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Abstract  —  This paper gives an overview of behavioral 

modeling for digital predistortion of RF power amplifiers. It 
starts with discussing the specific system requirements and 
then explains what constraints must be satisfied when 
developing behavioral models for this application. Both 
theoretical aspects and practical implementation issues are 
discussed. Historical development and recent innovation are 
reviewed with a conclusion of future outlook in the end. 

Index Terms  —  behavioral model, canonical piecewise-
linear function, digital predistortion, power amplifiers, 
Volterra series. 

I. INTRODUCTION 

Digital predistortion (DPD) is a linearization approach 
that uses digital signal processing techniques to 
compensate for nonlinear distortion induced by radio 
frequency (RF) power amplifiers (PAs) in wireless 
transmitters. DPD allows PAs to be operated at highly 
nonlinear region for high power efficiency without losing 
linearity. It has been widely deployed in modern wireless 
systems, especially in high power cellular base stations. 
The principle of DPD is that a nonlinear function is built 
up within the digital domain that is the inverse of the 
distortion function exhibited by the PA. An accurate 
behavioral model must be developed first since only when 
the nonlinear characteristics are correctly modeled and 
thus reversed, the overall system response to a signal 
flowing serially through the cascade of DPD-PA can 
become linear. 

In the past decades, many advanced behavioral models 
have been proposed [1]. From the signal processing point 
of view, if the PA is considered as a “black” box, 
modeling the PA can be simply treated as a general 
nonlinear system identification issue. One might think that 
there should be plenty of models available for use in DPD 
because nonlinear system identification is a very active 
and large field of research where many models and 
methodologies have been developed over the years. 
Looking back, one may be surprised that the majority of 
DPD models used today are either simplified or modified 
from the Volterra series. One may be wondering why the 
Volterra series is so popular while the others are not.  

This paper will start with discussing the specific 
requirements of digital predistortion for RF PAs, and then 
explain what constraints must be satisfied when 
developing behavioral models for this application. We will 

discuss both theoretical aspects and practical 
implementation issues including system requirements and 
model characteristics.  Historical development and recent 
innovation in behavioral modeling will be reviewed with a 
conclusion of future outlook in the end.  

II. MODELING REQUIREMENTS  
Most predistorters today are implemented in digital 

baseband. The block diagram of the system is illustrated in 
Fig. 1, where the I/Q (in-phase/quadrature) baseband 
signals are first pre-processed by the DPD block to 
generate the predistorted signals that are then passed 
through digital-to-analog converters (DACs), modulated 
and up-converted to the RF frequency, and finally sent to 
the PA. To extract the coefficients of the DPD, a small 
fraction of the transmit signal is fed back and transferred 
to baseband via a down-converter and analog-to-digital 
converters (ADCs). The model parameter extraction unit 
compares the captured input and output data to extract and 
update the coefficients for DPD. 

 

  
 

Fig. 1 The block diagram of DPD 
 

DPD modeling can be considered as a nonlinear system 
identification problem, but there are certain conditions that 
we must consider when selecting a model for DPD:  
1. In Discrete Time Domain 

The model must be in the discrete time domain in order 
to facilitate implementation in digital circuits. 
2. Deal with Complex-Valued Signals 

It must be able to handle complex-valued signals 
because DPD is conducted in baseband. 
3. Model both Static Nonlinearities and Memory Effects 

As wireless communication evolves towards high data-
rate and broadband services, RF PAs often exhibit 
frequency dependent behavior, also called memory 
effects, which leads that the output of the PA no longer 
only depends on its instantaneous input but also the 
previous inputs. To effectively linearize these systems, 



one must compensate for both static nonlinearities as well 
as memory effects. The behavioral model for DPD thus 
shall simultaneously take into accounts both static 
nonlinearities and memory effects. 
4. Comply with First-Zone Constraint  

In Fig. 1, we can see that the power amplifier is 
operated at RF frequency excited by real-valued signals 
while the DPD is run in baseband with complex numbers. 
The nonlinear behavior of the PA at RF must be modeled 
by using a baseband low-pass equivalent representation. 

 Although the signal spreads over many harmonic 
frequencies after amplification, only the first-zone spectral 
components are of interest, and those not lying near the 
carrier frequency can be filtered out and hence can be 
neglected. In [2], after rigorous derivations, it concluded 
that in the baseband representation, only an odd number of 
terms shall be included in the model, with the number of 
original terms greater than that of the conjugate terms by 
1, e.g.,  𝑥" 𝑛 𝑥∗"%& 𝑛 . This is usually called the “first-zone 
constraint”.  

