
Micro-Benchmarking Property Preserving
Encryption: Balancing Performance, Security and

Functionality
Daniel Becker

School of Computer Science
University College Dublin

Dublin, Ireland
daniel@becker.ie

Andrew Hines
School of Computer Science

University College Dublin
Dublin, Ireland

andrew.hines@ucd.ie

Abstract—Practical encryption systems with new and more
flexible capabilities have been enabled by recent advances in
computing hardware performance and Property Preserving En-
cryption (PPE) schemes. PPE schemes allow limited and pre-
selected operations to be performed on encrypted data allowing
system designers to trade-off between performance, security
and functionality. This paper uses micro-benchmark to evaluate
three interdependent factors of PPE: performance, security
and functionality. The findings validate the efficacy of this
technique and provide guidance to application designers and
technology evaluators seeking to understand these interdependent
relationships for PPE database applications. Experiments were
performed using the CryptDB research system. Results validate
the previous assessments of CryptDB and provide supplemental
detail on performance, security and functionality.

Index Terms—Encryption, Performance, Security, CryptDB,
Micro-Benchmark, Property Preserving Encryption

I. INTRODUCTION

Systems using Property Preserving Encryption (PPE) [1]
schemes can provide broad functionality, with alternative
schemes allowing differing subsets of operations to be per-
formed on encrypted data. While these schemes permit a range
of operations, they have different performance and security
characteristics and cannot be used interchangeably.

Previous evaluations have used blended and full stack
macro-benchmarks to provide useful overviews of the aggre-
gate performance and functional characteristics of systems
but they do not provide sufficient detail to inform design
decisions. End-to-end performance measures can be dominated
by factors other than data retrieval; for example, the measured
total client-server round-trip time for a typical web application
can include: proxy negotiation, DNS lookups, connection
establishment, SSL negotiation, request sending, server pre-
processing, multiple database calls, server post-processing and
content transfer. Conversely caching layers in application soft-
ware stacks can improve measured performance by reducing
database calls. Benchmarks that synthetically represent the
intended workload of a system such as the SQL TPC-C
[2] or workloads based on execution of specific applications
make it difficult to isolate system performance factors, and the

distribution of sample query types may not be representative
for the target application.

In contrast, in this paper we use a Micro-Benchmarking
evaluation approach. Micro-benchmarks provide a mechanism
for specific feature evaluations in isolation; as well as full
system characterisation. They are also useful for application
and system designers as a regression tool to evaluate the per-
formance of system updates. In this study, a micro-benchmark
will refer to the minimal viable test of a combination of a spe-
cific data-type, payload and SQL operation across the various
encryption schemes. A viable test exercises the system as a
user would and must not cause unexpected side effects. Unlike
aggregated benchmarking, this approach restricts evaluation
to the system under test and allows the performance of each
operation mode to be explored in isolation. The study presents
an micro-benchmarking approach to PPE system evaluation
where each unique viable combination of datatype, operation
and encryption mode are exercised. Micro-Benchmarking is a
mature technique that has been applied in other performance
evaluations, e.g.[3], [4], [5].

Section II of this paper gives an introduction to the system
under test (CryptDB) and Section II-A reviews the existing
evaluations in the literature. Section III presents the technique
used with the results in Section IV. Sections V and VI present
our conclusions and future research opportunities. From a
terminology perspective, it should be noted that the phrase
“Primary Key” is used in this paper to refer to the database
column that uniquely identifies a row in a table; it should not
be confused with a cryptographic key.

II. CryptDB

CryptDB [6] is a research database proxy that encrypts
data before it is stored in an unmodified MySQL or PostGres
database. The threat model for CryptDB is the Honest-but-
Curious [7] database administrator. In this threat model the
database administrator can view the data in the database but
not interfere with the data contents or structures. Figure 1
shows a typical usage and the experimental setup for this
paper. CryptDB can use multiple/different encryption schemes



for each database column to allow a range of SQL operations
on encrypted data. Application designers can specify the
scheme(s) or allow CryptDB to determine the appropriate
scheme via a training mode. If multiple schemes are used for a
single column the number of encrypted columns is increased.

Application
Users

Application
Server

CryptDB
Proxy

Unmodified
SQL Server

1. Request

6. Response

2. SQL Commands

∆t1

5. Plain Results

∆t2

3. SQL Commands

4. Encrypted Results
Threat Domain

Fig. 1. CryptDB usage. CryptDB is implemented as a SQL proxy for a
unmodified SQL database. CryptDB addresses the threat of an adversary with
access to the SQL server. In this paper micro-benchmarks are executed with
and without the CryptDB proxy. Timings were measured for ∆t1 and ∆t2.

