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Abstract— The paper proposes an approximated yet reliable
formula to estimate the frequency at the buses of a transmission
system. Such a formula is based on the solution of a steady-
state boundary value problem where boundary conditions are
given by synchronous machine rotor speeds and is intended for
applications in transient stability analysis. The hypotheses and
assumptions to define bus frequencies are duly discussed. The
rationale behind the proposed frequency divider is first illustrated
through a simple 3-bus system. Then the general formulation is
duly presented and tested on two real-world networks, namely a
1,479-bus model of the all-island Irish system and a 21,177-bus
model of the European transmission system.

Index Terms— Frequency estimation, quasi-static phasor
model, dq-frame model, transient stability analysis, center of
inertia.

I. INTRODUCTION

A. Motivations

The conventional power system model for transient stability

analysis is based on the assumption of quasi-steady-state

phasors for voltages and currents. The crucial hypothesis on

which such a model is defined is that the frequency required to

define all phasors and system parameters is constant and equal

to its nominal value. This model is appropriate as long as only

the rotor speed variations of synchronous machines is needed

to regulate the system frequency through standard primary and

secondary frequency regulators. In recent years, however, an

increasing number of devices other than synchronous machines

are expected to provide frequency regulation. These include,

among others, distributed energy resources such as wind and

solar generation [1]–[5]; flexible loads providing load demand

response [6], [7]; HVDC transmission systems [8]–[10]; and

energy storage devices [11]–[13]. However, these devices do

not generally impose the frequency at their connection point

with the grid. There is thus, from a modeling point of view, the

need to define with accuracy the local frequency at every bus

of the network. This paper provides an accurate yet simple

and computationally inexpensive formula to estimate such

frequencies and, thus, improve the fidelity of the conventional

power system model for transient stability analysis.

B. Literature Review

The most common way to estimate the system frequency

in transient stability analysis is the evaluation of the center

of inertia (COI) which is an arithmetic mean of rotor speeds

of synchronous machines weighted through their inertia cons-

tants. The frequency of the COI is well-accepted and widely
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used in the literature on transient and frequency stability

analysis. We cite, for example, [14] and [15]. While the COI

is particularly useful to define the frequency of clusters of

coherent machines, it cannot capture local oscillations and is

thus not adequate to implement and simulate the frequency

controllers discussed in the motivations above.

Another common approach consists in defining the numeri-

cal derivative of the phase angle of bus voltage phasors through

some sort of filtering, e.g., a washout filter. This approach

was first discussed in [16] along with the COI model, and is

commonly used in proprietary software tools for power system

simulation, e.g., [17].

The issues of the numerical differentiation of voltage angles

are well known. The literature on this subject has mainly

focused on the definition of analytical expressions, e.g., [18],

or more accurate numerical methods, e.g., [19], to define the

derivative of the bus voltage angles. The common starting

point of the two references above, as well as of this paper,

is the expression that links bus voltage phasors and current

injections at buses through the network admittance matrix.

We propose an analytical expression which is not model-

dependent as that given in [18] and is considerably simpler, but

consistent with standard approximations used in power system

models for transient stability analysis.

C. Contributions

The novel contributions of the paper are twofold.

• An approximated yet reliable and simple formula to

estimate the frequency at all buses of the system. The

proposed formula is aimed to improve transient stability

analysis models.

• A detailed comparison of the accuracy and the computa-

tional burden of the proposed frequency divider formula,

the commonly-used washout filters utilized to estimate

the numerical derivative of bus voltage phase angles as

well as the COI frequency. Such a comparison is based

on both quasi-static phasor and dq-frame power system

models.

D. Paper Organization

The remainder of the paper is organized as follows. Section

II duly discusses the rationale, the hypotheses and assumptions

required to obtain the proposed frequency divider formula.

Section III illustrates, through a simple example, the validity

of the frequency divider and tests it considering different

scenarios and load models. Section IV presents simulation

results based on two real-world systems, namely a 1,479-bus

model of the all-island Irish system and a 21,177-bus model

of the European ENTSO-E transmission system. Conclusions

are drawn in Section V.



II. FREQUENCY DIVIDER FORMULA

In this section, we develop a simple, yet effective general

analytical expression to estimate the frequency deviations at

every location of the network. Subection II-A discusses the

theoretical background and the rationale behind the proposed

formula. The analytical derivation is then discussed in details

in Subsection II-B

A. Rationale

During a transient triggered by a large disturbance, e.g., the

occurrence of a fault followed by its clearance, synchronous

machine rotor speeds oscillate. It is well known that, during

a transient, each machine shows interarea oscillation modes

common to its coherent group as well as local non-dominant

modes [14]. The key point is that, during the transient, machine

frequencies are not equal and, hence, the frequency cannot

be the same everywhere in the system. However, due to the

common approximations of the conventional transient stability

model, only the frequencies – effectively, the rotor speeds

– of the internal electromotive forces (emfs) of synchronous

machines can be determined by means of the time integration

of the power system model.

