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Abstract—In this paper, a data mining driven scheme based on discrete wavelet transform (DWT) is proposed for high 

impedance fault (HIF) detection in active distribution networks. Correlation between the phase current signal and the 

related details of the current wavelet transform is presented as a new index for HIF detection. The proposed HIF detection 

method is implemented in two subsequent stages. In the first stage, the most important features for HIF detection are 

extracted using support vector machine (SVM) and decision tree (DT). The parameters of SVM are optimized using the 

genetic algorithm (GA) over the input scenarios. In second stage SVM is utilized to classify the input data. The efficiency 

of the utilized SVM based classifier is compared with a probabilistic neural network (PNN). A comprehensive list of 

scenarios including load switching, inrush current, solid short circuit faults, HIF faults in the presence of harmonic loads 

is generated. The performance of the proposed algorithm is investigated for two active distribution networks including 

IEEE 13-Bus and IEEE 34_Bus systems.  
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1. Introduction 

   High impedance faults could not be detected by insensitive 

overcurrent protective relays due to low fault current in 

distribution networks. High impedance faults often occur 

when the conductor is broken and comes into contact with 

high impedance surfaces such as branches of a tree. Because 

of low fault current the main objective of HIF detection is 

not to protect the system, but to protect the human and 

animals lives and prevent fire hazards [1]. 

The HIF detection methods are categorized into time 

domain methods, frequency domain techniques, time-

frequency domain methods and intelligent methods. Current 

or voltage waveforms of HIF faults have some unique 

characteristics due to nonlinearity and randomness of these 

faults. Proportional relaying [2], ratio ground relaying [3], 

fault current flicker and half-cycle asymmetry [4] and fractal 

techniques [5] are examples of time domain methods for HIF 

detection. Because of the arcing phenomenon during this 

fault, current waveform of HIF contains low and high-

frequency components. Frequency domain algorithms use 

third harmonics [6], second-fourth-sixth harmonics [7] and 

high-frequency components (2-10 kHz) of fault current to 

detect HIF faults [8]. Another category of HIF detection 

methods is the time-frequency domain technique, in which 

some features of high impedance fault is detected based on 

discrete wavelet transform [9-12], S transforms [13-14] and 

Kalman filtering [15]. Intelligent methods act based on 

training over a given predetermined scenario such as 

decision tree [16], neural networks [1],[17-18], ANFIS 

algorithms [19] and support vectors machine [13], [20-22].  

Some recent works have proposed new method for HIF 

detection. The proposed method In [23] detects HIF faults 

                                                           
 

using the even harmonics of the voltage waveforms 

measured by smart meters. In [24] the proposed algorithm 

utilizes mathematical morphology (MM) techniques for HID 

detection based on filtering functions. In [25] the authors 

utilize one-cycle sum of superimposed components of 

residual voltage the maximum value of one-cycle sum of 

superimposed components of negative-sequence current for 

HIF detection. In [26] a transient-based algorithm for HIF 

detection in distribution systems has been developed using 

the discrete wavelet transform.  

To increase reliability and security of HIF detection method, 

it’s necessary to present more effective features with high 

information gain. For this purpose in this paper, a two-stage 

scheme is presented using DWT. In the first stage, the 

feature selection is carried out using SVM technique. Based 

on DWT, the correlation between phase current signal and 

its details is presented as a new HIF predictor. In the second 

stage, some classifier methods are utilized to detect HIF 

conditions. The performance of the proposed index is 

compared through a general proposed structure to other 

classification methods via the dependability and security 

criterion. The two major advantages of the current work with 

respect to the method discussed in literature review are: a) 

The correlation between phase current signal and its details 

is presented as a new HIF predictor. This feature needs just 

the current signal, and b) Optimizing the  SVM parameters 

using GA algorithm. 