The encryption schemes used by CryptDB are:

• Random (RND) – Cipher-text Indistinguishable (IND-
CPA); equal plaintexts map to different cipher values.

• Deterministic (DET) – Always generates same Cipher-
text for same plaintext; i.e allows equality comparisons
implemented using AES after [8].

• Order-preserving Encryption (OPE) – allows encrypted
values to be compared/ordered after [9].

• Homomorphic Encryption (HOM) – Partial Homomorphic
Encryption that supports addition after [10].

Additional schemes for joins JOIN, OPE-JOIN and a
SEARCH scheme (after [11]) were not evaluated as the op-
timised version of CryptDB used in [6] is unavailable and the
published version does not support these schemes.

These schemes can be added, changed and re-encrypted
automatically so that additional SQL functions can be per-
formed; although this mode of operation is not desirable for
production scenarios as it reduces security while incurring
an additional-overhead. An example of a steady-state (post-
training) configuration is illustrated in Table I, the encrypted
data is stored in the table structure shown in the right column.
From inspection of this example it is apparent that a single
plaintext (unencrypted) 4 byte integer may consume up to
270 bytes of storage when encrypted with three encryption
schemes. When the application inserts or updates a value
in the encrypted column the three encrypted values must be
recalculated.

Table I
Comparison of plain and encrypted table structures with multiple encryption
schemes in use. The ‘Eq’ suffix on the column denotes that the column is

used for equality operations; ‘Order’ for operations that require comparison
operations (e.g RANGE) and ‘Add’ for homomorphic additions. The cdb salt
column stores a salt (i.e a random vector used as an initialization input to

strength the encryption).

Plain Table Structure Encrypted Table Structure
Table Name t1 table VAOQVRZWMW
Column Name, Type intcol1 int QEARUHZBWBoEq bigint

ZRBNJYGKWUoOrder bigint
HPTOPMPZZJoADD varbinary(256)
cdb saltTXHARYIMSW bigint

A. Prior CryptDB Evaluations

The developers of CryptDB presented an evaluation of the
system in their paper outlining the system [6]. Results for
the standardised TPC-C benchmark query mix indicating an
overall throughput reduction with CryptDB of 21–26% and a
latency increase of up to 11 ms depending on configuration.
This measured the throughput for the underlying MySQL
database with a MySQL Proxy deployed, compared to a
CryptDB proxy and MySQL. The use of MySQL Proxy is not
a generally required component for MySQL and an increase
in latency of 600% is seen when a CryptDB proxy system
is compared with a MySQL system without such a proxy.
(This configuration is used in this paper, Section IV-A explores
the overhead of this architecture). With the TPC-C benchmark
there was a storage factor penalty of 3.76 i.e. the encrypted
database consumes 3.76 times the storage space compared to
a standard plaintext MySQL database.

Benchmarks [6] of multi-user web applications showed an
addition of 7–18 ms (6–20%) per HTTP request and through-
put reduction of 14.5%. with a storage factor penalty of 1.2.
In this test less than 5% of the total columns in the applica-
tions tested were encrypted; while the performance workload
includes queries that do not require the encryption/decryption
of data.

A separate study [12] presents storage factors of 2 and 2.85
in two differing scenarios. The variance in reported storage
factors in the above research is due to the different number of
encrypted columns and encryption schemes in effect during the
benchmarks; HOM encrypted columns in particular consumes
64 times the storage of the plaintext.

III. MICRO-BENCHMARKING APPROACH

Following the minimal viable test criteria a series of tests
were developed and executed against an encrypted database
and a plaintext control database covering a range of encryption
schemes. Each micro-benchmark test is run sequentially on
the Control 1 database and then the encrypted database.
Each consists consists of: creation, initialisation and workload
scripts. The creation script creates the database table, primary
key (for indexed retrieval) and payload columns appropriate
to the benchmark, the initialisation script is used to set the
encryption state of the key or payload (i.e. the schemes and
columns used) and the workload script runs the test.

For each data layout and encryption scenario the following
operations are evaluated: INSERT, SELECT EQUAL: Select
the entire row by the key column; SELECT RANGE: Select
a number of rows based on the integer key within the speci-
fied range; SELECT SUM: Select a sum of integer columns;
SELECT ALL: Select all rows from all columns. Additional
possible benchmarks are discussed in section VI.