In [20] and, later, in [21], the author posed the basis for the

modeling of the transmission system as a continuum where the

speeds of synchronous machines are the boundary conditions

that the frequency has to satisfy. We base the definition of

the frequency divider formula on such a continuum. However,

since we are interested in electromecanical transients and

in the time scale associated to such dynamics, we assume

that the wave propagation is faster than the electromechan-

ical modes of synchronous machines and, thus, we neglect

transient effects of wave propagation, e.g., reflection.1 As a

consequence, we assume that, to compute the spatial variations

of the frequency, the problem that can be solved is a steady-

state boundary value problem, where boundary conditions

are given by synchronous machine rotor speeds. This

assumption is consistent with quasi-steady-state phasors and

lumped transmission line models assumed to solve power

system transient stability analysis.

B. Analytical Derivation

The very starting point is the augmented admittance matrix,

with inclusion of synchronous machine internal impedances as

it is commonly defined for fault analysis [22]. System currents

and voltages are linked as follows:
[

īG

īB

]

=

[

ȲGG ȲGB

ȲBG ȲBB + ȲB0

][

ēG

v̄B

]

(1)

where v̄B and īB are bus voltages and current injections,

respectively, at network buses; īG are generator current in-

jections; eG are generator emfs behind the internal generator

impedance; ȲBB is the standard network admittance matrix;

1In [20], the speed of traveling waves is estimated to be roughly 1, 000 m/s.
Thus wave propagation transients can actually overlap fast interarea oscillation
modes on long transmission lines. However, accounting for the effect of wave
propagation is beyond the scope of this paper.

ȲGG, ȲGB and ȲBG are admittance matrices obtained using

the internal impedances of the synchronous machines; and

ȲB0 is a diagonal matrix that accounts for the internal

impedances of the synchronous machines at generator buses.2

All quantities in (1) depend on the frequency. However, the

dependency of the admittance matrices above on the frequency

is neglected. This approximation has a very small impact on

the accuracy of the frequency estimation and allows determin-

ing a compact expression of bus frequencies, as discussed in

the remainder of this section.

To further elaborate on (1), let us assume that load current

injections īB can be neglected in (1). This is justified by

the fact that the equivalent load admittance, in trasmission

systems, is typically one order of magnitude smaller than that

of the diagonal elements of ȲBB + ȲB0. This appears as a

critical assumption, and for this reason we test its adequateness

in the examples of Section III, where we consider a variety

of load models, including nonlinear dynamic ones. Hence, we

rewrite (1) as follows:

[

īG

0

]

=

[

ȲGG ȲGB

ȲBG ȲBB + ȲB0

][

ēG

v̄B

]

(2)

Bus voltages v̄B are thus a function of generator emfs and

can be computed explicitly:

v̄B = −[ȲBB + ȲB0]
−1

ȲBGēG (3)

= D̄ ēG

In [18], the relation between generator voltages and currents

is exploited to determine the time derivative of load voltages.

We proceed in a different way.

Let us consider the time derivative – indicated with the

functional p(·) – of the bus voltage phasors in a dq-frame

rotating with frequency ω0 [24]:

pv̄dq,h =
d

dt
v̄dq,h + jω0v̄dq,h (4)

where v̄dq,h = vd,h + jvq,h. A similar expression can be also

obtained using a first order dynamic phasor approximation

(see, for example, [25] and [26]).

The first element on the right-hand side of (4) is the time

derivative of v̄dq,h, which is rotating with the dq-frame, while

the second element is the derivative of the dq-frame itself. We

now assume the following:

• The quasi-steady-state phasor can be approximated, dur-

ing an electromechanical transient, to the dq-frame quan-

tity, hence:

v̄h ≈ v̄dq,h (5)

Note that in stationary conditions the equality v̄h = v̄dq,h
holds.

2The non-zero elements of matrices ȲGG, ȲGB , ȲBG and ȲB0 are
defined through the internal reactances of the synchronous machines in the
same way as in the standard fault analysis (see, for example, [22] and [23]).
If the machine is not symmetrical, an average of the d- and q-axis internal
reactances are used. For example, for a 6th order model, one has xG =
0.5(x′′

d
+ x′′

q ).
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• The voltage is a sinusoid with time-varying pulsation and

its time derivative in (4) is approximated with:

d

dt
v̄dq,h ≈ j∆ωhv̄dq,h (6)

where ∆ωh is the frequency deviation with respect to the

reference frequency ω0 at bus h.

