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Abstract
Introduction In Northern Europe, maize early-sowing used to maximize yield may lead to moderate damages of seedlings 
due to chilling without visual phenotypes. Genetic studies and breeding for chilling tolerance remain necessary, and metabolic 
markers would be particularly useful in this context.
Objectives Using an untargeted metabolomic approach on a collection of maize hybrids, our aim was to identify metabolite 
signatures and/or metabolites associated with chilling responses at the vegetative stage, to search for metabolites differen-
tiating groups of hybrids based on silage-earliness, and to search for marker-metabolites correlated with aerial biomass.
Methods Thirty genetically-diverse maize dent inbred-lines (Zea mays) crossed to a flint inbred-line were sown in a field 
to assess metabolite profiles upon cold treatment induced by a modification of sowing date, and characterized with climatic 
measurements and phenotyping.
Results NMR- and LC-MS-based metabolomic profiling revealed the biological variation of primary and specialized metabo-
lites in young leaves of plants before flowering-stage. The effect of early-sowing on leaf composition was larger than that of 
genotype, and several metabolites were associated to sowing response. The metabolic distances between genotypes based on 
leaf compositional data were not related to the genotype admixture groups, and their variability was lower under early-sowing 
than normal-sowing. Several metabolites or metabolite-features were related to silage-earliness groups in the normal-sowing 
condition, some of which were confirmed the following year. Correlation networks involving metabolites and aerial biomass 
suggested marker-metabolites for breeding for chilling tolerance.
Conclusion After validation in other experiments and larger genotype panels, these marker-metabolites can contribute to 
breeding.

Keywords Chilling tolerance · Environmental changes · Maize · Marker metabolites · Metabolic distance · Metabolomics

Abbreviations
d20 °C  Equivalent days at 20 °C after 

emergence
ES  Early sowing
LC-ESI-QTOF-MS  Liquid chromatography electro-

spray-ionization time-of-flight mass 
spectrometry

ls-means  Least-squares means

NS  Normal sowing
OSC-PLS-DA  Orthogonal signal correction partial 

least-square discriminant analysis
PCA  Principal component analysis

1 Introduction

Temperature is a key factor for plant development and pro-
ductivity, especially for plant crops including cereals, which 
are important sources of food and animal feed. Maize is a 
cereal of great economic importance, with a grain world pro-
duction of about 1022 million tons in 2014 (faostat3.fao.org, 
FAO food and agriculture data). In Northern Europe, maize 
early-maturing hybrids are usually sown from mid-April to 
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early-May and are harvested in mid-September for silage or 
mid-October for grain. Early sowing is considered to be a 
way of maximizing yield of these early maturing hybrids. 
Breeding schemes of maize early hybrids in Europe has long 
been relying on the flint Lacaune genetic pool and a comple-
mentary dent pool showing a high combining ability with 
this flint group. Most often, early sowing leads to moderate 
damage of seedlings due to chilling non-freezing tempera-
tures, without clear visible phenotype in the field because 
of the cold tolerance of the flint parental line. But recently, 
medium late or late germplasm (such as Iodent, BSS and 
Lancaster) has been introduced into the flint pool (Barrière 
et al. 2006). This late material, bred in warmer areas, has not 
been selected for chilling tolerance and is likely to bring a 
higher susceptibility to low temperatures.

With less chilling-tolerant hybrids in such extreme envi-
ronments, chilling stress may induce symptoms at the plant 
level such as leaf chlorosis, development and growth retar-
dation, but also shoot or root tissue injury with necrosis or 
even death (Greaves 1996). Part of these symptoms may 
be related with reduced photosynthesis and photoinhibition 
occurrence. Chilling may also induce modifications at the 
cellular level such as osmotic stress, membrane disorganiza-
tion, low protein activity and possibly an increase in reac-
tive oxygen species (ROS), with corresponding metabolic 
changes in relation with the general reduction of enzyme 
activities and reconfiguration of the metabolic network (Kra-
sensky and Jonak 2012). Thus, there is a renewed interest for 
cold tolerance in breeding schemes. Among tools that have 
to be developed to help genetic studies and further breed-
ing for early-sowing tolerance, including chilling tolerance, 
metabolic markers representative of cold resistance would 
be particularly useful.

During chilling acclimation, the complex reprogramming 
of gene expression leads to the accumulation of protective 
proteins and also protective metabolites such as compatible 
solutes (including soluble sugars, sugar alcohols, proline and 
betaine) or ROS protectors, and also signalling metabolites 
(Zhu et al. 2007). Therefore, metabolomics appears as a 
method of choice for precise phenotyping. Plant metabo-
lomics studies often combine several analytical strategies 
(Hall 2011). Gas chromatography coupled with mass spec-
trometry and proton NMR spectroscopy (1H-NMR) of polar 
extracts give access to primary metabolites. Liquid chroma-
tography coupled with mass spectrometry (LC-MS) of semi-
polar extracts provides relative quantification of secondary 
metabolites belonging to diverse families of compounds 
including flavonoids, hydroxycinnamates and benzoxazi-
noids. Such analytical approaches have been largely used 
recently for cereals (Balmer et al. 2013; Khakimov et al. 
2014), including maize kernels, leaves or other organs for 
genomics or studies of environmental effects (e.g. Amiour 
et al. 2012; Baniasadi et al. 2014).

Besides primary metabolites (Cañas et al. 2017; Sun et al. 
2016b), the maize leaf contains several families of special-
ized metabolites, several of which have been shown to be 
implicated in biotic stresses such as the quinic acid deriva-
tive chlorogenic acid (Cortés-Cruz et al. 2003), the flavone 
glycoside maysin (Rector et al. 2003), and benzoxazinoids 
(Frey et al. 1997; Meihls et al. 2013). The use of metabo-
lomics to understand the response of plants including crops 
to particular environments has largely been used (Obata and 
Fernie 2012; Arbona et al. 2013), as for instance recently 
in potato facing drought (Sprenger et al. 2016) or maize 
subjected to variations in temperature (Sun et al. 2016a). It 
has also been used to predict agronomic important pheno-
types of plants for potato grown in different environments 
(Steinfath et al. 2010) and for maize hybrids (Riedelsheimer 
et al. 2012a, b).