The benchmarks are arranged in four test suites, summarised
in Table II. They first test if a database operation is supported
by the encryption schemes in use and then evaluate the per-
formance and storage characteristics. To complement existing
research this paper only presents results that combine multiple
schemes.



The workload script was repeatedly executed (against
both encrypted and plaintext databases) and timed using
the MySQLSlap tool [13] and the total storage requirement
was also recorded. The INSERT and SELECT ALL results
were combined to form a Read/Write Ratio. Re-encryption
is computationally expensive and would significantly distort
benchmark results and changing encryption schemes would in-
validate the benchmark. Consequently, for valid benchmarking
purposes, we forced the encryption of columns to a particular
state and verified that the columns remained in this state after
the workload was executed (benchmarks that cause side effects
are excluded). The evaluations use two suites of controls:

• Control Suite 1: This test set is run against the plaintext
MySQL control database for all test conditions. The
results for each suite are individually indexed to these
results, i.e. each micro-benchmark is the corresponding
control result.

• Control Suite 2: This test set is run against the CryptDB
proxy without any encryption enabled. This captures the
intrinsic performance overhead of the CryptDB proxy
implementation, equipment configuration and architecture
without any cryptographic operations executing. Control
Suite 2 is used by [6] as an index value and is included
here as a basis of comparison with these prior evaluations.

Table II
Summary of the micro-benchmark Suites used to evaluate CryptDB. In

Suites 1 and 2 the encrypted payload (an Integer and a Text Field
respectively) is retrieved using a primary key that is not encrypted. This
measures the simple encryption and decryption overhead of the various

schemes without exercising any operations on encrypted data. Suites 3 and 4
use the encryption field as the primary key and carry no additional payload
but perform operations directly on the encrypted data. Benchmarks that were
are non-functional or that result in side effects are excluded from this table.

Suite Key Payload Encryption
Variations

SQL
Operations

Controls - - None 5
1. Integer E. Text 4 - DET or RND; OPE or RND 5
2. Integer E. Integer 4 - DET or RND; OPE or RND; HOM 4
3. E. Integer None 4 -DET or RND; OPE or RND; HOM 5
4. E. Text None 4 -DET or RND; OPE or RND 4

A. Security Categorisation

This paper uses three security categorisations in the context
of the passive Honest-but-Curious administrator Threat Model;
unsecure, partially secure and secure. Of the operations ex-
ercised here RND and HOM are categorised as secure as they
provide (distinct-) semantic security [14]. OPE is categorised
as partially secure as it has been shown by [15] and others
to leak information under certain conditions. Deterministic
(DET) encryption will also leak information if the fields
encrypted are non-unique (without a UNIQUE constraint); in
these executions when DET is used as a primary key, we treat
it as secure, while categorising it as partially secure when used
to encrypt a payload field.

B. Evaluation Environment

The latest publicly available version of CryptDB [16] was
used for all benchmarks. This code includes notes that it is

not code used in [6] as discussed above. Two Amazon’s EC2
Ubuntu 14.04.1 instances were deployed. The client instance
ran the MySQLSlap tool to execute the workloads and the
CryptDB proxy which encrypts the data. The server instance
ran an unmodified MySQL 5.5.44. The Client and CryptDB
proxy instance was a m4.10xlarge (40 vCPU 160 GB Ram) and
the MySQL database ran on a m4.4xlarge instance (16 vCPU
64GB Ram). These environments were deliberately oversized
for micro-benchmarks to avoid resource starvation, As this is
a virtual execution environment there was a risk that other
virtual resources may consume capacity and distort results.
To minimise this risk all outliers with a z-score greater than
3 were discarded and the benchmarks re-run.

IV. RESULTS

After execution a small number outliers were removed (less
than 0.5%).

The detailed results in Table III show the wide ranges of
performance and storage factors recorded across the different
operations and encryption options. From high level inspection
of the results it can be observed that the storage factor penalty
is fixed based on the encryption options chosen while the
performance varies with both the encryption options and the
SQL operation. These variances are discussed in IV-B and
IV-C and illustrated in Figures 2–5. It should be noted when
reviewing these figures that the SQL operations should not be
compared to each other as the results in each sub-figure are
indexed back to the plaintext/unencrypted result.