Equation (6) descends from the hypothesis of assuming “slow”

variations of the frequency in the system and is consistent with

the standard electromechanical power system model utilized

for transient stability analysis.

Merging together (4), (5) and (6) leads to:

p v̄h ≈ j ωh v̄h (7)

where ωh = ω0+∆ωh is the frequency at bus h. Expressions

similar to (7) hold for all other ac quantities in the systems,

i.e., generator emfs ē and currents. For example:

p ēi ≈ j ωi ēi (8)

where ωi is the rotor speed of generator i.
We now use the approximated time derivatives (7) and (8)

along with network constraints (3) to determine the frequency

divider. In particular, differentiating (3) with respect to time

leads to:

pv̄B = p[D̄ · ēG] = pD̄ · ēG + D̄ · pēG (9)

⇒ pv̄B ≈ D̄ · pēG (10)

⇒
d

dt
v̄B + jω0v̄B ≈ D̄ ·

d

dt
ēG + jω0D̄ · ēG (11)

⇒ j diag(∆ωB) v̄B ≈ j D̄ · diag(∆ωG) ēG (12)

where:

• in (9), it is assumed that pD̄ ≈ 0, i.e., constant transmis-

sion line, transformer, load and generator parameters;

• in (10), the time derivative p(·) is expanded using (4);

• in (11), (3) is utilized to eliminate the terms jω0v̄B and

jω0D̄ · ēG; and

• diag(·) indicates a matrix where diagonal elements are

the elements of its argument vector.

Finally, based on (6), (7) and (8), ∆ωB and ∆ωG are:

∆ωB = ωB − ω0 · 1 (13)

∆ωG = ωG − ω0 · 1

The set of equations (12) and (13) allows determining the bus

voltage frequencies ωB . In fact, D̄ are parameters and ωG,

v̄B and ēG are variables determined by integrating the set of

DAEs describing the power system. While solvable, (12) can

be significantly simplified without a relevant loss of accuracy.

The following approximations and assumptions are applied:

• v̄B ≈ 1 pu and ēG ≈ 1 pu;3

• The conductances of the elements of all admittance ma-

trices utilized to compute D̄ are negligible, e.g., ȲBB ≈
jBBB ;

3Note that this assumption is acceptable for detailed machine models,
e.g., 4th and 6th order. For the classical electromechanical model of the
synchronous machine, the emf behind the reactance is generally > 1. To
account for that, a correction factor can be used in (14).

Moreover, the condition ω0 = 1 pu usually holds. All simplifi-

cations above are motivated by usual assumptions and typical

parameters of transmission systems. Finally, substituting fre-

quency deviations with the expressions in (13), (12) leads to

the proposed frequency divider formula:

ωB = 1+D(ωG − 1) (14)

where

D = −(BBB +BB0)
−1

BBG (15)

The example and case studies discussed in the following

sections show that (14) is actually accurate in the context of

transient stability analysis.

C. Inclusion of Frequency Measurements

For completeness, we discuss here how the frequency

divider formula (14) can be modified to include frequency

measurements as provided, for example, by PMU devices, as

follows. Let us assume that, apart from synchronous machine

rotor speeds, also the bus voltage phasors v̄M and hence

bus frequencies ωM are known at a given set of network

buses. Such frequencies can be used to compute the remaining

unknown bus frequencies. Say that ωB = [ωM ,ωU ], where

ωU are the remaining unknown bus frequencies. Then, using

same notation as for (1), one has:






īG

īM

īB






=







ȲGG ȲGM ȲGU

ȲMG ȲMM + ȲM0 ȲMU

ȲUG ȲUM ȲUU + ȲU0













ēG

v̄M

v̄B






(16)

and, following the same derivations discussed in the previous

sectione, the frequency divider formula (14) becomes:

ωU = −(BUU +BU0)
−1

[

BUG BUM

]

[

ωG

ωM

]

(17)

The expression above can be used in two ways. In simulations,

one can model PMU devices and use their measures to obtain

a better estimation of the frequencies at remaining buses. This

is particularly relevant, in our opinion, to define the impact of

noise and measurement corruptions of the PMU measure, as

noise can be easily included in (17). In state-estimation, using

real-world frequency measures obtained from the system to

estimate frequency variations at remaning system buses. Since

the focus of this paper is on the definition of the frequency

divider, in the following we focus exclusively on simulations

and on (14). We will further discuss the applications and

practical aspects of (17).