Compositional data from metabolomics approaches com-
bined with chemometrics have also been largely used for 
distinguishing the geographical and variety origin of sev-
eral foods (Cubero-Leon et al. 2014), including those from 
plants. Metabolomics data can be used for establishing a 
measure of the metabolic distance between accessions in 
a given environment, and across environments. In a study 
involving nine accessions of Arabidopsis, a minor corre-
lation was shown between genetic and metabolic diversity 
(Houshyani et al. 2012) for this model species. A study 
of three rice cultivars showed that metabolomic diversity 
of grain was highly associated with the genetic distance 
between these varieties (Calingacion et al. 2012). Similarly, 
a study of six soybean varieties demonstrated that metabo-
lomic data on seed could be correlated with genotypic data 
(Kusano et al. 2015). In maize, a study of 19 lines showed 
that metabolite accumulation in leaves mostly depended on 
the genetic background (Cañas et al. 2017). A metabolomic 
study of grain involving larger sets of maize genotypes 
showed that subpopulations could be differentiated in a way 
consistent with the genetic variation of these lines (Ven-
katesh et al. 2016).

Using an untargeted metabolomic approach on a col-
lection of 30 genetically-diverse maize hybrids cultivated 
in the field, the aim of the present study was to identify 
metabolite signatures and/or metabolites associated with 
severe chilling vs mild chilling responses of maize plants 
at the vegetative stage (8-visible-leaf stage). The composi-
tional data were also used to measure phenotypic distances 
between genotypes, and search for metabolites differenti-
ating groups of hybrids based on silage-earliness. Finally, 
these compositional data were combined with aerial biomass 
data to search for candidate marker-metabolites correlated 
with this agronomical trait. When such associations are con-
firmed with another experiment, they can be considered as 
marker metabolites that could be measured in large panels 
for selection purposes.
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2  Materials and methods

2.1  Plant material, growth conditions and sampling

Thirty genetically diverse dent maize inbred-lines (Zea 
mays ssp. mays, Table 1) structured into four admixture 
groups (European, Iodent, Lancaster, Stiff Stalk (Ganal 
et al. 2011; Rincent et al. 2014)) were selected accord-
ing to their diversity based on pedigree, genotyping and 
flowering dates. They were crossed to the flint inbred-
line UH007 (Univ. Hohenheim, Germany) developed to 
improve combining ability with Iodent and Stiff-Stalk 
lines for earliness, yield of grain and stover, and sown 
as hybrids in a field located at Estrées-Mons (Northern 
France, 49°52′44″N, 3°0′27″E). The hybrids were clas-
sified into five earliness groups according to their silage 
earliness evaluated through the mean dry matter content at 
harvest in a European field experimental network (Rincent 
et al. 2014). The groups were defined as in the French 
variety registration protocol, with a difference of 3% in 
dry matter content between hybrids from two successive 
groups. Konfians (KWS, Champhol, France), a commer-
cial hybrid corresponding to the mean silage-earliness of 
the 30 hybrids, was also grown in the field for the prepa-
ration of samples dedicated to spectra annotation. The 
soil was a deep loam. N:P:K fertilizer and irrigation were 
applied. Two sowing dates corresponding to two “condi-
tions” were used: early-sowing (ES) on 15 April 2013 and 
normal-sowing (NS) on 13 May 2013. The air tempera-
ture, rainfall, air vapour pressure deficit, and global radia-
tion were recorded by a meteorological station located at 
approximately 600 m from the field (Online Resource 1). 
Thermal times starting from emergence (equivalent to the 
number of equivalent days at 20 °C) were calculated from 
air temperature (Parent and Tardieu 2012) for each condi-
tion. The experimental design for each condition consisted 
in four individual rows of 40 plants per genotype, planted 
in three randomized blocks. For each hybrid and block, the 
youngest ligulated leaf (usually from the third to the fifth 
leaf depending on the genotype) at the 8-visible-leaf plant 
stage was harvested between the times of 10:00 and 13:00 
from 10 plants per block. A single central 5-cm section 
of each leaf without the main vein was selected, pooled 
and immediately frozen in liquid nitrogen. Each biologi-
cal replicate corresponded to a block. ES samples were 
harvested on 14 June 2013 (18.4 equivalent days at 20 °C 
after emergence,  d20 °C) and NS samples on 5 July 2013 
(20.1  d20 °C).

Snap-frozen leaf samples (about 2 g plunged into liq-
uid nitrogen within seconds after sampling) were stored 

at − 80 °C until grinding in liquid nitrogen (2010 Geno/
Grinder, Spex, Stanmore, UK). Ground samples were 
stored at − 80 °C before freeze-drying that allowed meas-
urement of the dry weight over fresh weight ratio. Lyo-
philized samples were kept at − 20 °C in dry atmosphere 
before metabolomic analyses.

