicates that this file was created sequentially after

the analysed file and that clusters 532 to 535 may be

allocated to a former version of the file content.

Before validating the content of the identified

clusters as part of a previous version of file content

of interest, it is necessary to check if any other

inactive entry is not starting with one of these

clusters and perform a cross-check by analysing

related FAT cells. If any chaining is encountered in

the FAT, the start of the chain should match the file’s

first cluster.

6. CONCLUSION AND FUTURE WORK

The methodology proposed in this paper addresses

several identified issues and provides a suitable

forensic process. Human expertise is required to

analyse file systems at byte level. Almost all

forensics software tools with hexadecimal viewer

and basic search features will facilitate such search

and speed the process, especially if scripting features

are available. It quickly becomes obvious that, to

facilitate forensic analyst examination, there is a

need for a software feature allowing to jump from a

cluster to the associated bitmap or FAT entries and

inversely. Adding this feature to our file system

analysis software Tyrhex [12] highly facilitated the

analysis process. A four days training on File

Systems Forensics was hosted by European Union

Agency for Law Enforcement Training in 2017, EU

law enforcement members applied our proposed

methodology successfully by using basic byte level

search features with the popular forensic tools.

If exFAT interpretation provided by the tools needs

to be checked, using a basic hexadecimal viewer

allows to recover exFAT fragmented file and

associated metadata. Participants who recovered a

text file partially by using carving were able to

rebuild the missing part from next fragmented

sequence of clusters and validate the file length by

recovering FILEsize value from directory entry

artefacts. Integrity of recovered file was then

demonstrated by Bitmap analysis. Facing inaccurate

information provided by XWays on a JPEG file

“moved or renamed” they were able to demonstrate

that the file was simply moved to another folder

named “under14” on the same volume. For child

pornography cases, this additional clue can only be

highly significant evidence in court, demonstrating

that the suspect knowingly sorted the pictures on

subject supposed age. Beyond important validation

of recovered file content, the proposed methodology

allows to correlate the metadata information found

in the remaining inactive directory entries with

carved files.

Using the described processes, forensic analysts will

be able to explain how forensic software handles file

recovery and decide, whenever needed, to improve

results by adding human processing.

Future work will aim to test how most popular

forensics software tools handle automatic recovery

of exFAT fragmented deleted files, interpret

accurately files moved or renamed and link with

associated metadata. We are also looking at applying

our approach in mobile device forensics [23],

vehicle forensics [24] and investigation of IoT

devices [25].

10

REFERENCES

[1] Microsoft Patent 0164440 - June 2009

[2] Fontana John, “Microsoft expands exFAT

multimedia file licensing”, Network World

(online) (Dec 10, 2009)

[3] Mitchell Stewart, “Why SD cards refuse to

flop”, PC Probe March 2017 issue 269 page 14

[4] “In-vehicle infotainment gets boost from new

Microsoft exFAT file system deals”, Internet

Business News, 20 June 2013

[5] “Microsoft Signs exFAT Licensing Agreement

with BMW”, PR Newswire, 16 January 2014

[6] Case Lenny, “e.Solutions Selects Tuxera

exFAT for Audi and Volkswagen Infotainment

Systems”, Automotive Industries, September

2012

[7] Faheem Muhammad, M-Tahar Kechadi, Nhien-

An Le-Khac, 'The State of the Art Forensic

Techniques in Mobile Cloud Environment: A

Survey, Challenges and Current Trend'.

International Journal of Digital Crime and

Forensics, 7 (2):1-19, 2015

[8] Carrier Brian, “File System Forensic

Analysis”, Pearson Education, 2005.

[9] Shullich Robert, “Reverse Engineering the

Microsoft Extended FAT File System

(exFAT)”, SANS Institute Reading Room ,

January 2009.

[10] Keshava Munegowda, Dr G T Raju and Veera

Manikandan Raju, “Directory Compaction

Techniques for Space Optimizations in ExFAT

and FAT File Systems for Embedded Storage

Devices”, IJCSI International Journal of

Computer Science, Vol.11 (1) 2014

[11] Guofu Ma, Zixian Wang and Yusi Cheng,

“Recovery of Evidence and the Judicial

Identification of Electronic Data based on

ExFAT”, International Conference on Cyber-

Enabled Distributed Computing and

Knowledge Discovery”, 2015.

[12] Tyrhex, Forensic File System Analyser tool,

Yves Vandermeer, www.tyrhex.comadecimal

[13] Yanbin Tang, Junbin Fang, K.P. Chow, S.M.

Yu, Jun Xu, Bo Feng, Qiong Li, Qi Han,

“Recovery heavily fragmented JPEG files”,

Digital Investigations Vol.18(26), 2016.

[14] Pavel Gladyshev and Joshua James,

“Decision-Theoretic file carving”, Digital

Investigations, Vol. 22, 2017.

[15] Erkam Uzun and Hüsrev Taha Sencar,

“Carving Orphaned JPEG File Fragments”,

IEEE transactions on Information Forensics

and Security, Vol.10(8), August 2015.

[16] Johan De Bock and Patrick De Smet,

“JPGCarve: An Advanced Tool for Automated

Recovery of Fragmented JPEG Files”, IEEE

transactions on Information Forensics and

Security, Vol.1 (1), 2016.

[17] Mohammed Alhussein, Avinash Srinavasan

and Duminda Wijesekera “Forensics

Filesystem with Cluster-Level Identifiers for

Efficient Data Recovery”, 7th International

Conference for Internet Technology and

Secured Transactions, 2012.

[18] Florian Buchholz and Eugene Spafford, “On

the role of file system metadata in digital

forensics”, Digital Investigation, Vol.1, 2004

[19] Christophe Grenier, “Photorec” version 7.0

(2015), www.cgsecurity.org [Accessed

October 2017]

[20] Hall, G. “Pearson’s Correlation Coefficient.”

other words 1, no. 9 (2015)

[21] Mason, Stephen and Daniel Seng. Electronic

Evidence. HeinOnline, (2017) – p 117 case

Bevan v The State of Western Australia and p

119 6.52.

[22] Casey, Eoghan. “Error, Uncertainty, and Loss

in Digital Evidence.” International Journal of

Digital Evidence 1, no. 2 (2002): 1–45.

[23] F. Muhammad, N-A. Le-Khac, T. Kechadi,

Smartphone Forensic Analysis: A Case Study

for Obtaining Root Access of an Android

Samsung S3 Device and Analyse the Image

without an Expensive Commercial Tool,

Scientific Research Pub., Vol. 5, p.83-90 2014

[24] Daniel Jacobs, K-K R. Choo, M-Tahar

Kechadi, N-A. Le-Khac, “Volkswagen Car

Entertainment System Forensics”, 16th IEEE

International Conference On Trust, Security

and Privacy In Computing and

Communications, p. 699-705, Sydney,

Australia, August 2017

[25] S. Alabdulsalam, K. Schaefer, A. Kouwen, N-

A. Le-Khac, Case Studies and Challenges in

Internet of Things Forensics, 14th Annual IFIP

WG11.9 International Conference on Digital

Forensics, New Delhi, India, January 2018