This paper is organized as follows. In section 2, the 

general structure of proposed method is explained. Section 3 

describes the simulation results of the proposed algorithm 

based on the security and dependability criterion. Finally, the 

conclusion is given in section V. 

mailto:amraee@kntu.ac.ir


 2 

 

 
Fig. 1.  The proposed HIF detection method 

 

 

2. HIF detection scheme 

Generally data mining techniques for HIF detection have 

two major parts. In the first part, a classifier is trained using 

a large number of input-output training scenarios. These 

scenarios include all credible HIF and non-HIF conditions. 

In other word, the first part is an offline procedure to 

construct the HIF classifier. The second part is devoted to 

the application of trained classifier for the online detection 

of HIF fault. Indeed, the second part has a very low 

computational burden and could identify the HIF in a 

fraction of second. 

The flowchart of the proposed HIF detection method is 

depicted in Fig.1 Based on this structure the proposed 

method has three major parts including generating input 

scenarios, feature extraction, and HIF detection. Each part is 

described as follows: 

 

A.  Feature extraction 

In this paper, feature extraction is carried out by wavelet 

transform. The most important features are extracted using 

discrete wavelet transform. DWT is utilized to determine the 

approximation and details coefficients of fault current 

signal. The correlation of fault current signal with its details 

is developed as a HIF detection feature. 

    1)  Discrete wavelet transform 

DWT can provide time and frequency domain 

characteristics simultaneously. In DWT, the scaling function 

is given by (1), and wavelet function as given in (2) is used 

to decompose the signal to different levels. 

 

∅𝑗,𝑘(𝑡) = 2𝑗/2∅(2𝑗𝑡 − 𝑘)    ,      − ∞ < 𝑗, 𝑘 < +∞ (1) 

𝜑𝑗,𝑘(𝑡) = 2𝑗/2𝜑(2𝑗𝑡 − 𝑘)           − ∞ < 𝑗, 𝑘 < +∞ (2) 

 

According to [27], ∅(𝑡) and 𝜑(𝑡) can be expressed in 

terms of a weighted sum of shifted ∅(2𝑡)  and 𝜑(2𝑡)as: 

∅(𝑡) = ∑ℎ

𝑛

(𝑛)√2∅(2𝑡 − 𝑛)     𝑛 ∈ 𝑍 (3) 

𝜑(𝑡) = ∑𝑔

𝑛

(𝑛)√2𝜑(2𝑡 − 𝑛)     𝑛 ∈ 𝑍 (4) 

 

where ℎ(𝑛) are scaling function coefficients and 𝑔(𝑛) 
 
can 

be obtained by (5). 

𝑔 = (−1)𝑛ℎ(1 − 𝑛) (5) 

 

After the first level of decomposition, DWT divides input 

signals into high frequency and low-frequency sub-bands by 

high pass and low pass filters. Therefore the input signal can 

be rebuilt using its approximation and detail coefficients as 

given by (6). 

𝑥(𝑡) = ∑ 𝑎𝑗𝑚

+∞

𝑘=−∞

(𝑘)∅𝑗−𝑗𝑚,𝑘(𝑡)

+ ∑ ∑𝑑𝐿

𝑗𝑚

𝐿=1

(𝑘)𝜑𝑗−𝐿,𝑘(𝑡)

+∞

𝑘=−∞

 

(6) 

 

where 

𝑎𝑗 = 〈𝑥(𝑡), ∅𝑗−1,𝑘(𝑡)〉

= ∫𝑥(𝑡) 2(𝑗−1)/2∅(2(𝑗−1)𝑡

− 𝑘) 

(7) 

 

By using (3) and (7), (8) can be written as 

∅(2𝑗−1𝑡 − 𝑘) = ∑ℎ

𝑛

(𝑛)√2∅(2(2𝑗−1𝑡 − 𝑘)

− 𝑛)  

(8) 

 

By assuming that 𝑚 = 2𝑘 + 𝑛, (8) and (7) are written as 

follows. 
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∅(2𝑗−1𝑡 − 𝑘) = ∑ℎ

𝑛

(𝑚 − 2𝑘)√2∅(2𝑗𝑡 − 𝑚)  (9) 

𝑎𝑗 = ∑ℎ

𝑚

(𝑚 − 2𝑘)∫𝑥(𝑡)2𝑗/2 ∅(2𝑗𝑡 − 𝑚)𝑑𝑡 (10) 

 

Finally, the approximations and details of the input 

signals are determined as given by (11) and (12) 

respectively. 