Table 1  List of the 30 maize hybrids of the dent panel selected based 
upon their diversity

Accession indicates the female inbred common name followed by the 
origin of the seed lot used for the project. The male tester line was 
UH007. Admixture groups are based on Panzea SNPs from Illumina 
MaizeSNP50 BeadChip (Ganal et al. 2011)
Hybrids were classified into five earliness groups based on the dry 
matter content of aerial biomass at silage harvest in a European net-
work
USDA United States Department of Agriculture, USA, CSIC Con-
sejo Superior de Investigaciones Científicas, Spain, UH Universität 
Hohenheim, Germany, CIAM Centro Investigacións Agrarias de 
Mabegondo, Spain

Accession Origin Admixture group Silage-earliness group

A374_inra USDA European Mid-early
B89_inra USDA European Mid-early
EZ11A_csic CSIC European Very late
F7028_inra INRA European Very-early
FV252_inra INRA European Very-early
MS153_inra USDA European Late
Oh02_inra USDA European Mid-early
Oh33_inra USDA European Early
W117_inra USDA European Early
D06_uh UH Iodent Very-early
D09_uh UH Iodent Very-early
F912_inra INRA Iodent Early
FC1890_inra INRA Iodent Early
FV353_inra INRA Iodent Early
PH207_usda USDA Iodent Mid-early
UH304_uh UHOH Iodent Early
B100_uh USDA Lancaster Late
B97_inra USDA Lancaster Late
LH38_usda USDA Lancaster Mid-early
Mo17_inra USDA Lancaster Late
W64A_inra USDA Lancaster Mid-early
B104_inra USDA Stiff stalk Very-late
B105_inra USDA Stiff stalk Late
B73_inra USDA Stiff stalk Late
B84_inra USDA Stiff stalk Late
EC169_ciam CIAM Stiff stalk Early
EZ37_csic CSIC Stiff stalk Mid-early
F1808_inra INRA Stiff stalk Mid-early
F618_inra INRA Stiff stalk Mid-early
FR19_usda USDA Stiff stalk Mid-early
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2.2  Plant phenotyping

The leaf number was recorded on eight plants per geno-
type and block on the day before, or the day of, leaf sample 
harvest for metabolomic analyses. Chlorophyll fluorescence 
measurements (variable-fluorescence over maximal-fluores-
cence ratio, Fv/Fm) were performed on the youngest ligu-
lated leaf of four plants per block using a rapid screening 
chlorophyll fluorimeter (Pocket PEA, Hansatech, Norfolk, 
U.K.) to estimate the maximum quantum efficiency of pho-
tosystem II (after a minimum 20 min of dark adaptation) and 
check for the occurrence of photoinhibition (Maxwell and 
Johnson 2000). The days of fluorescence measurements were 
chosen according to field weather data (low temperature and 
high light) on 4 June 2013 for ES and 26 June 2013 for NS. 
For biomass determination, 24 plants per genotype (eight 
plants per block, different from the 10 plants used to collect 
leaf samples) were harvested 4–5 days after the harvest of 
leaf samples for metabolomic analyses, on 19 June 2013 and 
9 July 2013 for the ES and NS conditions, respectively. The 
dry masses of the aerial part were measured after drying 
at 80 °C in an oven until constant weight. Because of the 
cool and wet season, it was impossible to reach physiologi-
cal maturity (around 32% grain moisture content) by the 
end of October neither for NS nor ES. Therefore, 18 other 
plants per genotype were harvested around 40% grain mois-
ture content (half milk line stage) in early November (4–5 
November for ES, 7–8 November for NS) for final biomass 
and grain yield estimation. For all traits, least square means 
(ls-means) per genotype were calculated using ASReml-R 
v3.0 software (Gilmour et al. 2009) with genotype and block 
as fixed effects.

2.3  1H‑NMR analysis of polar metabolites

For NMR analysis of leaf samples, polar metabolites were 
extracted from 20 mg DW using a hot ethanol/water series 
and quantified by 1H-NMR as previously described (Biais 
et al. 2009) with special care to allow absolute quantification 
of individual metabolites as detailed in Online Resource 2. 
A 90° pulse angle and an electronic reference with calibra-
tion curves for quantification were used. 1H-NMR spectra of 
Konfians commercial hybrid cultivated in NS and ES condi-
tions were converted into JCAMP-DX format and have been 
deposited, with associated metadata, into the Metabolomics 
Repository of Bordeaux MeRy-B (http://servi ces.cbib.u-
borde aux.fr/MERYB /res/proje ct/M1300 1). The assignments 
of metabolites in the NMR spectra (Online Resource 3) were 
made by comparing the proton chemical shifts with literature 
(Fan 1996; Mounet et al. 2007) or database values (MeRy-B 
2011, http://bit.ly/meryb ; HMDB, http://www.hmdb.ca/), by 
comparison with 1D and 2D spectra of authentic compounds 
recorded in the same solvent conditions (in-house library) 

and by spiking the samples. 1H-1H COSY and 1H-13C HSQC 
2D NMR experiments were acquired for selected samples 
for assignment verification.

2.4  Starch measurement

Starch contents of leaf samples were determined in the pre-
viously obtained pellets (see above and Online Resource 
2) after polar compound extraction (Hendriks et al. 2003), 
using 96-well polystyrene microplates (Sarstedt, Marnay, 
France) and expressed in glucose equivalents. Extractions 
and assays were performed using a robotised Starlet platform 
(Hamilton, Villebon sur Yvette, France) and absorbencies 
were read at 340 nm using MP96 readers (SAFAS, Monaco).

2.5  LC‑ESI‑QTOF‑MS analysis of semi‑polar 
metabolites

Lyophilized maize samples (20 ± 0.5 mg DW) from the field 
experiment were extracted with 1 mL of methanol/water 
(70/30, v/v) with 0.1% formic acid and methyl vanillate as 
internal standard to check if injection was performed cor-
rectly by the autosampler. The methanol/water with 0.1% 
formic acid extracts were injected without any other prepa-
ration step and analysed by LC-QTOF-MS as detailed in 
Online Resource 2. Chromatographic runs were conducted 
using a reverse phase column. Mass spectral analyses were 
performed with a hybrid quadrupole/time-of-flight mass 
spectrometer (micrOTOF-Q, Bruker Daltonics, Bremen, 
Germany) equipped with an electrospray ionization (ESI) 
source. The data was processed using Workflow4Metabo-
lomics in the Galaxy environment (Giacomoni et al. 2015) 
as detailed in Online Resource 2. This resulted in a high 
quality dataset retaining 2839 ions over the 7307 initial ones 
and used for further statistical analyses. Since maysin peak 
was saturated, it did not pass the ANOVA filtration step. 
Molecular formulae were generated using SmartFormula 
software (Bruker, Bremen, Germany). The final annotation 
and putative name assignments (Online Resource 4) were 
also achieved by comparing with MS-related information in 
the literature (Fridén and Sjöberg 2014; Gomez-Roldan et al. 
2014; Gómez-Romero et al. 2010; Marti et al. 2013; Walker 
et al. 2011) and databases (MassBank, MoNA, mzCloud).

