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Abstract—This paper describes a dataset of WLAN (Wireless
Local Area Network, WiFi, IEEE 802.11g/n) ranging signals
recorded in an indoor environment for the purposes of time of
arrival (TOA) estimation. The dataset contains signals captured
in four experimental configurations, with two different clocking
techniques, at ranges from 0.5 m to 25 m, and using two different
symbols - the 802.11 standard long training sequence and an
impulsive symbol. It is expected that the dataset will facilitate
development and benchmarking of improved algorithms for TOA
estimation in WLAN systems.

Index Terms—indoor localization, IEEE 802.11, positioning,
WLAN, time of arrival, time difference of arrival.

I. INTRODUCTION

IN recent years, the number of mobile computing devices
with high rate wireless communication capabilities use has

increased dramatically. Companies and research groups are ac-
tively exploring the possibility of using WLAN technology to
provide high resolution indoor position estimation on mobile
devices. However, accurate estimation of the indoor position of
a mobile computing device using WLAN remains a significant
technical challenge.

WLAN is particularly attractive for indoor positioning due
to the large number of low cost WLAN-enabled devices
already deployed. Solutions exploiting existing network in-
frastructure to determine the position of a mobile user obviate
the need for an additional dedicated network for positioning
applications. Most previous work on WLAN positioning has
focused on use of the Received Signal Strength Indicator
(RSSI) for location estimation since RSSI readings are avail-
able at the application layer on all standards compliant devices.
However, the metric correlates poorly with position within
buildings due to multipath, interference, and noise [1]. As
a result, WLAN fingerprinting position estimate accuracy is
limited to 1.6-5 m [2]. Fingerprinting methods are also onerous
in terms of mapping effort due to the large number of RSSI
reference measurements must be taken before positioning can
be performed.

Time-based WLAN positioning has been proposed as an
alternative solution [3]. Time-based positioning requires that
the time of arrival of the WLAN radio signal be measured
at the receiver. Typically, the TOAs of signals from multiple
synchronized access points (APs) with known positions are
measured at a mobile WLAN device. The position of the

mobile device can then be estimated based on the time
differences of arrival (TDOAs) of the signals. While time-
based approaches do not require mapping, they do require
very high accuracy TOA estimation, i.e. sub-3 ns for sub-meter
ranging. This is challenging for two main reasons. Firstly, the
time precision required is less than the baseband sampling
period. In other words, sub-sample TOA resolution is required
in the baseband. Secondly, the receiver signal is subject to
significant multipath. This makes it difficult to separate the
direct path signal from indirect signals caused by reflections
from the walls. Calculating range based on an indirect path
TOA significantly over-estimates the ground-truth range giving
rise to large positioning errors.

Despite these challenges, a number of methods have been
proposed for estimation of the TOA of WLAN RF signals.
One of the difficulties developing improved WLAN TOA
algorithms has been in obtaining suitable WLAN baseband
signals for analysis. The baseband signal is not normally
provided by WLAN transceivers. Access to the signals requires
firmware changes only available to the manufacturer. Even if
the signals are accessible, performing an experimental cam-
paign to record typical indoor signals in a systematic way is
time consuming and error prone. In previous work [4], [5], the
authors of this paper developed a TOA estimation algorithm
for WLAN transceivers. The dataset was recorded using the
Wireless Open-access Research Platform (WARP) developed
at Rice University. Conveniently, the platform provides full
access to the baseband signals. As part of our work, we
recorded a dataset of WLAN baseband signals with ground
truth ranging information. We are now making that dataset
available to the community for the purposes of research. As
well as facilitating the development and testing of new TOA
estimation algorithms, we hope that the dataset will allow
benchmarking of novel and existing TOA estimation methods.
The dataset is now available at [6]. To the best of the authors’
knowledge, this the first publicly available dataset containing
real-world WiFi symbols recorded in an indoor environment
together with ground-truth range measurements.