𝑎𝑗(𝑘) = ∑ℎ

𝑚

(𝑚 − 2𝑘)𝑎𝑗−1(𝑚) (11) 

𝑑𝑗(𝑘) = ∑𝑔

𝑚

(𝑚 − 2𝑘)𝑎𝑗−1(𝑚) (12) 

 

 After the first level of signal decomposition, a high pass 

and low pass signals are obtained. This process is then 

applied on low pass signal for several levels. Fig.2 shows 

signal decomposition using high and low pass filters into 

three levels. The output of low pass decomposition (i.e. 𝑎𝑗) 

and high pass decomposition (i.e. 𝑑𝑗) give the approximation 

and detail coefficients respectively. 

 

                 Fig. 2.  Decomposing signal using DWT 

    2)  Correlation coefficient 

Covariance is an index that shows the dependence 

between two variables. For two vectors 𝑋 and 𝑌 the 

Covariance will be defined as (13).  

𝐶𝑂𝑉(𝑋, 𝑌) =
1

𝑛
∑(𝑋𝑖 − 𝜇𝑋)(𝑌𝑖 − 𝜇𝑌)

𝑛

𝑖=1

 (13) 

 

where 𝜇𝑥 and 𝜇𝑦 are means of 𝑋 and 𝑌 respectively. If there 

is no correlation between two vectors, their covariance will 

be equal to zero and they have no linear dependency. The 

amount of correlation coefficient for continuous and discrete 

variables is calculated using (14) and (15) respectively.  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑋,𝑌) =
𝐶𝑂𝑉(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋).𝑉𝑎𝑟(𝑌)
 

 

(14) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑋, 𝑌)

=
∑ (𝑋𝑖 − 𝜇𝑋)(𝑌𝑖 − 𝜇𝑌)

𝑛
𝑖=1

∑ (𝑋𝑖 − 𝜇𝑋)
𝑛
𝑖=1 ∑ (𝑌𝑖 − 𝜇𝑌)

𝑛
𝑖=1

 
(15) 

 

The value of correlation coefficient given by (14) varies 

between -1 and +1. The correlation of detail coefficients of 

phase current signal in DWT is developed as a new feature 

for HIF detection. For calculating the new index, phase 

current signal, and related detail coefficients are needed 

Correlation coefficient between these two signals as a new 

feature is explained in (16). 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑋, 𝑑𝑘)

=
∑ (𝑋𝑖 − 𝜇𝑋)(𝑑𝑘,𝑖 − 𝜇𝑑𝑘,𝑖

)𝑛
𝑖=1

∑ (𝑋𝑖 − 𝜇𝑋)
𝑛
𝑖=1 ∑ (𝑑𝑘,𝑖 − 𝜇𝑑𝑘,𝑖

)𝑛
𝑖=1

, 𝑘 = 1,2, … ,8 
(16) 

 

This feature can provide remarkable information gain for 

distinguishing high impedance faults. DWT is applied to all 

simulated scenarios, and the extracted details are recorded as 

vectors. The value of correlation between every detail 

coefficients of the wavelet transform in each level and phase 

current signal is computed using (16). The developed 

correlation coefficients along with the other indices are used 

as input features for HIF detection. 

B.  Dimension reduction methods 

A critical goal in pattern recognition problem or data 

classification is finding the optimal combination of indices 

that classify data with high accuracy. The existence of 

redundant features besides the essential features will cause 

computational burden and complexity in classification 

systems. Therefore the classification systems may result in 

misclassification. By dimension reduction and feature 

selection, the computational burden of classification 
algorithm will be reduced, and extracted patterns can be 

easily implemented in hardware [28]. To reach this goal, the 

accuracy error in classification algorithm is considered as 

the fitness function in optimizing algorithm. The dataset is 

divided into training and test data. The error of classification 

for each subset will be examined by K-Fold cross-validation. 