2.6  Data analyses

Absolute or relative metabolite contents expressed on a DW 
basis were used for statistical analyses. Principal component 
analysis (PCA, correlation matrix) and Volcano plot analysis 
were performed using R scripts in BioStatFlow web applica-
tion (biostatflow.org, v2.7.7) to visualize the global effect 
of sowing condition, or look for metabolites or metabolite 
features affected by the sowing condition and considered 

http://services.cbib.u-bordeaux.fr/MERYB/res/project/M13001
http://services.cbib.u-bordeaux.fr/MERYB/res/project/M13001
http://bit.ly/meryb
http://www.hmdb.ca/
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as response-markers of the sowing condition. For the latter 
metabolites or features, ANOVAs for genotype effect were 
performed on log2 transformed data (P < 0.05) for each 
culture condition separately. Euclidian distance matrices of 
compositional data (ls-means of biological replicates per 
genotype) mean-centred and scaled to unit variance were 
constructed using Multi Experiment Viewer (Saeed et al. 
2003). Orthogonal signal correction partial least-square 
discriminant analyses (OSC-PLS-DA) were performed with 
BioStatFlow on genotype ls-means to search for metabo-
lites or metabolite signatures linked with silage-earliness 
groups. After unit-variance scaling, a model with two com-
ponents was used with 500 permutations for cross valida-
tion. The metabolites or metabolite signatures highlighted 
with OSC-PLS-DA were checked using variance analysis on 
log10-transformed data followed with Tukey’s studentized 
test performed with BioStatFlow. To visualize metabolite 
or metabolite-biomass coregulations, correlation networks 
based on Pearson correlations after log2 transformation of 
all data and with a q < 0.02 threshold after FDR correction 
were calculated and visualized using Fruchterman layout in 
BioStatFlow and Cytoscape software version 3.5 (Shannon 
et al. 2002; http://www.cytos cape.org/).

3  Results

3.1  Early sowing affects plant early growth 
but not final aerial biomass

The environmental variables (Online Resource 5) showed 
that the mean air temperature was similar for the two sow-
ing conditions from sowing to emergence (10.8 and 10.4 °C 
for ES and NS, respectively), and lower by 3.8 °C for the 
ES condition for the period ranging from emergence to the 
8-leaf stage that also lasted longer for this condition. The 
mean global radiation was similar for the two conditions 
from emergence to 8-leaf stage. For the ES condition, 83% 
of days between emergence and sample harvest had a tem-
perature below 15 °C, and this percentage dropped to 36% 
for the NS condition.

Leaf fluorescence measurements allowed verifying for 
the amount of photoinhibition of plants after the strongest 
photoinhibitory period recorded between emergence and 
sampling for each sowing condition. This period occurred 
after 4 days at 11.9 °C with a mean daily global radiation of 
2329 J/cm2 for ES, and after 2 days at 13.8 °C with a mean 
daily global radiation of 2329 J/cm2 for NS. The mean ± SD 
of fv/fm values were 0.57 ± 0.03 and 0.63 ± 0.04 for ES and 
NS respectively (n = 30 genotypes), with no significant dif-
ferences (P > 0.05) between genotypes.

Developmental stages at leaf and plant harvests for bio-
chemical and biomass analyses, respectively, were very simi-
lar for the two conditions. Leaf sampling was performed at 
20.8  d20 °C for NS and 18.4  d20 °C for ES (Online Resource 5 
Fig. A). The mean ± SD (n = 30 genotypes) number of vis-
ible leaves per plant was 7.10 ± 0.40 for NS and 6.76 ± 0.30 
for ES. This corresponds to about four ligulated leaves per 
plant (Table 2). However, for the 30 genotypes the vegetative 
plant growth was affected by the field condition as the dry 
weight of the seedling aerial part was significantly reduced 
by chilling induced by ES (Table 2, Wilcoxon rank test, 
P < 0.05). When, at this stage, biomasses were corrected for 
the thermal time in each condition (i.e. g DW divided by 
 d20 °C from emergence) the NS value (65 mg DW  d20 °C

−1) 
remained about twice the ES value (31 mg DW  d20 °C

−1), 
confirming a condition effect on growth. However, the final 
plant aerial biomass or grain biomass of mature plants at half 
milk line stage were not significantly affected by the sowing 
condition (P > 0.05, Table 2), showing that over their entire 
plant development period the ES plants performed equally. 
This compensation was mainly due to the longer cycle dura-
tion between emergence and harvest, and consequently the 
higher amount of cumulated thermal time (+ 10%) and inci-
dent global radiation (+ 21%) (Online Resource 5).