II. RELATED WORK

A. WLAN Ranging

The reader is referred to [7] for a complete survey of time-
based 802.11 indoor positioning methods. Herein we focus on
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physical layer time-based methods since these offer greatest
accuracy as they avoid the timing variation inherent in methods
applied at higher layers.

Conventional physical layer methods employ cross-
correlation of the received signal with a reference transmitted
signal locally stored in the receiver. Typically, the short
training sequence (STS) or long training sequence (LTS) are
used for TOA estimation. LTS was used by Reddy et al [8]
to estimate the channel impulse response (CIR). In Matlab
simulations, the algorithm achieved an absolute error less than
50 ns (approximately 15 m) in 90% of cases. However, no
experimental study was conducted.

Cross-correlation, if used alone, limits the TOA estimate
to a time resolution equal to the sampling period duration.
To improve upon this, researchers have sought to combine
it with super-resolution signal processing methods, such as
interpolation [9].

In an attempt to accurately estimate TOA, frequency domain
super-resolution methods [10] have been applied to the con-
ventional baseband signal. These methods split the received
signal into a signal subspace and a noise subspace using
eigendecomposition of the correlation matrix. MUSIC [11] and
ESPRIT [12] super-resolution methods have been reported to
achieve accuracy in the range 1-5 m [13].

Xiong et al [14] proposed ToneTrack, a channel stitching
to minimize the effect of the limited bandwidth of 802.11
transceivers. The equivalent of a wideband radio was con-
structed by transmitting symbols sequentially on multiple WiFi
channels and stitching the received symbols together before
applying a super-resolution MUSIC algorithm. Exploiting one,
two, and three channels, the median accuracies reported were
1.9 m, 1.3 m, and 0.9 m, respectively. Vasisht et al also
employed channel stitching in [15]. Frequency hopping over
35 channels (in the 2.4 GHz band and the 5 GHz band) was
exploited. The method achieved median positioning errors of
65 cm and 98 cm in LOS and non-line of sight (NLOS)
conditions, respectively.

The method presented in [5] uses CLEAN deconvolution to
separate the multipath components of the signal. The method
was found to achieve an accuracy of 0.14-3.15 m

B. WLAN Datasets

To date, all previously published WLAN positioning
datasets have focused on RSSI measurements. RSSI read-
ings can be obtained from commercially available software
packages running on a laptop or smart phone. Positioning is
performed by matching the “fingerprint” of observed RSSI
readings of nearby WLAN APs with a previously captured
reference database of fingerprints and ground-truth position
coordinates. Notable WLAN RSSI datasets include: the UJI-
IndoorLoc dataset [16]; the IPIN 2016 datasets [17], [18]; and
the Tampere-New Imaging Technologies datasets [19].

C. Radio Channel Models

The alternative to recording a dataset of real-world received
symbols is to generate synthetic received signals. This can be
done by synthesizing the transmitted symbol and convolving it

with artificial impulse responses generated according to a radio
frequency channel model. A radio frequency channel model
uses statistical parameters to describe the radio frequency
environment [20], [21]. Based on this model, typical impulse
responses can be generated using random parameter values.

While artificial radio channel models are useful for quickly
testing large numbers of possible radio frequency environ-
ments, it can be difficult to model all signal impairments
present in the transmitter, channel, and receiver - especially
non-linear effects. Therefore, it is desirable to confirm the
results of simulation studies using a real-world dataset such
as the one described herein.

III. EXPERIMENTAL METHOD

A. Experimental Set-up

The wireless experiments were carried out on the ground
floor of the 4-story O’Brien Science Center East at University
College Dublin. The normal WLAN infrastructure in the
building was operational during the experiments.

The Wireless Open Access Research Platform (WARP)
[22] was used to obtain experimental measurements. The
platform consists of a 802.11g/n transceiver with FGPA base-
band implementation. It allows easy access to the physical
layer signals. The ADC has a 40 MHz sampling frequency.
WARPlab (ver 7.4) mode was used in the experiments. This
allows a block of transmit samples to be sent from one node
and a block of receive samples to be recorded simultaneously
at a remote node. Due to hardware memory restrictions, the
length of the block is fixed.