III. EXAMPLE

In this section, we illustrate the frequency divider formula

(14) derived in the previous section through a simple example.

Such an example will serve to illustrate why we call (14)

frequency divider and to compare the dynamic behavior of

(14) with respect to conventional washout filters as well as

discuss its conceptual difference with respect to the frequency

of the COI.

Let us consider the simple radial system shown in Figure 1.

The lossless connection, with total reactance xhk = xhi+xik,
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represents the series of the internal reactances of the machines,

and series reactances of the step-up transformers and the

transmission line. Hence, the frequencies at buses h and k,

say ωh and ωk, respectively, are the rotor speeds of the

synchronous generators.

x

xhk

ih kxhi xik

ωh(t)

ωk(t)ωi(t)

Fig. 1: Two-machine radial system.

Applying the frequency divider formula (14), we obtain:

ωi(t) = D ·

[

ωh(t)

ωk(t)

]

= −(BBB +BB0)
−1

BBG ·

[

ωh(t)

ωk(t)

]

=
[

1
xhi

+ 1
xik

]−1
[

1

xhi

1

xki

]

·

[

ωh(t)

ωk(t)

]

(18)

=
xik

xhk

· ωh(t) +
xhi

xhk

· ωk(t)

It is worth noticing that, as a direct consequence of (14), the

instantaneous frequency ωi(t) at a generic point i between

the boundaries h and k is a linear interpolation between

ωh(t) and ωk(t) (see lower part of Fig. 1). Such a linear

relation is consistent with the assumption to assume steady-

state conditions in the distribution of the frequency along the

transmission line. Note also that (18) has the same formal

structure of the well-known voltage divider of a resistive

circuit where the frequencies function as the voltage potential.

Hence the name the we have chosen to define (14).

The remainder of this section discusses the accuracy of

(18) through numerical simulations based on the 3-bus system

shown in Fig. 2, which includes two synchronous machines

and a load. The impedances of the transmission lines include

the step up transformers and transmission lines (z̄ = 0.025 +
j0.075 pu). We first consider a standard model for transient

stability analysis where transmission lines are lumped and

modeled as constant impedances and generator flux dynamics

are neglected. Generators are equal and are modeled as a

6th order synchronous machine, a IEEE Type DC1 automatic

voltage controller and a turbine governor with inclusion of

servo and reheater models [27]. The load is modeled as a

constant admittance. The disturbance is a three-phase fault

that occurs at bus 3 at t = 1 s and is cleared after 150 ms by

opening one of the two lines connecting buses 1 and 3.

Figure 3 shows the transient behavior of synchronous ma-

chine rotor speeds, the frequency of the COI (ωCOI), and

the estimated frequency at the load bus using the proposed

frequency divider approach. Since the inertias of the machines

are equal, oscillations are averaged out from the value of ωCOI

1 3 2
2z̄

z̄

z̄

Fig. 2: 3-bus system.

as it can be readily deduced by the COI frequency expression

given in Appendix I. On the other hand, the estimated bus

frequency ωBus 3 provided by (18) shows oscillations in phase

with ωSyn 1, as expected, since the load bus is electrically

closer to generator 1 (x13 < x32). Clearly, the frequency of the

COI is also unable to capture the proximity to any machine of

the system. ωCOI can thus be used only as an indication of the

overall trend of the system frequency but could be inadequate

if utilized as a control signal for devices that regulates the

frequency as those discussed in the introduction of this paper.

0.0 2.0 4.0 6.0 8.0 10.0

Time [s]

1.0

1.001

1.002

1.003

1.004

F
re
q
u
en
cy

[p
u
]

ωBus 3 (FD)

ωSyn 1

ωSyn 2

ωCOI

Fig. 3: 3-bus system – Synchronous machine rotor speeds, COI
frequency, and frequency at bus 3 estimated based on the proposed
frequency divider (FD) approach.

The model and the dynamics of the load connected to bus 3
are not included in (18) and need not to be known to define ω3.

This is one of the major differences of the proposed approach

with respect to [18]. Clearly, load models and dynamics do

impact on the transient behavior of the system, which includes

the machines at buses 1 and 2 whose rotor speeds are required

to compute ω3. Load models are thus implicitly taken into

account in the frequency divider formula.