3.2  Leaf metabolite composition in the field 
is affected by early sowing

For 1H-NMR profiles, an a priori annotation work according 
to the literature resulted in the identification and absolute 
quantification of 24 compounds including five soluble sugars 

Table 2  Effect of sowing date 
on maize plant phenotype in the 
field at the time of leaf harvest 
for metabolite determination 
and on mature plants at the time 
of grain harvest

Mean of 30 hybrid genotypes ± SD, except for NS total aerial vegetative biomass with 29 genotypes
*Statistically significant difference (P < 0.05) between the two conditions according to Wilcoxon rank test

Normal sowing Early sowing

Young plants
Number of ligulated leaves  plant−1 4.51 ± 0.29 4.05 ± 0.10*
Total aerial vegetative biomass (g DW  plant−1) 1.67 ± 0.48 0.71 ± 0.13*
Mature plants
Final plant aerial biomass (g DW  plant−1) 222.3 ± 28.0 230.6 ± 26.0
Final grain biomass (g DW  plant−1) 108.3 ± 13.4 114.2 ± 12.9

http://www.cytoscape.org/
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and one sugar-alcohol, seven organic acids, five amino acids 
and four other N-compounds (Online Resource 3). Five 
unknown compounds were also quantified. The major polar 
compounds were sucrose, trans-aconitate, malate, quinate, 
and glycine. For LC-ESI-QTOF-MS profiles, an annota-
tion work performed at the beginning of the present study 
resulted in the identification and relative quantification of 
25 compounds in the negative mode, including one amino 
acid, six hydroxycinnamate derivatives, 13 flavonoid deriva-
tives, five benzoxazinoid derivatives (Online Resource 4). 
The three annotated compounds with the highest intensities 
were rutine, feruloylquinic acid and coumaroylquinic acid 
A. Maysin presented the highest intensity; however, it could 
not be quantified in our conditions due to signal saturation.

To visualize leaf compositional changes, we performed a 
PCA for the two sowing conditions combining the compo-
sitional data from the three analytical approaches. The PCA 
scores plot (Fig. 1a) revealed that leaf composition clearly 
differed between the two conditions. The percentage of total 
variability explained by PC1 and PC2 was about 20%. On 
the PC1 × PC2 plane, the global compositional changes 
between genotypes were of the same order of magnitude as 
those within genotypes for a given sowing condition, and 
much lower than those induced by sowing date. No sample 
clustering linked with admixture groups (Fig. 1a) or silage-
earliness groups (Online Resource 6) appeared. Comparison 
of the scores and loadings plots (Fig. 1b) highlighted the 

identified metabolites with higher contents for ES (glucose, 
fructose, sucrose, starch, isoleucine), or higher contents 
for NS (malate, succinate, glycine). A number of uniden-
tified metabolite signatures from the LC-QTOF-MS also 
contributed to discriminate the two conditions, including 
41 variables with values of PC1 loadings superior to 0.02 
and PC2 loadings inferior to − 0.02, i.e. with a tendency to 
have higher contents in ES, and 77 variables with values of 
PC1 loadings inferior to − 0.02 and PC2 loadings superior to 
0.02, i.e. with a tendency to have higher contents in NS. We 
used univariate analyses to verify the tendencies observed 
for the metabolites identified at the beginning of the pre-
sent study, and also point to unidentified metabolites from 
the 1H-NMR or LC-QTOF-MS analyses that are the most 
significant and for which tentative identification would be 
particularly interesting.

The results of Student’s t test (P < 0.01 or P < 0.001 after 
FDR correction) for sowing date effect for all variables, 
combined with a ratio of ES over NS condition higher than 
1.2 or 2 or lower than 0.83 or 0.5, are detailed in Online 
Resource 7 tables, and summarized in Fig. 2 for the most 
stringent thresholds. All these compounds can be con-
sidered as metabolites responding to sowing date that are 
common to the majority of genotypes. The P < 0.01 and 
1.2 or 0.83 ratio thresholds were used to point to signifi-
cantly affected identified compounds. The P < 0.001 and 2 
or 0.51 ratio thresholds were used to be more stringent for 
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Fig. 1  Principal component analysis of 2868 metabolite features and 
starch measured in young maize leaf of 30 hybrids in the normal (full 
symbols) and early-sowing (open symbols) conditions. a Scores plot 
of the first two principal components. Scores symbols correspond to 

the genotype groups defined in Table  1: European, green triangles; 
Iodent, purple circles; Lancaster, red squares; Stiff Stalk, blue dia-
monds; b Loadings plot of the first two principal components. Identi-
fied metabolites are annotated
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metabolite signatures to make a pre-selection before a ten-
tative annotation work. The first set of thresholds allowed 
pointing to 25 identified compounds (Online Resource 7 
Table A). Starch and two soluble sugars (glucose, fructose), 
two organic acids (quinate, shikimate), three amino acids 
or amino-compounds (isoleucine, choline, tryptophan), 
three phenolic compounds (kaempferol-malonyl-glucoside, 
coumaroylquinic-acid A, eriodictyol-O-glucoside), one ben-
zoxazinoid  (DIM2BOA-glucoside) had higher contents for 
ES. Three organic acids (malate, succinate, trans-aconitate), 
three amino acids or amino-compounds (putrescine, alanine, 
glutamate), four phenolic compounds (feruloylquinate C, 
two kaempferol derivatives and another flavonol-glycoside) 
and three benzoxazinoids (HDMBOA-glucoside, DIBOA-
glucoside, HMBOA-glucoside) had higher contents for NS. 
These changes were summarized on a simplified metabolic 
map (Online Resource 8) including a benzoxazinoid path-
way in agreement with the one proposed previously (Dutar-
tre et al. 2012; Handrick et al. 2016). The second set of 
thresholds allowed pointing to 232 out of the 2869 variables 
(Online Resource 7 Table B, Fig. 2) including, among the 
identified compounds already noticed with P < 0.01, starch, 
glucose, fructose, and tryptophan that remained with higher 
contents for ES, and malate and HDMBOA-glucoside with 
higher contents for NS. Besides these identified compounds, 
93 MS-based signatures had significantly higher contents in 
ES, and 134 MS-based signatures had significantly higher 
contents in NS. Although this corresponds to a response 
common to all genotypes, we checked that most of the 25 