The subset with minimum classification error will be chosen 

as the best subset of final features. In this paper, support 

vector machine is utilized to extract the optimal input 

features. The error of support vector machine is used as 

fitness function of genetic algorithm, and the best subset is 

then selected. 

    1)  Support vector machine 

Due to the nonlinearity of HIF phenomena, the nonlinear 

SVM algorithm is developed for HIF detection. The 

nonlinear SVM has two stages. In the first stage, input data 

is mapped to a higher dimension space. After that, in the 

second stage, the algorithm searches for linear separating 

hyperplanes in new space. The task of this stage is 

formulated as a quadratic optimization problem. In support 

vector machine the original finite-dimensional space may 

not be linearly separable. Therefore the original finite-

dimensional space is mapped into a high-dimensional 

feature space. However, working with such high 

dimensional space increases the computational burden of 

classification. Therefore kernel functions are utilized. The 

kernel function is applied on initial data, and the dimension 

of these new data is lower than the initial data. Thus by using 

the kernel function the direct calculation of mapping 

function could be ignored [29]. 
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𝑀𝑖𝑛  
1

2
∑∑𝛼𝑖

𝑗

𝛼𝑗𝑌𝑖
𝑖

𝑌𝑗𝐹(𝑋𝑖)
𝑇𝐹(𝑋𝑗)

=  
1

2
∑∑𝛼𝑖

𝑗

𝛼𝑗𝑌𝑖
𝑖

𝑌𝑗𝐾(𝑋𝑖 , 𝑋𝑗) 
(17) 

where  

𝐾(𝑋𝑖 , 𝑋𝑗) = 𝐹(𝑋𝑖)
𝑇𝐹(𝑋𝑗) (18) 

 

In this paper radial basis function (RBF) is utilized as the 

kernel. 

𝐾(𝑋𝑖 , 𝑋𝑗) = 𝑒𝑥𝑝(−
1

2𝛿2
||𝑋𝑗 − 𝑋𝑗||

2) (19) 

 

where 𝛿 is the spread parameter of the kernel function. The 

objective function is formed for a specified number of inputs 

and the support vectors (SV) 𝛼𝑖 are extracted by solving (9). 

For example the minimization of n input data like (𝑋, 𝑌) is 
performed as follows: 

𝑀𝑖𝑛  
1

2
 𝛼𝑇𝐻𝛼 + 𝑓𝑇𝛼 (20) 

s.t: 

 

      𝐻 = ∑∑𝑌𝑖𝑌𝑗𝐾(𝑋𝑖 , 𝑋𝑗) 

𝑗𝑖

 

      𝑓 = −[1]𝑛×1 

      𝑌, 𝛼 = 0            0 ≤ 𝛼 ≤ 𝐶 

 

 

SV set includes Support Vectors which is expressed as 

given in (10): 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑉𝑒𝑐𝑡𝑜𝑟𝑠: 𝑆𝑉: {𝑖| 0 ≤ 𝛼𝑖 ≤ 𝐶}      𝑖
= 1,2, … , 𝑛 

(21) 

In the next stage, the value of b can be obtained using SV 

as given in (22). 

𝑏 =
1

|𝑆|
∑(𝑌𝑖
𝑖∈𝑆

− ∑𝛼𝑖

𝑗

𝛼𝑗𝐾(𝑋𝑖 , 𝑋)) (22) 

 

Finally the class label of test data is predicted as follows. 

Outputs:    Y=Sign (∑ 𝛼𝑖𝑗 𝑌𝑖𝐾(𝑋𝑖 , 𝑋) + 𝑏) (23) 

 

    2)  Dimension reduction 

The genetic algorithm [30] is used for selecting the best 

features and determine the optimal parameters of SVM. In 

this paper, the classification error and the number of features 

are integrated to design the fitness function of GA algorithm. 