This conclusion was based on that the PA nonlinearity 
is represented by a polynomial or Volterra function and 
the modulated signal is bandlimited. If we characterize the 
PA using an arbitrary function or derive the mapping, 
from the first-zone input to the first-zone output, from the 
curve fitting point of view, this constraint can be relaxed. 
In [3], Ding has shown that the model accuracy can be 
improved by including even terms. Even though, we have 
to emphasize that the so-called “even terms” in [3] is 
referred to the power of magnitude of the complex 
numbers, i.e., 𝑥(𝑛) ". These terms do not come from any 
even-order harmonic terms in the passband. Why the 
model performance can be improved is mainly due to 
these terms contain a richer basis set that can fit the PA 
characteristics better than those using a limited number of 
the odd only terms in the model. As Ding pointed out in 
the paper, to obtain a better fit to the PA characteristics, 
one can choose between including even terms and keeping 
the maximum order low or allowing odd terms only and 
going for high orders. The first option is preferred, since 
low-order polynomials enjoy better numerical properties. 

This issue was further discussed in [4], where the 
“relaxed first-zone constraint” is summarized into two 
conditions: (i) the equation must comply with odd-parity; 
(ii) the phase must preserve the unitary value of the scalar 
multiplying θn. Complying with the first-zone constraint is 
highly important in order to guarantee the model do not 
produce responses that can never be observed.  
5. Linear-in-Parameters  

While selecting a correct model equation is important, 
how the model coefficients can be extracted is also critical 
since it impacts not only the model accuracy but also the 
implementation complexity. In this regard, a model that is 

linear-in-parameters, meaning that the output of the model 
is linear in relation to its coefficients, is preferable so that 
linear system identification algorithms, such as least 
squares (LS), can be directly employed in model 
extraction.  

In summary, the above conditions should be considered 
when selecting a model for DPD. As mentioned earlier, in 
the general nonlinear system identification field, there are 
many models available but the models that can 
simultaneously satisfy all the above requirements are very 
few. For instance, neural networks are very popular in 
nonlinear modeling but they are not linear-in-parameters 
and thus require using complicated nonlinear optimization 
algorithms to find the coefficients. Splines are very 
effective in curve fitting but they are not able to 
simultaneously model nonlinearities and memory effects.   

III. MODEL DEVELOPMENT  

In the last decades, many advanced behavioral models 
have been developed and they are widely employed in the 
real systems.  

A. Volterra Models 

The Volterra series is a combination of linear 
convolution and nonlinear power series. Its complex 
baseband representation has the form,  
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where 𝑥 𝑛 and 𝑦 𝑛 represents the baseband input and 
output signal, respectively, and ℎ6"%& is the complex 
Volterra kernel while ∙ ∗represents the conjugate. 

The Volterra series satisfies all the DPD conditions and 
it can be easily implemented in digital circuits. More 
importantly, it perfectly fits the nonlinear behavior of 
conventional RF PAs, such as class-AB, where the PA is 
linear in the small signal region and tends to become 
nonlinear when the amplitude of the signal increases, 
shown in Fig. 2(a). Many simplified versions have been 
developed, such as memory polynomial (MP) [5], 
generalized memory polynomial (GMP) [6], dynamic 
deviation reduction (DDR) Volterra model [7]. These 
models have been widely used in real systems.  

Because its basis functions are polynomial-based, the 
Volterra models have some inherent limitations. For 
instance, as shown in [8], due to dynamic changes of the 
supply voltage, the envelope tracking (ET) PA exhibits 
very distinct characteristics in different power regions, 
shown in Fig. 2(b) where strong nonlinearity can be 



observed  in the small signal region. It is difficult to use a 
single Volterra model to model this PA because the 
polynomial-based Volterra function cannot accurately fit 
it. To resolve this problem, the piecewise Volterra model 
proposed in [8] can be employed where the nonlinear 
function is divided into multiple pieces and different 
function can be selected to fit each piece separately. The 
piecewise model works reasonably well but it is still 
limited to the Volterra format and the system complexity 
can significantly increase if multiple segments are 
required. 

 
With stringent efficiency requirement, more advanced 

PA architectures, such as out-phasing, multi-way/multi-
stage Doherty, have been developed, and more new 
architectures, e.g., coherent multiband and various switch-
mode PAs, will also emerge. These PAs are to a greater or 
lesser extent using multiple transistors or building blocks 
in various combinations. The behavior of these PAs 
becomes very different from conventional single-ended 
versions. To model these PAs, the Volterra models face 
significant challenges.   