Generally INSERT operations show the lowest performance
degradation when using encryption, with the bulk of the
additional latency being explained by the presence of the proxy
rather than the performance of the encryption.

As expected the storage factor penalty is heavily influenced
by the presence of a HOM encrypted field which requires 64
times the storage. The variance in the read/write ratio indicates
that care should be exercised when applying assumptions about
the relative cost of these operations. Decisions on how long
to cache reads and writes can be influenced by this ratio. The
storage factor of 3.76 measured in earlier Table III also in-
cludes three results reproduced from prior work on evaluating
CryptDB. It should be noted that these results are not directly
comparable with the micro-benchmarks experimental results
reported here due to differences in the evaluation approach
and software versions available.

A. Controls

The storage factor penalty and performance figures are
indexed to Control 1 (standalone MySQL without CryptDB).
Control 2 introduces the CryptDB Proxy but encrypts no fields.
The factor of 5 performance reduction observed between
Control 1 and 2 is inline with the latency increase (from
0.10 ms to 0.60 ms) reported in similar experiments in [6,
Figure 12]. The increase in the Read/Write ratio between
Control 1 and 2 suggests that the proxy adds more overhead
while returning results. This is intuitively expected as even
just parsing (with out processing) the larger result set will be



Table III
Summary of Benchmark suites 1–4 presenting an overview of relative benchmark execution time on encrypted database on suites with varying encryption

layouts. Benchmark: The Benchmark Suite, or Control name. Encryption: The Encryption in place for the security categorisation; Unsecure, Partially Secure
and Secure Encryption. The Storage Factor and Performance figures are indexed to Control 1 for each benchmark individually. Read/Write Ratio figure is

the ratio of performance of the SELECT EQUAL to INSERT operations for that benchmark suite (if available). Operations shows the available SQL
operations successfully measured for that benchmark/onion combination; absence of an operation implies an operation is not supported by the encryption

setup (or that the operation caused CryptDB to reduce the security to facilitate it). The figures presented for prior work were can’t be directly compared due
to differences of the underlying experimental setups and method.

Benchmark Encryption Storage Factor Performance Read/Write Ratio Operations

Control 1: Benchmark Suites 1 - 4
MySQL

(Unsecure) 1.00 (Index) 1.00 (Index) 0.26 ALL

Control 2 - PK: Plaintext Int, No Pay-
load

(Unsecure) 1.00 5.18 - 14.42 0.43 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE, SELECT SUM

1 - PK: Plaintext Int, Payload: 1 En-
crypted Text

DET,OPE (P. Secure) 1.49 8.19 - 13.06 0.22 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE

1 - PK: Plaintext Int, Payload: 1 En-
crypted Text

DET,RND (P. Secure) 1.49 8.4 - 13.05 0.23 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE

1 - PK: Plaintext Int, Payload: 1 En-
crypted Text

RND,OPE (P. Secure) 1.49 8.49 - 14.8 0.23 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE

1 - PK: Plaintext Int, Payload: 1 En-
crypted Text

RND,RND (Secure) 1.49 5.44 - 14.82 0.19 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE

2 - PK: Plaintext Int, Payload: 1 En-
crypted Int

DET,OPE,HOM (P. Secure) 40.43 11.12 - 17.27 0.18 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE, SELECT SUM

2 - PK: Plaintext Int, Payload: 1 En-
crypted Int

DET,RND,HOM (P. Secure) 40.43 11.15 - 17.63 0.19 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE, SELECT SUM

2 - PK: Plaintext Int, Payload: 1 En-
crypted Int

RND,OPE,HOM (P. Secure) 40.43 10.84 - 18.95 0.19 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE, SELECT SUM

2 - PK: Plaintext Int, Payload: 1 En-
crypted Int

RND,RND,HOM (Secure) 40.43 9.07 - 19.07 0.21 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE, SELECT SUM

3 - PK: Encrypted Int, No Payload DET,OPE,HOM (P. Secure) 70.00 10.34 - 18.26 0.28 INSERT, SELECT ALL, SELECT EQUAL, SELECT
RANGE, SELECT SUM

3 - PK: Encrypted Int, No Payload DET,RND,HOM (Secure) 70.00 10.41 - 16.13 0.28 INSERT, SELECT ALL, SELECT EQUAL, SELECT
SUM

3 - PK: Encrypted Int, No Payload RND,OPE,HOM (P. Secure) 70.00 12.4 - 19.0 0.29 INSERT, SELECT ALL, SELECT RANGE, SELECT
SUM