We now compare the trajectories of the frequency estimation

at the load bus for the 3-bus system using the proposed fre-

quency divider and the conventional washout filter described in

Appendix II. Figure 4 shows the results obtained with a more

detailed model of the system considering 8th order models

of synchronous machines and dq-frame dynamic models of

the transmission lines and the load at bus 3. All parameters

are the same as in Fig. 3, which is obtained using standard

transient stability models. This more accurate model shows

that, during the fault, the frequency drops due to the effect of

machine fluxes. After the fault occurrence and clearance, the

frequency also shows small high-frequency oscillations which

are properly captured by (18). These oscillations cause severe

numerical issues along the entire simulation in the behavior

of the washout filter – see also [19] for an in-depth discussion
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0.0 1.0 2.0 3.0 4.0 5.0

Time [s]

0.99

0.995

1.0

1.005

1.01

ω
B
u
s
3
[p
u
]

ωBus 3 (WF)

ωBus 3 (FD)

Fig. 4: 3-bus system – Frequency at bus 3 estimated with the
frequency divider (FD) and the conventional washout filter (WF).
The system is simulated using the fully-fledged dq-axis model.

on this matter – as well as a significant delay of the filter to

show the over-frequency after the line disconnection.

As indicated in Section II, one of the main assumptions

on which the frequency divider formula is based, is that load

currents can be neglected in (1). This is a common assumption

in most analyses based on the admittance matrix, e.g., short-

circuit calculations [22]. Moreover, in standard transient stabil-

ity analysis, loads are approximated using constant impedances

(see, for example, [28]), which, by the way, could be easily

included in (14).

In the remainder of this section, we show that the effect

of loads, including non-linear and dynamic ones is actually

negligible for the calculation of the bus frequencies. With this

aim, we consider again the dynamic response of the 3-bus

system of Fig. 1 following a short-circuit at bus 3, and we

substitute the constant admittance load with a static voltage-

and frequency-dependent load (see Fig. 5) and a 5th-order dq-

axis model of an asynchronous motor (see Fig. 6).

0.0 2.0 4.0 6.0 8.0 10.0

Time [s]

0.999

1.0

1.001

1.002

1.003

1.004

ω
B
u
s
3
[p
u
]

ωBus 3 (FD)

ωBus 3 (WF)

Fig. 5: 3-bus system – Frequency at bus 3 estimated with the
frequency divider (FD) and the conventional washout filter (WF).
The load is modeled as a frequency-dependent load representing an
aluminum plant (αp = 1.8, αq = 2.2, βp = −0.3, βq = 0.6).

The exponential voltage- and frequency-dependent load is

0.0 2.0 4.0 6.0 8.0 10.0

Time [s]

0.997

0.998

0.999

1.0

1.001

1.002

1.003

1.004

ω
B
u
s
3
[p
u
]

ωBus 3 (FD)

ωBus 3 (WF)

Fig. 6: 3-bus system – Frequency at bus 3 estimated with the
frequency divider (FD) and the conventional washout filter (WF).
The load is a squirrel cage induction motor with a 5th-order dq-axis
model.

modeled as follows [27], [29]:

pi = p0

( vi
v0

)αp

ω
βp

i (19)

qi = q0

( vi
v0

)αq

ω
βq

i

In the simulations carried out to obtain Fig. 5, the frequency ωi

is estimated using the washout filter or the proposed frequency

divider formula, depending on the model considered. The

parameters p0, q0 and v0 are the initial load active and

reactive powers and voltage magnitude at bus i, respectively,

determined with the power flow analysis. The parameters αp,

βp, αq and βq resemble those of an aluminum plant and are

based on [30]. Finally, the dynamic model of the asynchronous

motor is based on [31].

Simulation results confirm that the frequency divider for-

mula (14) is accurate as it is able to estimate the frequency

at the load bus similarly to the washout filter but avoiding

the numerical issues of the latter. It is interesting to note

that the time evaluation of the frequency in the case of the

asynchronous motor is consistently different from the static

load model. The load model, in fact, does impact on the

overall dynamic behavior of the system and, hence, also on

the variations of rotor speeds of synchronous machines. Since

the frequency divider is based on such variations, load models

are indirectly taken into account in (14).

Apart from the simulations included in this section, we have

considered other nonlinear load models and several different

scenarios. In every test we have carried out, results, which are

not shown here for space limitations, were always consistent

and similar to those shown in this section. We thus conclude

that the proposed frequency divider is accurate and that the

approximations discussed in Section II, including that related

on load models, are reasonable.

IV. CASE STUDIES

In this section, two real-world systems are considered,

namely, a 1,479-bus model of the all-island Irish transmission

system; and a 21,177-bus model of the ENTSO-E transmission

system. These systems are utilized to compare the performance
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and accuracy of the proposed frequency divider against the

results obtained using the conventional washout filter. The

topology and the steady-state data of both systems are based on

the actual real-world systems provided by and the Irish TSO,

EirGrid, and ENTSO-E,4 respectively. However, all dynamic

data are guessed based on the knowledge of the technology of

power plants.