WARP v3 inter-node RF and sampling clocks synchroniza-
tion can be achieved using a simple clock module called
CM-MMCX. It can be optionally used, via a wired con-
nection, to enable sourcing and sinking the RF reference
and/or sampling clocks for inter-node synchronization [23].
In these experiments, the transmitter and receiver shared a
common sampling clock via a wired connection. Sharing the
sampling clock means that the time reference is constant,
facilitating experimentation. Note that, sharing the sampling
clock between the transmitter and receiver need not be done
when using TDOA positioning, as described in [4]. The phase
of the received signal with respect to the receiver sampling
clock varies as the transmitter-receiver distance changes. The
transmitter and receiver could optionally share RF carrier
frequency via another wired connection. Not sharing the RF
carrier frequency can lead to phase offset in the received
signal.

In our experiments, the transmitter WARP board was used
to trigger recording of a block at the receiver board via a wired
connection. As in [24], the trigger signal was used to provide
a common timing reference at the transmitter and receiver.

Coaxial RF cables, directional flat panel antennas (P2415T
[25]) with beamwidth of 34◦, and RN-SMA-4 omni-
directional antennas [26] were used for range estimation.
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B. Symbol Design

Two ranging symbols were used for TOA estimation mea-
surements: the 802.11g standard preamble long training se-
quence (LTS) and an impulsive symbol.

The LTS symbol is included in all 802.11a/g frames and
has good auto-correlation properties as it was designed for
communications time synchronization. The LTS symbol was
designed for 802.11a/g and so has a bandwidth of 16.25 MHz.
In time-based 802.11 positioning research, the LTS is com-
monly used for ranging [7]. In these experiments, since the
ADC has a 40 MHz sampling frequency, LTS symbols were
over-sampled by 2 in the time domain to facilitate signal
processing (i.e 128 sample duration in time domain).

The impulsive symbol has a bandwidth of 33.75 MHz and is
sampled at 40 MHz, as in 802.11n receivers. It was generated
by setting the complex amplitude of all active sub-carriers (108
sub-carriers) to 1. This resulted in an impulsive symbol with
128 samples in time domain. The timing of the impulsive peak
within the symbol can be adjusted by means of a circular time
delay. For example, a circular time delay of 64 samples centers
the impulse within the symbol. Our experiments indicate that
the position of the peak within the symbol has little effect
on TOA estimation accuracy. The impulsive symbol is not
supported by the 802.11 standard. If added just after the
original LTS, it would incur less than a 0.2% overhead in
a 1500-byte payload frame [14].

C. Transmission and Reception

The WARPLab 7.4 reference design hardware was used
in these measurements. This can support storage of 32 k
samples (819.2 µs duration). Therefore, a transmit block of
30k samples (750 µs duration) was synthesized in Matlab.
The block consisted of 150 LTS/impulsive symbols with gaps
of 72 samples between consecutive symbols. Measurements
were obtained for 300 transmitted blocks (45,000 symbols in
total). The delay between symbols within a block is fixed (72
samples) whereas the delay between blocks (i.e between the
last symbol in a block and the first symbol in the succeeding
block) is random due to variations in the delay of the operating
system of the PC used to transmit the data.

The received data was captured at the output of the receiver
ADC and stored for off-line processing.

D. Experiments

Four experiments were conducted for the purposes of
recording WLAN signals.

In all four experiments, two clocking setups were used
- sharing both the RF and sampling clocks between the
transmitter and the receiver; and sharing only the sampling
clock between the transmitter and receiver.

In the first experiment, cables of various lengths were used
as channels. These channels have very low multipath and so
allow assessment of the accuracy of a method for the direct
path component only. Recordings were made for eighteen
cable lengths, from 1.83 m to 19.15 m. A cable of length
of 0.57 m was used for calibration. Actual cable lengths are
presented in Table I.