Therefore the fitness function value is minimum for any 

member of population which has the high accuracy and 

fewer features. The utilized fitness function is expressed as 

follows: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑊𝐴 × (1 − 𝑆𝑉𝑀𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

+ 𝑊𝐹 × ( ∑𝐹𝑖

𝑛𝑖

𝑖=1

) 

 

(24) 

where 𝑆𝑉𝑀𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  is the accuracy of classification based 

on 5-fold cross-validation and 𝑛𝑖 is the number of features. 

If features 𝑖 is selected the value of 𝐹𝑖 is equal to 1 and vice 

versa. 𝑊𝐴 and 𝑊𝐹 are weighting factors for error of 

classification and number of features. In this paper, the 

values of 𝑊𝐴 𝑎𝑛𝑑 𝑊𝐹 are assumed as 18 and 0.55 

respectively.   

    Indeed a high priority is considered for the classification 

accuracy. Based on the required levels of accuracy and the 

maximum desired number of input features, these weighting 

factors can be adjusted properly. Without considering the 

second term of the fitness function (i.e. 𝑊𝐹 = 0) the 

proposed classifier tends to select a high number of input 

features which is not practically preferred. Using these 

weighting factors, the proposed algorithm seeks for the 

minimum accuracy with minimum possible number of input 

features. It is noted that the premature convergence is a 

common problem in genetic algorithms, as it leads to a 

suboptimal solution due to rapid convergence.  However 

there are some strategies to prevent this phenomenon such 

as increasing the population size or utilizing a uniform 

crossover.  

 

3. Simulation results and discussion 

In this section, the performance of the proposed method 

is verified. The proposed algorithm is implemented in IEEE 

34-Bus and IEEE 13-Bus. The results of simulations are 

presented in six parts including modeling of test systems, 

HIF model, scenario generation, features extraction, 

dimension reduction and classification. 

    In this paper, db4 as a most common used mother wavelet 

in Daubechies family wavelets has been selected. This type 

of mother wavelet is asymmetric, orthogonal, and 

biorthogonal. The details of utilized mother wavelet are 

similar to the settings utilized in [10]. The sampling 

frequency is 10kHz. The scale of frequency conversion (i.e. 

the frequency bound) are assumed as  (2.5kHz-5kHz), 

(1.25kHz-2.55kHz), (0.626kHz-1.25kHz), (0.313kHz-

0.626kHz), and (0.157kHz-0.313kHz), for level 1 to level 5 

of decomposition respectively. 

 

A.  Test systems 

HIF and other similar events are simulated in 

Matlab/Simulink. Different scenarios are discussed in test 

systems with and without photovoltaic. Single line diagram 

IEEE 34-Bus and IEEE 13-Bus test systems are shown in 

Fig. 3. Data of IEEE 13-Bus test system and IEEE 34-Bus 

test grid could be found in [31]. It has been assumed that a 

photovoltaic generating unit is installed at bus 680 and bus 

840 in IEEE 13-bus and IEEE 34-Bus test systems 

respectively.  Data of this generating unit has been given in 

Table 1. Also the parameters of genetic algorithm have been 

reported in Table 2.  
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(a) 

 

 
 

(b) 

 

Fig. 3.  Single line diagrams of the networks a) IEEE-13 

Bus , b) IEEE-34 Bus 

 

TABLE 1 

PARAMETERS OF PV DISTRIBUTED GENERATOR 

Parameter Value 

Inverter nominal 3-phase power  250 kVA 

Nominal inverter primary line-

to-line voltage 
4.160kV 

Nominal DC link voltage (V) 480 V 

Nominal inverter secondary line-

to-line voltage  
250 V 

Transformer nominal power 250 kVA 

Transformer  Leakage 

inductance 
0.06 pu 

 