The dynamic model of the Irish system includes both

conventional and wind power generation. This system allows

understanding the accuracy of the frequency divider conside-

ring a large penetration of induction machines and power

electronic devices that are included in the models of wind

turbines. The considered dynamic model of the ENTSO-E

system includes only conventional power plants. Its large size

allows comparing the computational burden of the conven-

tional washout filter with the proposed frequency divider, i.e.,

number of state and algebraic variables, size and sparsity of

matrices and computing times.

All simulations are obtained using Dome, a Python-based

power system software tool [32]. The Dome version utilized

in this case study is based on Python 3.4.1; ATLAS 3.10.1

for dense vector and matrix operations; CVXOPT 1.1.8 for

sparse matrix operations; and KLU 1.3.2 for sparse matrix

factorization. All simulations were executed on a 64-bit Linux

Ubuntu 14.04 operating system running on a 8 core 3.60 GHz

Intel Xeon with 12 GB of RAM.

A. Irish Transmission System

This subsection considers a dynamic model of the all-

island Irish transmission system. This includes 1,479 buses,

1,851 transmission lines and transformers, 245 loads, 22

conventional synchronous power plants modeled with 6th

order synchronous machine models with AVRs and turbine

governors, 6 PSSs and 176 wind power plants, of which

34 are equipped with constant-speed (CSWT) and 142 with

doubly-fed induction generators (DFIG). The large number of

non-conventional generators based on induction machines and

power electronics converters makes this system an excellent

test-bed to check the accuracy of the proposed frequency

divider.

Two scenarios are considered: Subsection IV-A.1 shows the

response of the Irish system facing a three-phase fault close to

both a synchronous machine and a load, whereas Subsection

IV-A.2 simulates a fault close to a wind power plant.

1) Fault close to a synchronous machine and a load: A

three-phase fault occurs at t = 1 s, and is cleared by means

of the disconnection of one transmission line after 180 ms.

The location of the fault is close to a synchronous machine

(Sn = 181.7 MVA), and a load (9.72 MW and 1.16 MVAr),

and their frequency is shown in Fig. 7.

Figure 7(a) depicts the rotor speed of the synchronous

machine (Syn), as well as the estimated frequency of the

bus where the machine is connected using both the proposed

frequency divider (FD) and the washout filter (WF). The time

4The data of the ENTSO-E system have been licensed to the first author
by ENTSO-E. Data can be requested through an on-line application at
www.entsoe.eu.

(a)

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time [s]

0.9985

0.999

0.9995

1.0

1.0005

1.001

S
y
n
ch
ro
n
ou

s
G
en
.
B
u
s
−

F
re
q
u
en
cy

[p
u
]

ωFD

ωWF (Tf = 0.01s)

ωSyn

(b)

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time [s]

0.998

0.999

1.0

1.001

1.002

L
oa
d
B
u
s
−

F
re
q
u
en
cy

[p
u
]

ωFD

ωWF (Tf = 0.01s)

ωWF (Tf = 0.05s)

ωWF (Tf = 0.002s)

Fig. 7: Frequency response of the Irish transmission system facing a
three-phase fault close to a synchronous machine: (a) Synchronous
machine bus; (b) Load bus.

constant of the filter is Tf = 0.01 ≃ 3/Ωn s, which is

the default value in [17]. It can be seen how the frequency

divider tracks with high level of accuracy the rotor speed of

the machine during and after the transient. On the other hand,

the washout filter has a significant difference with respect to

the rotor speed during the transient, and becomes accurate 4
s after the fault occurrence.

The frequency of a load bus close to the fault is estimated

using both the frequency divider and the washout filter, and the

comparison is shown in Fig. 7(b). To study how this frequency

estimation is affected by the value of the filter time constant,

three values are compared: the base value of Tf = 0.01 ≃
3/Ωn s used in the previous examples and simulations, as

well as five times bigger and smaller time constants, i.e., Tf =
0.05 and Tf = 0.002 s, respectively. It can be observed that

both estimators show a similar behavior about 2 s after the

fault occurrence. However, the trajectories during the transient

are significantly different. While the frequency divider shows

a behavior similar to that of the synchronous machine rotor

speed shown in Fig. 7(a), the washout filter shows a peak

before the disconnection of the line that does not correspond

to any physical behavior in the system.

2) Fault close to a wind power plant: In this subsection, a

three-phase fault occurs close to a wind power plant, and is

cleared after 240 ms (see Fig. 8). The wind plant is composed

of 17 CSWTs (bus A), and 20 DFIGs split into 2 groups (buses

B and C).