metabolites and 227 signatures highlighted above were also 
affected by genotype (ANOVAs, P < 0.05) in each sowing 
condition separately, which was the case for more than 80% 
of them. Among these 227 signatures, we pre-selected 40 of 
them with a P value < 10−30 for tentative annotation. After 
verification of signal intensity, formula assignment using 
precise mass and  MS2 experiments, putative annotations of 
seven signatures were obtained (Online Resource 9). Among 
them, M707T993 was assigned to the [2M-H]− dimer of 
caffeoylisocitrate, M713T795 to the [2M-H]− dimer of the 
HMBOA-glucoside, M329T2126 to the [M-H]− of tricin, 
and M224T977 to a fragment ion of HDMBOA-glucoside, 
and all four features presented significantly lower contents in 
the ES condition. M447T614 was assigned to the [M-H]− of 
cyanidin-glucoside and M465T628 to the [M-H]− of dihy-
droquercetin-glucoside and M675T639 to the [2M-H]− of 
coumaroylquinate B, and all three features presented signifi-
cantly higher contents in the ES condition.

3.3  The variability of distances between genotypes 
based on leaf composition was lower under ES 
compared to NS condition

Euclidian distances were calculated based on the ls-means 
per genotype for compositional data separately for NS and 
ES conditions. The mean of all pair-wise distances were 
similar for the two conditions: 74.6 for NS and 75.4 for ES. 
However, the variability of all pair-wise distances was higher 
for the NS compared to the ES condition, with a coefficient 
of variation of 17.4% for NS compared to 10.1% for ES. 
Overall, the means of distances within or between the four 
genotype groups were similar (Fig. 3) showing that some 
compositional variability remains within each admixture 
group.

3.4  A few metabolites or metabolite signatures 
seem to be linked with silage‑earliness

Several silage-earliness groups were represented within each 
admixture group (Table 1). As the variability of all pair-wise 
distances was higher for the NS condition, we used this con-
dition to search for metabolites linked with silage-earliness. 
We searched for possible links between leaf composition 
and genotype silage-earliness groups using OSC-PLS-DA on 
genotype ls-means. As only two genotypes were classified as 
“very late” in Table 1, they were gathered with “late” geno-
types resulting in a total of 4 groups (very-early, early, mid-
early, late). An OSC-OSC-PLS-DA with two components 
allowed separating the four silage-earliness groups along 
the first component as expected, with  R2 of 0.045 and  Q2 
of 0.718. Twenty-five variables had a VIP score higher than 
2.5. The mean values of variables with variable importance 
in the projection (VIP) scores for the first component higher 
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than 2.5 for known compounds (raffinose and dimethylether-
pentahydroxyflavonol-glucoside), and higher than 3 for uni-
dentified metabolite signatures (M403T2001, M741T1917, 
M843T1751, Online Resource 9) are presented in Fig. 4. 
M403T2001, dimethyletherpentahydroxyflavonol-glucoside 
and M741T1917 presented significantly higher mean con-
tents in the very-early group compared to all other earliness 
groups (Tukey’s test, P < 0.05). Mean M843T1751 content 
seemed to decrease from very-early to mid-early group. 
Tentative annotation of these three signatures did not suc-
ceed due to absence of candidates in MS databases and lack 
of structural information in MS spectra. Mean raffinose 
content seemed to increase linearly from very-early to late 
groups with significantly lower mean contents in the very-
early group compared to mid-early or late silage-earliness 
groups. This behaviour was confirmed in a following year 
for raffinose absolute content in data obtained on the same 
genotypes and for NS (Online Resource 10). For the relative 

contents of MS-based variables, we used correlations 
between years for each variable to show that the genotype 
tendencies were confirmed for 15 of the 17 MS-based vari-
ables that matched one of the 24 MS-based variables of 2013 
having a VIP score higher than 2.5 (Online Resource 10).

3.5  Relationships between leaf metabolites 
and aerial biomass differ at the two sowing 
dates

As the plant aerial biomass has been measured a few days 
after leaf sample harvest, it became possible to study the 
relationship between biomass content and composition. 
Due to the data matrix dimensions, an approach based on 
multilinear regression with cross-validation did not appear 
feasible due to system undetermination. However, to visu-
alize the relationship, correlation networks of compounds 
identified at the beginning of this study with aerial biomass 
were used using all available replicates (Fig. 5). Overall, the 
NS network (Fig. 5a) had lower density and average number 
of neighbors than the ES one (Fig. 5b): 0.11 and 5.0 versus 
0.15 and 7.2 respectively. The larger network reconstructed 
for the NS condition (Fig. 5a) comprised 46 variables, out 
of the total of 48 variables, linked with 21 negative cor-
relations and 98 positive correlations. The variables with 
at least 12 links were a caffeoylquinate, a feruloylquinate, 
chrysoeriol-glucosylrhamnoside and shikimate. The larger 
network reconstructed for the ES condition (Fig. 5b) com-
prised 46 variables linked with 33 negative correlations and 
133 positive correlations. The variables with at least 12 links 
were several caffeoylquinates, a feruloylquinate as for NS, 
and also sucrose, quinate, alanine, glutamate, choline and 
a quercetin-rhamnoside. With the significance threshold 
chosen, starch was included in the NS network, but not in 
the ES one. Biomass was directly linked with kaempferol-
dirhamnoside only for the NS condition network, whereas it 
was linked with  DIM2BOA-glucoside and raffinose in the ES 
network, all with a negative correlation. Biplots for ls-means 
of the hybrids showed that each link between a metabolite 
content and aerial biomass does not seem to be due to a 
particular genotype admixture group (Online Resource 11).