TABLE 2 

PARAMETERS OF GENETIC ALGORITHM 

Parameter IEEE 13-Bus IEEE 34-Bus 

Maximum 

Iteration 
300 400 

Number of 

Population 
100 100 

Percent of 

Crossover 
0.80 0.80 

Percent of 

Mutation 
0.3 0.30 

B.  Model of HIF 

This paper uses the modified Emanuel model for HIF 

which has been obtained based on actual tests [32].The HIF 

current in the steady state has half-cycle asymmetry and non-

linear variations. According to Fig. 4 two resistances, 𝑅𝑝 and 

𝑅𝑛  represent the fault resistance with different values that 

build asymmetric behavior of fault currents.  

 

 
 

Fig. 4.  Modified Emanuel arc model 

     In order to model the type of contact surfaces of HIF 

model two antiparallel DC sources are used. The amplitudes 

of these sources depend on the density and moisture of the 

soil. By decreasing the soil density and moisture the value of 

these DC sources are increased. 

When a broken conductor falls on a high impedance 

surface, some arcs coincide. To model such nonlinearity this 

paper uses several HIF models in parallel as illustrated in 

Fig. 5. The fulfillment of the utilized HIF model is 

investigated by measuring some current harmonics such as 
third, fifth and seventh.  

The current waveform for a given HIF condition has been 

depicted in Fig. 6. It has all steady state (i.e. asymmetric and 

nonlinear behavior) and transient (i.e. buildup and shoulder) 

characteristics.  

According to Fig.7, the modified Emanuel HIF model 

produces characteristics similar to the actual HIF current. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Implemented model for HIF model 
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Fig. 6.  Fault current using modified Emanuel HIF model 

 

 
Fig. 7.  Frequency components of simulated HIF current 

 

C.  Simulated scenarios 

To evaluate the proposed method, a comprehensive list of 

input scenarios including load switching, capacitor bank 

switching, transformer inrush current, nonlinear and 

harmonic loads and different short circuit faults are 

simulated. Also, different HIFs are simulated in variant 

states. 

Table 3 describes the type of events and number of input 

scenarios. The total number of non-HIF and HIF scenarios 

in each of IEEE 13-Bus and IEEE 34-Bus are 494 and 582 

scenarios respectively.  

In this paper using DWT, the fault current signal at the 

substation is decomposed up to 8 levels. For each level of 

decomposition, the proposed correlation coefficient and 

some of the previously proposed features including energy, 

power, standard deviation, RMS, mean and entropy are then 

computed for all input scenarios. Eventually, the prepared 

data set includes 56 features.  

The data set is randomly divided into the test and training 

parts (80 percent for training part and 20 percent for test 

part). 

 

 

 

 

TABLE 3 

DESCRIPTION OF SIMULATED EVENTS 

Event Type 
Number of Scenarios 

IEEE 13-Bus IEEE 34-Bus 

Harmonic Loads 40 40 

Load Switching 44 52 

Inrush Current 42 42 

Short circuit 192 192 

Capacitor Switching 32 48 

High Impedance Faults 144 208 

Total 494 582 

 

The performance of the proposed two-stage HIF 

detection is investigated over the input data. In the first 

stage, the feature selection (i.e. dimension reduction) is 

carried out using the optimized support vector machine. 

Using the extracted features, the HIF classification is then 

done using support vector machine. The performance of the 

classification method is compared with other methods based 

on security and dependability as follows [21]:  

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑏𝑖𝑙𝑖𝑡𝑦 = 

        100 ×
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝐼𝐹𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝐻𝐼𝐹

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝐻𝐼𝐹 𝑐𝑎𝑠𝑒𝑠
 

𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 

        100 ×
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑛𝐻𝐼𝐹𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑁𝑜𝑛𝐻𝐼𝐹

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑁𝑜𝑛𝐻𝐼𝐹 𝑐𝑎𝑠𝑒𝑠
 

D.  Dimension reduction 

In section II, the procedure of dimension reduction using 

GA and SVM algorithms was presented. The dimension of 

each sample in prepared data set for HIF detection is 56. It 

is noted that just some effective and important features are 

selected by using SVM and GA. Results of the proposed 

method are compared with DT feature selection results [33, 

34]. Table 4 introduces the input features. The results of two 

methods imply that correlation index is one of the most 

important features.   