The frequency of bus A is estimated using both the proposed

frequency divider and the filter, and the trajectories are shown

in Fig. 9. The time constant of the filter is the default value

of Tf = 0.01 s. As in the previous case, FD and WF
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Fig. 8: Scheme of a section of the Irish transmission system that
includes a wind power plant.

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time [s]

0.999

0.9992

0.9994

0.9996

0.9998

1.0

1.0002

1.0004

B
u
s
A
−

F
re
q
u
en
cy

[p
u
]

ωFD

ωWF (Tf = 0.01s)

Fig. 9: Frequency response of the Irish transmission system facing a
three-phase fault close to a wind power plant.

trajectories are considerably different. While the frequency

divider shows a frequency response similar to the one obtained

in Subsection IV-A.1, the filter adds a relatively high level

of noise to the frequency measure. This is due to the fact

that the washout filter estimates frequency variations based

on a numerical derivative of the phase angle of the voltage

at the point of connection of the wind turbine. Bus voltage

angle varies in order to account for the small variations of

the active power injected at the bus by the wind power plant.

Such variations are a consequence of the stochastic behavior

of the wind speed. However, the wind turbine does not impose

the frequency at its node and, thus, the bus frequency is not

related to wind turbine active power variations, as it happens

for synchronous generators. Of course, the variations of the

active power generation of the wind turbine do affect the

dynamic behavior of synchronous machines which need to

compensate the power unbalance. This is implicitly captured

by the proposed frequency divider formula.

B. ENTSO-E Transmission System

This subsection considers a dynamic model of the ENTSO-

E transmission system. The model includes 21,177 buses

(1,212 off-line); 30,968 transmission lines and transformers

(2,352 off-line); 1,144 coupling devices, i.e., zero-impedance

connections (420 off-line); 15,756 loads (364 off-line); and

4,828 power plants. Of these power plants, 1,160 power plants

are off-line. The system also includes 364 PSSs.

This subsection provides a comparison of the computational

burden of the frequency divider and washout filters, when these

are connected to all buses. The case without any frequency

estimator is also considered. Results are shown in Table I.

The number of state and algebraic variables, and the size

and sparsity of the state matrix in the three cases is first

compared. Both the frequency divider and the washout filters

add to the system a number of algebraic variables equal to

the number of buses of the system. Then, each filter define

two state variables per bus, whereas the proposed frequency

divider does not include differential equations. This leads to

an increase in the number of elements of the state matrix of

31.07 % and 105.82 % for the frequency divider and the filter,

respectively. The percentage of the non-zero elements with

respect to the total number of elements, is reduced by 13.28
% by using the frequency divider, while the filter decreases

this number by 40.23 %.

A power flow analysis followed by the initialization of

dynamic devices is then carried out. The computational time

of the initialization is also reported in Table I. This consists

mainly in the set-up of synchronous machines and primary

regulators state and algebraic variables, and the computation

of the matrix D or of the initial values of the variables of

the washout filters, depending on the frequency estimator that

is included in the model. It can be observed that both the

frequency divider and the filters increase this value by 15.76%

and 14.18 %, respectively.

Finally, a time domain simulation (TDS) is performed for

each scenario. The simulation lasts 5 s, and the contingency

considered is a three-phase fault, cleared after 200 ms. The

time step of the TDS is 0.02 s. The implicit trapezoidal method

is used for the time integration, and each integration step is

solved by using the dishonest Newton-Raphson method [27].

Observing Table I, it can be observed that installing washout

filters at every bus increases the computational time of the

TDS by 18.65 %, while this time is only 10.21 % higher in

the case of the proposed frequency divider.

A final important remark is the following. From the com-

putational point of view, (14) might not be the most adequate

expression to implement in practice. In fact, while BBB , BG0

and BBG tend to be extremely sparse matrices, D is not.

For example, Table II shows the size and number of non-zero

elements of the aforementioned matrices for the ENTSO-E

system. Matrix D is almost dense and thus its computational

burden is unacceptable for large systems. Note also that the

computation of D alone requires about 3 s.

TABLE II: Size and number of non-zeros (NNZ) elements of matrices
BBB , BG0, BBG and D for the ENTSO-E system.