4  Discussion

The major compounds detected and quantified in the leaf 
of 30 hybrids grown in the field are globally in agreement 
with the literature for primary (Cañas et al. 2017; Richter 
et al. 2015; Sun et al. 2016b) and specialized metabolism 
(Korte et al. 2015; Meihls et al. 2013). Plant phenotypes and 
leaf metabolite modifications induced by sowing condition 
showed tendencies shared by the 30 genotypes and revealed 
metabolic responses. The compositional variability of the 
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genotype panel was also used to estimate metabolic dis-
tances between genotypes, and highlight relationships with 
silage-earliness or plant aerial-biomass data.

4.1  Metabolic response to chilling involves 
both primary and specialized metabolism

The environment exerted a larger effect on the leaf metabo-
lome (Online Resource 8) than the genotype, in agreement 
with previous publications about cereals including maize 
(Baniasadi et al. 2014). For leaf primary metabolites, the 
balance between sugars and organic acids seemed to be 
modified by chilling with higher contents for ES in several 
carbohydrates (glucose, fructose, sucrose, starch), and lower 
contents in organic acids (malate, succinate), compared to 
NS. Such higher backup of carbohydrates suggests that pho-
tosynthetically fixed carbon was less efficiently used or accu-
mulated under ES, and that growth was decreased whereas 
photosynthesis seemed less affected.

Alanine, produced in bundle sheath cells and with a high 
content in phloem sap (Valle and Heldt 1991), showed at 
least 12 connections in the ES correlation network and its 
content decreased in the ES condition. It will be interesting 
to evaluate the expression and the activity of alanine ami-
notransferase in these conditions, as this enzyme, which rep-
resents the primary route for the production of alanine, has 
been shown to enhance maize performance under N-limiting 
conditions when overexpressed (McAllister et al. 2012). 
Tryptophan, shikimic acid and quinic acid all had higher 

contents for ES. This may be linked with the reduction of 
growth and therefore a reduction in the lignification process, 
and/or a reduction of the synthesis of phenolic specialized 
metabolites due to a limitation of carbon availability as car-
bon preferentially accumulates in carbohydrates. Betaine, 
implicated in drought or chilling stress responses in sev-
eral species, was not significantly increased in ES but its 
precursor choline was. Maize transformants accumulating 
significantly higher levels of betaine than wild-type plants 
have been shown to display less inhibition in seedling shoot 
growth rate (Quan et al. 2004).

For specialized metabolites such as hydroxycinna-
mates, flavonoids or benzoxazinoids, the responses to ES 
were finely tuned as they did not seem to concern entire 
pathway branches. Several caffeoylquinates or feruloylqui-
nates showed at least 12 connections in the two networks 
and their contents did not seem to be modified by sowing 
date. Their homeostasis might be linked with their com-
plex “house-keeping” roles for protection and the lignifica-
tion process. However, two coumaroylquinic acid isomers, 
eriodyctiol-glucoside, a kaempferol-malonyl-glucoside, 
dihydroxyquercetin-glucoside and cyanidin-glucoside 
increased under ES. Several flavonols and anthocyanins 
have also been shown to accumulate upon cold exposure 
in Arabidopsis rosettes (Schulz et al. 2015). Similarly, for 
benzoxazinoids, a change in the balance from HDMBOA-
glucoside to  DIM2BOA-glucoside seemed to occur for ES. 
In addition to DIBOA-glucoside putatively identified at the 
beginning of our study, our complementary annotation work 
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highlighted a HMBOA-glucoside which decreased in ES. 
Benzoxazinoids are constitutive or induced defence products 
against several biotic stresses (Handrick et al. 2016) that may 
provide a reliable signal for the induction of other defences 
(Meihls et al. 2013), including those against an abiotic stress 
(Bergvinson et al. 1995).

A range of other MS-based metabolite signatures also 
increased or decreased in response to ES. Besides the 
HMBOA-hexoside mentioned above, our tentative anno-
tation work highlighted a caffeoylisocitrate that decreased 
under ES. The latter metabolite has been shown to be an 
abundant phenolic in the aerial part of orchard grass at 
vegetative stage (Hauck et al. 2013). To our knowledge, a 
possible role of this antioxidant compound in abiotic stress 
response has not been mentioned. Our tentative annotation 
work after the statistical analysis of the metabolomic profiles 
also highlighted a flavonoid, tricin, that decreased under ES. 
Tricin found in several grass species, including maize, is a 
monomer in grass lignification but free tricin seems to have 
other roles for adaptation to environment (Lan et al. 2016; Li 
et al. 2016) and was shown to decrease during cold acclima-
tion in winter wheat leaves (Moheb et al. 2013).

Therefore, the ES condition induced the accumulation 
of several biomass precursors, compatible solutes and anti-
oxidant compounds. Our metabolome results are in partial 
agreement with a recent proteomic study of a maize inbred-
line cultivated in control and chilling condition showing that 
the adaptive response of maize seedlings to chilling stress 
includes alleviation of photodamage, more energy produced 
through glycolysis, and improvement in the overall ability to 
scavenge ROS (Wang et al. 2016).

4.2  Metabolic plasticity seems to be constrained 
by chilling

No link appeared between leaf compositional characteristics 
and the genotype admixture groups. When leaf composi-
tional data were used to calculate distances between hybrids, 
no direct link appeared between metabolic distances and the 
group of origin of the maternal lines of the hybrids based 
on Rincent et al. (2014). As the choice of the Dent panel 
representatives relied on their diversity based upon pedigree, 
genotyping and flowering dates, some diversity remained 
within a given group. Based on this diversity within and 
between groups, we revealed common responses of all gen-
otypes as discussed above. However, the variability of all 
pair-wise distances between genotypes was lower for the ES 
compared to the NS condition.