TABLE I: Actual Cable lengths.

Test No Cable Length [m] File name
1 0.57 Impulsive SA 001
2 1.83 Impulsive SA 002
3 3.66 Impulsive SA 003
4 5.49 Impulsive SA 004
5 7.32 Impulsive SA 005
6 9.15 Impulsive SA 006
7 19.15 Impulsive SA 007
8 17.32 Impulsive SA 008
9 15.49 Impulsive SA 009
10 13.66 Impulsive SA 010
11 11.83 Impulsive SA 011
12 10 Impulsive SA 012
13 15 Impulsive SA 013
14 5 Impulsive SA 014
15 6.83 Impulsive SA 015
16 8.66 Impulsive SA 016
17 10.49 Impulsive SA 017
18 12.32 Impulsive SA 018
19 14.15 Impulsive SA 019

Fig. 1: 1D Experiment Setup

In the second experiment, directional antennas at both nodes
were used to create a low multipath environment. Using
directional antennas, the transmitter position was fixed and
the receiver was moved over nineteen points in a straight line
in steps of 1.2 m. The first point was at a transmitter-receiver
separation of 2.4 m as illustrated in Figure 1.

In the third experiment, omni-directional antennas at both
nodes with LOS were used. The transmitter position was fixed
and the receiver was moved over twenty points in a straight
line in steps of 1.2 m. The first point was at a transmitter-
receiver separation of 2.4 m.

In the fourth experiment, omni-directional antennas at both
nodes with NLOS were used. The transmitter-receiver con-
figuration was the same as in the LOS experiments. NLOS
conditions were created by putting a metallic plate (185 cm x
60 cm) between the transmitter and the receiver at a distance
of 1.8 m from the transmitter.

IV. THE DATASET

A. Dataset Organization

The released dataset is saved on a folder called DATASET
which contains a four separate folders corresponding to each
scenario; in addition, another folder contains the transmitted
symbols. In each folder SYNC ALL contains the measure-
ments obtained when sharing both the RF and sampling
clocks while SYNC SA contains the measurements obtained
when sharing sampling clocks only. In each folder there are
two sub-folders. One for the LTS symbols and one for the
impulsive symbols. This hierarchy is depicted in Figure 2 .
Table I provides examples of the file name format and the
corresponding cable length. This naming method is followed
for all cables scenarios. For the wireless scenarios, the first file
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Fig. 2: Dataset Organization

(indexed 001) contains the measured data at the first point (i.e.
the receiver is 2.4 m away from the transmitter) and then the
index increases by one as the distance increases by 1.2 m. In
the NLOS scenario, the measurements at the first point were
obtained in a LOS environment for calibration.

Each file is saved as MATLAB formatted data (.mat)
and contains one variable called Received which contains a
300x30000 matrix, where every row is a received block.

B. Data Processing

A wired trigger signal was used to trigger the transmitter
to transmit a block of samples and to trigger recording of a
block at the receiver. The transmitter delays transmission for
a fixed amount of time to insure the buffers of the receiver
are open and ready to record the data. This operation creates
an offset at the receiver measurements. This offset should be
measured at the calibration point and should be subtracted at
all other points.

Users are recommended to calculate the TOA on the test
cable/point and subtract the mean TOA on the calibration
cable/point and compare to the range using the speed of light
(in case of the cable the speed should multiplied by a factor
of (0.7) approximately [27]).

V. CONCLUSION

This paper describes a public domain dataset for evaluation
of time of arrival estimation algorithms for indoor ranging
using IEEE 802.11g/n. Experiments were conducted to record
the received baseband signals in four environments - using
a cable, using directional antennas, using omni-directional
antennas with LOS, and using omni-directional antennas with
NLOS. Two ranging symbols were used - the standard LTS
and a new impulsive symbol.
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