3 - PK: Encrypted Int, No Payload RND,RND,HOM (Secure) 70.00 9.05 - 17.57 0.33 INSERT, SELECT ALL, SELECT SUM

4 - PK: Encrypted Char, No Payload DET,OPE (P. Secure) 1.50 8.12 - 12.12 0.35 INSERT, SELECT ALL, SELECT EQUAL

4 - PK: Encrypted Char, No Payload DET,RND (Secure) 1.50 8.19 - 12.35 0.36 INSERT, SELECT ALL, SELECT EQUAL

4 - PK: Encrypted Char, No Payload RND,OPE (P. Secure) 1.50 8.31 - 14.04 0.36 INSERT, SELECT ALL

4 - PK: Encrypted Char, No Payload RND,RND (Secure) 1.50 5.53 - 14.35 0.46 INSERT, SELECT ALL

Previous work: Multi-User Web Ap-
plication from [Popa et al.,2011]

23/563 Encrypted RND,DET,OPE 1.2 1.06 - 1.2 Unavailable ALL +

Previous work: TPC-C from [Popa et
al.,2011] fig. 12

92/92 Encrypted
RND,DET,OPE,HOM

3.76 3 - 9 Unavailable HTTP End to End Measurement

Previous work: Scenario a from [Skiba
et al, 2015]

Unavailable 2.85 40 Unavailable ALL +

Previous work: Scenario b from
[Skiba et al, 2015]

Unavailable 2.85 69 Unavailable ALL +

more expensive than parsing the relatively small SQL queries.
As expected the storage factor penalty is unchanged as there
are no encrypted fields in these Controls Suites.

B. Suites 1 &2 (Plaintext Primary Key, Encrypted Payload)

The relative execution time results for Suites 1 and 2 are
presented in Figures 2 and 3 respectively. These suites contain
a single encrypted field as a payload and a plaintext Primary
Key. As expected these test suites supported execution of all
tested operations as the Primary Key was not encrypted and the
encrypted payload is just stored and retrieved by the database
transparently.

Encrypted INSERT operations are slower than plaintext
INSERT operations although comparisons of these figures to
Control Suite 2 in Table III shows that the actual encryption
overhead is modest compared to the overhead incurred by the
presence of the proxy.

C. Suites 3 & 4 (Encrypted Primary Key, no Payload)
In contrast to the first two test suites, suites 3 and 4 per-

formed SQL operations on the encrypted payloads rather than
merely retrieving them. These benchmarks exercise the usage
of Property Preserving Encryption; i.e allowing operations
on encrypted data. Figure 4 (Suite 3) highlights that some
operations are not supported by certain configurations, i.e. the
SELECT RANGE operation is not available when OPE is not
used and SELECT EQUAL requires that DET or OPE be used.
The SELECT ALL operation is faster when DET onion layer
is used.

Figure 5 presents the results for test suite 4, where the Pri-
mary Key was encrypted text. As with suite 3, the performance
advantage of SELECT ALL operations with DET encryption
can be seen.

V. CONCLUSIONS

This empirical data presented across the performance, se-
curity and functionality dimensions are broadly in line with



0 2 4 6 8 10 12 14 16

INSERT
Queries=150.0

Rows=150.0

SELECT ALL
Queries=100.0
Rows=15000.0

SELECT EQUAL
Queries=100.0

Rows=100.0

SELECT RANGE
Queries=300.0

Rows=22500

1.00

1.00

1.00

1.00

5.49

14.82

10.98

14.03

8.37

14.77

11.26

13.97

8.33

12.95

11.06

12.79

8.30

13.05

10.97

12.79

DET,OPE
(P. Secure)

DET,RND
(P. Secure)

RND,OPE
(P. Secure)

RND,RND
(Secure)

Unencrypted Plaintext

Fig. 2. Relative execution time of Benchmark Suite 1, Plaintext Primary Key
with a Single Char Payload, indexed to Plaintext MySQL- Control 1(=1) .