The PCA scores plot, the metabolic distances within and 
between genotypes and the correlation networks (higher 
density and average number of neighbours for ES) all show 
that although ES did induce metabolic changes due to coor-
dinated reprogramming, overall the metabolic plasticity 

between genotypes was lower under ES compared to NS. 
This may result from a sort of increased struggle for the 
allocation of resources to different competing needs (growth 
or defence against cold stress) under ES, creating pos-
sible trade-offs (Caretto et al. 2015). As the variability of 
all pair-wise distances between genotypes was higher for 
NS compared to ES, it may prove interesting to perform 
metabolomic phenotyping in control conditions especially 
in a breeding schema aiming at increasing a constitutive 
tolerance to a given stress. As a starting point, we looked 
at the link between leaf composition in NS condition and 
silage-earliness.

4.3  Relationships between silage‑earliness or aerial 
biomass and metabolite composition opens 
the way for new breeding strategies

The application of metabolomics to predict agronomic 
important phenotypes is emerging. Melchinger’s group in 
collaboration with MPIMPP Golm (Riedelsheimer et al. 
2012a, b) compared the predictive power of metabolic and 
molecular markers and concluded that metabolites provide 
condensed information and could be especially interesting 
when dealing with highly polygenic traits. Their second 
study revealed significant correlations between caffeic- or 
p-coumaric acids and dry matter yield. A study on tropical 
maize hybrids revealed significant correlation between levels 
of glycine and myo-inositol and grain yield under drought 
(Obata et al. 2015). A recent study involving 19 maize lines 
(Cañas et al. 2017) defined a maize ideotype with a high 
grain yield potential with low accumulation of free amino 
acids and soluble carbohydrates in leaf. The latter study also 
proposed chlorogenates as markers that could be used to 
select for maize lines producing larger kernels.

In the present study, for two harvest years, we found a 
relationship between raffinose content and silage-earliness 
with very-early hybrids having the lowest raffinose content. 
Raffinose, often considered as a stress metabolite because 
it accumulates in plants experiencing abiotic stress, can 
be relatively abundant in stressed maize leaves. In a study 
comparing maize hybrids varying in drought tolerance, the 
drought-tolerant genotypes possessed a dwarf phenotype 
and accumulated more raffinose under milder drought-
stress conditions than the intermediate or drought-suscep-
tible genotypes (Barnaby et al. 2013). Raffinose may con-
tribute to stabilize membranes, scavenge hydroxyl radicals 
and act as a signalling molecule during biotic stress (Van 
den Ende 2013). However, one may hypothesize that early 
hybrids invest less resource in raffinose, thus saving carbon 
and energy for growth. The negative correlation observed 
between aerial-biomass and raffinose leaf content under ES 
seems in line with this point.
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Very-early hybrids also presented the highest content 
in the flavonol glucoside dimethyletherpentahydroxyfla-
vonol-glucoside in 2013. In the present study, under NS, 
biomass was directly correlated to the content of kaemp-
ferol dirhamnoside, another flavonol glycoside, whereas 
it was correlated with  DIM2BOA-glucoside under ES, all 
negatively. In Arabidopsis shoots, a compound similar 
to kaempferol dirhamnoside has been shown to act as an 
endogenous inhibitor of polar auxin transport (Yin et al. 
2014). In the latter study, the loss of the flavonoid 3-O-glu-
cosyltransferase UGT78D2 resulted in an altered flavonol 
glycoside pattern and reduced polar auxin transport in 
shoots, which was accompanied by reduced plant height 
and increased branching. In ES, the  DIM2BOA-glucoside 
leaf content was higher than in NS condition, and became 
negatively linked with aerial biomass. This may be an 
indirect indication of a higher biotic stress level in ES, 
or rather an implication of benzoxazinoids in a “non-spe-
cific” stress response as indicated above. Indeed, in an 
early work about benzoxazinoids in maize shoots, 6-meth-
oxy-2-benzoxazolinone (MBOA) has been described as a 
potent antiauxin (Hasegawa et al. 1992).

The fact that metabolites associated with biomass dif-
fered between the two growth conditions confirms that 
the use of metabolic markers for breeding for silage will 
necessitate precise and reproducible growth scenarios 
(Fernandez et al. 2016). Thus, validation of the potential 
markers proposed here for biomass (kaempferol-dirham-
noside for NS,  DIM2BOA-glucoside and raffinose for ES 
condition) is needed for at least another year and with a 
larger genotype panel to confirm the present results. The 
validation of raffinose as a potential marker of silage-
earliness for a second year with the present genotype 
panel is promising, as well as the correlations observed 
over 2 years for 15 MS-based variables implicated in the 
separation of silage-earliness genotype groups in 2013. 
Classical multiple regression modelling or other statistical 
methods such as those using supervised learning could be 
used (Broadhurst and Kell 2006). If confirmed, this sug-
gests the possibility to develop low-cost analytical strate-
gies targeting these “marker” metabolites to screen thou-
sands of maize hybrids for breeding purposes (Fernandez 
et al. 2016). Raffinose could easily be analysed in high-
throughput and at low costs using existing commercial 
kits and microplate robotized measurements (Gibon et al. 
2012). Kaempferol-dirhamnoside or  DIM2BOA-glucoside 
could be analysed using a targeted approach with a dedi-
cated multiple reaction monitoring method using liquid 
chromatography coupled with tandem MS (Mwendwa 
et al. 2016; Engström et al. 2015). Several of the other 
MS-based potential markers still need to be identified to 
facilitate their high-throughput absolute quantification.

5  Conclusions

The present study relies on 30 maize genotypes covering a 
range of genetic diversity. The metabolomic characteriza-
tion of leaves of the maize hybrids cultivated in the field 
revealed chilling responses common to all these genotypes, 
and paved the way to search for individual metabolite 
markers or sets of metabolite markers of silage-earliness 
or aerial-biomass. Several metabolite signatures of interest 
remain to be characterized. When identified, their targeted 
measurements with higher throughput analytical methods 
may become possible. All the potential metabolite mark-
ers of genotype groups or global responses will have to be 
measured on larger genotype panels for validation before 
possible use for breeding purposes.
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