B. CPWL Models 

Originally proposed by Chua [9], the canonical 
piecewise-linear function (CPWL) has a very simple 
structure and it has been proved that it can be used to 
represent a wide range of continuous nonlinear functions 
with a high precision. In CPWL representation, the 
nonlinear function is approximated by a summation of a 
series of linear functions defined in multiple hyperplanes 
(partitions) using the “absolute” value operation. If we use 
CPWL to model a finite-memory nonlinear digital system, 
the function can be expressed as 
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where x(n) and y(n) is the input and output, respectively. |⋅| 
denotes “absolute” (ABS) operation. K is the number of 
partition and βk is the threshold that defines the boundary 
of the partition. M represents the memory length and ai, b, 
ck and aki are the coefficients. 

Instead of using polynomials, the nonlinear operation in 
CPWL is simply achieved by using the “absolute” value 
operation, which only involves changing the sign of the 
input. Because the nonlinear functions are composed in 
piecewise manner, it does not have any restrictions on the 
shapes of the nonlinear curves. This model therefore is 
much more flexible and capable in modeling highly 
nonlinear and “unusual” power amplifiers compared to the 
Volterra models. The original CPWL function however 
cannot be directly employed in DPD because the existing 
function only satisfies two of the DPD modeling 
conditions: in the discrete time domain and simultaneously 
taking into account both static nonlinearity and memory 
effects. The rest of requirements are not satisfied. 

In [10], a modification is made to conduct the absolute 
operation on each delayed sample instead of a full filter. 
The model thus becomes linear-in-parameters. To deal 
with complex signals, it proposes to conduct the ABS 
operation in four steps: (i) calculate the magnitude value 
of the signal; (ii) subtract away the threshold; (iii) apply 
an “absolute” operation; (iv) and finally restore the phase. 
The real-valued CPWL function in (2) is then converted 
into a complex format as, 
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Because the nonlinear ABS operation is only applied on 
each individual sample, the model in (3) cannot take into 
account the interactions of the present and past samples 
which are often very important in the PA modeling. To 
improve the performance, various formats of cross-terms 
are introduced, e.g., the 1st-order basis can be multiplied 
with the magnitude of 𝑥(𝑛) to include more amplitude 
dependent information. The complete model can be found 
in [10]. Nevertheless, the basis functions of the new model 
are completely different from that used in the Volterra 
model. This model does not have limitations on the 
selections of nonlinearity orders. In other words, the new 
model can be used to characterize very high order 
nonlinearities at any power regions with a small number of 
terms, which provides great flexibilities in modeling 
unusual and emerging PAs.  

 

 

Fig. 2 AM-AM curves: (a) Class AB; (b) ET. 
 



IV. MODEL EXTRACTION 

In existing DPD systems, model coefficients are usually 
extracted by comparing the input and output signals in the 
time domain. Because of spectral regrowth, the PA output 
signal occupies multiple times of the transmit bandwidth. 
Although there are many efforts made aiming to reduce 
the sampling rate of the ADC, a very high data rate is still 
required to capture the complete time domain information 
in the output in order to correctly model the nonlinearity 
of the PA. This situation becomes worse when the 
bandwidths are further increased in future systems.  

 
Recently, Hammler proposed a sequential demodulation 

scheme in which the frequency domain samples can be 
captured directly from RF [11]. As shown in Fig. 3, the 
RF output signal is first multiplied with exp(-jΩkt), then 
integrated for a period of T0 and finally sampled by an 
ADC. With this operation, the sample captured at the 
ADC output is equivalent to the frequency domain value 
calculated from Fourier transform. By sequentially 
changing k, frequency domain value at different 
frequencies can be captured. For the models with linear-
in-parameters, the time domain coefficients can be 
extracted by using these frequency domain samples 
directly. In this approach, the ADC sampling rate is 
independent from the signal bandwidth. It provides great 
advantages for future wideband applications.  

V. CONCLUSION AND FUTURE OUTLOOK 

In this paper, we have given a quick overview of 
behavioral modeling for DPD. After many years 
development, DPD has become a mature and widely used 
technique, but this does not mean no further development 
is required. With increasing demands for higher data rate 
and higher power efficiency, wireless systems will face 
dramatic changes. Non-contiguous carrier aggregation and 
multiple input multiple output (MIMO) techniques will be 
deployed. The transmit power of the PA may 
instantaneously change with the incoming traffic. In small 

cell applications, cost and power consumption of digital 
circuits must be watched closely. Further research must be 
conducted and innovative solutions must be sought to deal 
with these new issues in future systems. 
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Fig. 3 Sequential demodulation. 

 