0 5 10 15 20

INSERT
Queries=150.0

Rows=150.0

SELECT ALL
Queries=100.0
Rows=15000.0

SELECT EQUAL
Queries=100.0

Rows=100.0

SELECT RANGE
Queries=300.0

Rows=22500

SELECT SUM
Queries=100.0

Rows=100.0

1.00

1.00

1.00

1.00

1.00

9.18

19.03

11.20

14.76

14.90

12.24

18.93

11.05

14.67

16.43

12.08

17.54

11.06

13.85

17.03

12.15

17.41

10.94

13.76

16.65

DET,OPE,HOM
(P. Secure)

DET,RND,HOM
(P. Secure)

RND,OPE,HOM
(P. Secure)

RND,RND,HOM
(Secure)

Unencrypted Plaintext

Fig. 3. Relative execution time of Benchmark Suite 2, Plaintext Primary Key
with a Single Int Payload

previous assessments. We supplement prior studies by provid-
ing additional detail, clarity and guidance.

This paper reveals nuances relating to the performance,
security and functionality of the PPE schemes used in CryptDB
and validates the utility of micro-benchmark based assessment
approach. The results have illustrated that the partial-secure

0 5 10 15 20

INSERT
Queries=150.0

Rows=150.0

SELECT ALL
Queries=100.0
Rows=15000.0

SELECT EQUAL
Queries=150.0

Rows=150.0

SELECT RANGE
Queries=300.0

Rows=22500

SELECT SUM
Queries=100.0

Rows=100.0

1.00

1.00

1.00

1.00

1.00

9.14

17.59

Not Supported by RND,RND,HOM

Not Supported by RND,RND,HOM

14.84

12.24

17.51

Not Supported by RND,OPE,HOM

18.99

16.29

12.21

15.86

10.38

Not Supported by DET,RND,HOM

16.10

12.11

15.83

10.38

18.28

16.46

DET,OPE,HOM
(P. Secure)

DET,RND,HOM
(Secure)

RND,OPE,HOM
(P. Secure)

RND,RND,HOM
(Secure)

Unencrypted Plaintext

Fig. 4. Relative execution time of Benchmark Suite 3: Encrypted Integer
Primary Key with no Payload. N.B Missing bars for an operation indicate
that an operation is not supported by the encryption mode.

0 2 4 6 8 10 12 14 16

INSERT
Queries=150.0

Rows=150.0

SELECT ALL
Queries=50.0
Rows=7500.0

SELECT EQUAL
Queries=150.0

Rows=150.0

1.00

1.00

1.00

5.52

14.35

Not Supported by RND,RND

8.27

14.02

Not Supported by RND,OPE

8.12

12.15

10.19

8.24

12.32

10.17

DET,OPE
(P. Secure)

DET,RND
(Secure)

RND,OPE
(P. Secure)

RND,RND
(Secure)

Unencrypted Plaintext

Fig. 5. Relative execution time of Benchmark Suite 4: Encrypted Text Primary
Key with no Payload

PPE schemes which facilitate operations (DET, OPE, HOM)
have a non-trivial storage and performance penalty compared
to the secure RND scheme. All encryption tested here showed a
significant overhead due to the system architecture. The results
in section IV-C showed that combining multiple PPE schemes



facilitated the broadest range of operations though at a cost
for some of those operations. As multiple encryption schemes
are present and the transaction is atomic, the execution time
for INSERT operations is bounded by the slowest encryption
scheme. This suggests a potential optimisation strategy could
be applied in certain applications by weakening the transac-
tions atomic guarantees and adopting an eventually-consistent
model where multiple encrypted columns are used. In all the
SELECT cases the optimal execution strategy would be to
use the column that can be decrypted fastest. From inspection
of the suites DET and RND generally provides the fastest
encryption and decryption.

A. Considerations for Application Designers

The data presented here supports the previously published
experimental results [6] that illustrated that it is possible to
design a secure database system with acceptable performance
if close attention is paid to the operations required (and hence
appropriate encryption schemes). These experiments have also
highlighted that a CryptDB style solution may not suit certain
workloads, e.g. an OLAP type applications with significant
portion of computation performed in the database will incur a
greater performance penalty than an OLTP application (which
is not typically dominated by database performance) will suffer
less degradation.

Two general principles can be applied here; don’t encrypt
fields unless needed (based on the relevant threat model for
the application) and carefully evaluate what operations must
be performed by the database. For example HOM addition
has a large storage overhead; it may be more appropriate
(when using queries that return small subsets) to use RND
and do the addition in the application. These principles have
an implication for applications with evolving requirements;
encryption decision designs may have to be reassessed as the
needs of the application change over time.

A significant optimisation for application designers would
be to bypass the CryptDB Proxy for queries/tables that do not
contain encrypted fields. This would involve some application
changes and require the application to be aware which fields
are encrypted.