 

TABLE 4 

INPUT FEATURES DESCRIPTION FOR EIGHT DECOMPOSITION 
Selected 

Feature 
Description 

𝐹1, … , 𝐹8 Energy for detail coefficients  

𝐹9, … , 𝐹16 Power of Detail Coefficients  

𝐹17, … , 𝐹24 STD for Detail Coefficients  

𝐹25, … , 𝐹32 RMS for Detail Coefficients  

𝐹33, … , 𝐹40  Mean for Detail Coefficients  

𝐹41, … , 𝐹48 Entropy for Detail Coefficients  

𝐹49, … , 𝐹56 Correlation between phase current and details  

 

E.  Classification 

In this section, the selected features are used as input 

features for HIF classification. The performance of 

classification methods is verified using the proposed indices. 

Tables 4 and 5 give the results of classification for both test 

system using the input features determined by the GA and 

DT algorithms respectively. Values of security and 
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dependability indices and accuracy of classification 

algorithm are reported in Tables 5 and 6. According to the 

obtained results it can be seen that the proposed correlation 

coefficient has increased the accuracy of the classification 

significantly. For IEEE 13-Bus system the features including 

𝐹56, 𝐹53, 𝐹11 and 𝐹8 are selected. Also, for IEEE 34-Bus 

system the features 𝐹53, 𝐹49, 𝐹24 and𝐹17 are selected. In both 

selected subsets of features, the presented feature 

(correlation coefficients) is an efficient feature.  

According to Table 4, the initial number of input features 

is equal to  56. According to Table 5, by the proposed 

weighting factors, the best accuracy is obtained just using 4 

input features. Table 6 gives the information subsets of 

selected features by DT for both test systems. To reduce 

obtained by DT includes too many features, just the 6 

features that have the highest information gain values would 

be selected as the selected features for classifying algorithms 

input.    In order to prove the efficacy of the correlation 

index, the classification accuracy, security and dependability 

indices without considering the correlation index has been 

reported in Table 6. It can be seen that without considering 

the correlation index the overall classification is reduced 

significantly. Comparison between Table 6 and Table 7 

implies that the dimensions of selected features are increased 

by eliminating the correlation index. This issue incurs more 

computational burden and complexity in extracted patterns 

and hence the classifier efficacy is deteriorated accordingly.   

 

TABLE 5 

RESULTS FOR DIFFERENT HIF DETECTION METHODS USING 

SELECTED FEATURES BY GA 

Method dependability Security 
Train  

Accuracy 

Test 

Accuracy 

IEEE 13-Bus 

SVM 98.50 100 99.49 98.99 

PNN 100 96.87 98.99 98.99 

Feature 𝐹56 − 𝐹53 − 𝐹11 − 𝐹8 

IEEE 34-Bus 

SVM 97.14 100 100 98.27 

PNN 97.14 100 100 98.27 

Feature 𝐹53 − 𝐹49 − 𝐹24 − 𝐹17 

 

TABLE 6 

RESULTS FOR DIFFERENT HIF DETECTION METHODS USING 

SELECTED FEATURES BY DT 
Method dependability Security Train  

Accuracy 

Test 

Accuracy 

IEEE 13-Bus 

SVM 98.50 81.25 99.24 92.93 

PNN 95.45 90.625 96.71 93.88 

Feature 𝐹24 − 𝐹56 − 𝐹34 − 𝐹51 − 𝐹3 − 𝐹55 − 𝐹7 − 𝐹1 

IEEE 34-Bus 

SVM 97.14 97.83 99.14 97.41 

PNN 91.43 100 99.14 94.83 

Feature 𝐹20 −𝐹44 − 𝐹2 − 𝐹54 − 𝐹41 − 𝐹45 

 

     In other words the proposed correlation index between 

the original fault current signal and its details will promote 

the overall accuracy of the HIF detection. Fig. 8, shows the 

best three-dimensional view of the three selected features 

obtained by GA-SVM in both simulated test cases.  