Matrix Size NNZ NNZ %

BBB 21, 177× 21, 177 72, 313 0.0161

BBG 21, 177× 4, 832 4, 832 0.0047

BG0 21, 177× 21, 177 3, 245 0.0007

BBB +BG0 21, 177× 21, 177 72, 313 0.0161

D 21, 177× 4, 832 86, 169, 456 84.2096

For the reason above, the use of (14) is impractical for a

computer-based implementation of the frequency divider and

may cause memory errors on common workstations. Hence,

in Dome, we have implemented an acausal expression, as

follows:

0 = (BBB +BG0) · (ωB − 1) +BBG · (ωG − 1) (20)

Equation (20), not (14), has been used to obtain the results
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TABLE I: Computational burden of different bus frequency estimators.

Base Case Frequency Divider Washout Filter

Number of state variables 49, 396 49, 396 (0.00%) 91, 750 (+85.74%)

Number of algebraic variables 96, 768 117, 945 (+21.88%) 117, 945 (+21.88%)

Size of DAE system 146, 164 167, 341 (+31.07%) 209, 695 (+105.82%)

NNZ % of Jacobian Matrix 0.00256 0.00222 (−13.28%) 0.00153 (−40.23%)

Initialization of full DAE [s] 0.35087 0.40617 (+15.76%) 0.40063 (+14.18%)

Time Domain Analysis [s] 37.4006 41.2198 (+10.21%) 44.3770 (+18.65%)

reported in the third column of Table I. The interested reader

can find in [33] an extensive discussion on causality and its

implications on the modeling of physical systems.

V. CONCLUSIONS

This paper proposes a general expression to estimate fre-

quency variations during the transient of electric power sys-

tems. The proposed expression is derived based on standard

assumptions of power system models for transient stability

analysis and can be readily implemented in power system

software tools for transient stability analysis. The formula is

aimed at improving the accuracy of bus frequency estimation

in traditional electromechanical power system models. Sim-

ulation results show that the proposed formula is accurate,

numerically robust and computationally efficient.

We see several possible ways to both improve the for-

mulation and utilize in practical applications the proposed

frequency divider. The inclusion of the effect on frequency

variations of electromagnetic effects as well as the transient

behavior of electromechanical wave propagation appears an

interesting and challenging task for future work. The coupling

of the frequency divider with digital measures provided by

PMU devices appears as another interesting topic. We are

also keen to observe the impact of utilizing the proposed

frequency estimation as input signal for frequency controllers

of non-synchronous devices, such as distributed generation

and flexible loads. The authors are currently working on all

directions above.

APPENDIX I

CENTER OF INERTIA

The center of inertia (COI) is a weighted arithmetic average

of the rotor speeds of synchronous machines that are connected

to a transmission system:

ωCOI =

∑

j∈G
Hjωj

∑

j∈G
Hj

(21)

where ωj and Hj are the rotor speed and the inertia constant,

respectively, of the synchronous machine j and G is the set of

synchronous machines belonging to a given cluster.

APPENDIX II

DERIVATIVE OF THE BUS VOLTAGE PHASE ANGLE

The estimation of the bus frequency deviation described

in this appendix is based on the numerical derivative of the

angle of bus voltage phasors [34]. The frequency estimation

is obtained by means of a washout and a low-pass filter,

as depicted in Fig. 10. The washout filter approximates the

derivative of the input signal. Differential equations are as

follows:

pxθ =
1

Tf

(

1

Ωn

(θ − θ0)− xθ

)

(22)

pω =
1

Tω

(ω0 +∆ω − ω)

where θ0 is the initial bus voltage phase angle (e.g., the phase

angle as obtained with the power flow analysis); Ωn is the

system nominal frequency in rad/s; ωs is the synchronous

frequency in pu (typically, ωs = 1 pu); Tf and Tω are the

time constants of the washout and of the low-pass filters,

respectively; xθ is the state variable of the washout filter; and

∆ω = pxθ. Tf = 3/Ωn s and Tω = 0.05 s are used as default

values for all simulations.

washout lag

∆ω ω

ω0

θ

θ0

11 p +

+

+

−
Ωn 1 + pTf 1 + pTω

Fig. 10: Washout filter to estimate the frequency through a numerical
derivative of bus voltage phase angle.

In case of polar coordinates, to compute the frequency

variation ∆ω, the bus voltage phase angle θ has to be defined

first. Instead of computing directly θ, which might lead to

numerical issues, one can define two fictitious state variables,

namely sin θ and cos θ, whose dynamics are defined as follows

[17]:

p(cos θ) =
1

Tf

(vd/v − cos θ) (23)

p(sin θ) =
1

Tf

(vq/v − sin θ)

where v =
√

v2d + v2q. Then, ∆ω is obtained as:

∆ω =

{

p(sin θ)
Ωn cos θ , if | cos θ| > | sin θ| ,

− p(cos θ)
Ωn sin θ

, otherwise.
(24)
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