VI. FUTURE WORK

This work has presented a micro-benchmark approach that
could be be applied to other systems such as the work of SAP
[17]; Google’s Encrypted BigQuery [18] or ARX [19] (a new
encrypted database designed by the CryptDB authors).

While using multiple property preserving encryption
schemes simultaneously allows additional operations to be
executed on encrypted data, further research is needed to
establish whether using multiple PPE schemes on the same
data reduces the overall security of the system.

REFERENCES

[1] O. Pandey and Y. Rouselakis, “Property Preserving Symmetric
Encryption,” in Proceedings of the 31st Annual international
conference on Theory and Applications of Cryptographic
Techniques. Springer-Verlag, 2012, pp. 375–391. [Online]. Available:
https://www.iacr.org/archive/eurocrypt2012/72370369/72370369.pdf

[2] M. Poess and C. Floyd, “New TPC benchmarks for decision support
and web commerce,” ACM Sigmod Record, vol. 29, no. 4, pp. 64–71,
2000.

[3] R. H. Saavedra-Barrera, “CPU performance evaluation and execution
time prediction using narrow spectrum benchmarking,” Ph.D. disserta-
tion, University of California, Berkeley, 1992.

[4] I. Manolescu and P. Michiels, “Towards micro-
benchmarking XQuery,” ExpDB, 2006. [Online]. Available:
http://win.ua.ac.be/ adrem/bibrem/pubs/manolescu-expdb.pdf

[5] C. P. Kruger and G. P. Hancke, “Benchmarking Internet of things
devices,” in 2014 12th IEEE International Conference on Industrial
Informatics (INDIN). IEEE, 7 2014, pp. 611–616. [Online]. Available:
http://ieeexplore.ieee.org/document/6945583/

[6] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted query processing,”
in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, 2011, pp. 85–100. [Online]. Available:
https://people.csail.mit.edu/nickolai/papers/popa-cryptdb.pdf

[7] O. Goldreich, Foundations of cryptography, Vol 2. Cambridge Univer-
sity Press, 2003.

[8] S. Halevi and P. Rogaway, “A tweakable enciphering mode,” in Annual
International Cryptology Conference, 2003, pp. 482–499.

[9] A. Boldyreva, N. Chenette, Y. Lee, and A. Oneill, “Order-preserving
symmetric encryption,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, 2009, pp. 224–
241.

[10] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in International Conference on the Theory and Applica-
tions of Cryptographic Techniques, 1999, pp. 223–238.

[11] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Security and Privacy, 2000. S&P 2000.
Proceedings. 2000 IEEE Symposium on, 2000, pp. 44–55.

[12] M. Skiba, M. S. C. Mainka, D.-I. V. Mladenov, and J. Schwenk,
“Bachelor Thesis Analysis of Encrypted Databases with CryptDB,”
2015.

[13] Oracle, “mysqlslap - Load Emulation Client,” 2016. [Online]. Available:
http://dev.mysql.com/doc/refman/5.7/en/mysqlslap.html

[14] R. A. Popa, N. Zeldovich, and H. Balakrishnan, “Guidelines for Using
the CryptDB System Securely,” IACR Cryptology ePrint Archive, vol.
2015, p. 979, 2015.

[15] V. Kolesnikov and A. Shikfa, “On The Limits of Privacy Provided
by Order-Preserving Encryption,” Bell Labs Technical Journal, vol. 17,
no. 3, pp. 135–146, 2012.

[16] R. A. Popa, “CryptDB - GitHub Repository,” 2013. [Online]. Available:
https://github.com/CryptDB/cryptdb

[17] P. Grofig, M. Haerterich, I. Hang, F. Kerschbaum, M. Kohler, A. Schaad,
A. Schroepfer, and W. Tighzert, “Experiences and observations on
the industrial implementation of a system to search over outsourced
encrypted data,” in Sicherheit, 2014, pp. 115–125.

[18] T. Schindler and C. Skornia, “Secure Parallel Processing of Big Data Us-
ing Order-Preserving Encryption on Google BigQuery,” arXiv preprint
arXiv:1608.07981, 2016.

[19] R. Poddar, T. B. Raluca, and A. Popa, “Arx: A Strongly Encrypted
Database System,” IACR Cryptology ePrint Archive 2016, 2016.
[Online]. Available: https://eprint.iacr.org/2016/591.pdf