Fig. 9 to Fig. 10 display the performance of the proposed 

method for a given HIF fault and a load switching event, 

respectively. In order to verify the effect of each event on 

detail coefficients, the noise is removed from the waveform 

of fault current signal. 

 

 

TABLE 7 

RESULTS OF HIF DETECTION METHODS USING SELECTED 

FEATURES BY GA WITHOUT CORRELATION INDEX 
Method dependability Security Train  

Accuracy 

Test 

Accuracy 

IEEE 13-Bus 

SVM 96.97 96.87 98.23 96.97 

PNN 98.48 71.87 90.66 89.80 

Feature 𝐹23 − 𝐹17 − 𝐹8 − 𝐹6 − 𝐹2 

IEEE 34-Bus 

SVM 94.29 100 98.28 96.55 

PNN 91.43 97.83 96.35 94 

Feature 𝐹45 − 𝐹32 − 𝐹28 − 𝐹7 − 𝐹4 − 𝐹2 

   

     

 

 
a) IEEE 13-Bus system 

 
b) IEEE 34-Bus system 

Fig. 8. Best 3D representation of HIF and Non-HIF Feature in a) IEEE 13-bus b) IEEE 34-bus 
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(a) 

 
(b) 

 
(c) 

Fig. 9.  Performance of the algorithm for HIF fault (a) Three phase current waveform (b) magnitude of detail coefficients at 

level 3, and (c) Detection signal 
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(a) 

(b) 

 
(c) 

 

Fig. 10.  Performance of algorithm for load switching event (a) Three phase current waveform (b) magnitude of detail coefficients 

at level 3, and c) Detection signal 
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   As shown in In Fig 9(c), the HIF detection signal in HIF 

condition is activated two cycles after the fault inception. 

However as shown in Fig. 10(c), the HIF detection signal 

under the load switching event is not activated. According to 

the simulation results obtained for IEEE 13-Bus and IEEE 

34-Bus, a remarkable improvement in HIF detection 

accuracy is obtained by utilizing the correlation coefficients 

index beside the other extracted statistical indices.  As 

reported in Table 3, the highest accuracy is achieved by GA-

SVM method for both test systems. The highest accuracy is 

98.99 % and 98.27 % for IEEE 13-Bus and IEEE 34-Bus test 

systems. 

   In [20], the accuracies of the SVM algorithm, Bayse, 

Parzen and Nearest Neighbor (NN) algorithms have been 

reported. As given in [20], the best accuracy for Bayes, NN, 

Parzen, SVM-Linear, SVM-Polynominal, SVM_RBF, has 

been obtained as 80 %, 97.5%, 92.5%, 77.5%, 97.5%, and 

97.5% respectively. However, according to Table 4,  the 

accuracy of the proposed method of this paper,  is equal to 

98.27% and 98.299% for IEEE 13-Bus and IEEE 34-Bus test 

systems, respectively. 

 

4. Conclusion 

In this paper, a reliable HIF detection method based on 

pattern recognition is proposed. To extract features in time-

frequency domain the discrete wavelet transform is used. 

This process is performed by decomposing two cycles of 

fault current signal and extracting statistical features from 

detail coefficients of DWT in each level. After fault signal 

decomposition, correlation coefficients are introduced a new 

index. Only some features from 56 features are chosen by 

decision tree and GA as input features for classification 

methods. The results of dimension reduction proved that 

correlation coefficients have high information gain and 

priority. Also, the results of simulation in IEEE standard test 

systems have illustrated that the proposed method is more 

accurate in comparison with other implemented methods. 
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