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Abstract—Big Data platforms are complex distributed systems
running many processes/threads on multiple machines. Writing
programs (jobs), setting-up clusters, tuning the many parameters
of these Big Data platforms is a skill- and labour-intensive
task and many tools have been proposed to help developers
and engineers. However there is nothing that combines both
a good modeling of the behaviour of Big Data platforms at
scale (including data and job placement, networking elements)
and an accurate representation of Big Data jobs. In this paper,
we propose BigDataNetSim, a simulator of Big Data platforms
that models accurately the main components of the Hadoop
ecosystem (e.g., HDFS, YARN) when deployed in a large scale
system. BigDataNetSim can help Big Data engineers set-up their
systems, prototype jobs and improve components/algorithms
of the core Big Data platforms. In particular, we show that
BigDataNetSim simulates a real Hadoop cluster with a high
degree of accuracy in terms of data placement and job placement,
and that BigDataNetSim can scale to very large systems.

Index Terms—Big data, Hadoop, simulation.

I. Introduction

A. Background

Simulating Big Data platforms (e.g., Apache Hadoop) is an
important research and engineering challenge that has been the
focus of a lot of attention for the past decade. These Big Data
platforms contain lot of parameters that have to be tailored to
particular infrastructures, data sets and algorithms and big data
jobs are somehow difficult (read: “not intuitive”) to engineer.
This problem seems well suited for using simulators, that can
help developers of Big Data platforms as well as users (Big
Data engineers and Data scientists alike) to tune the various
parameters, chose the correct algorithms and do the proper
resource allocation.

Many of the simulators we find in the literature focus
on prototyping Big Data jobs though, e.g., MRSim [1],
SimMR [2], MRSG [3], Mumak [4]. This is interesting in
itself, as designing and implementing Big Data jobs is not an
easy task, but this does not address the critical ”distributed”
nature of these systems.

Moreover, when they consider the deployment of jobs, the
Big Data platforms’ simulators often focus on one single
element of the large scale distributed systems that Big Data
platforms are: (i) the job placement/scheduling (e.g., BS-
YARN [5], SimMapReduce [6]), YARN Scheduler Load Sim-
ulator [7]); (ii) the VM provisioning (e.g., MR-CloudSim [8],

HSim [9]); or (iii) focus on optimisation of deployed sys-
tems (through a model based and/or performance oriented
approach: e.g., Starfish [10], Doopnet [11], DAGSim [12] and
Camp [13]).

B. Research Challenge

‘Big Data’ is one of the most important IT concepts of
the past decade, in the industry and in research – as the
amount of data generated and processed has become very
large and the classical solutions become impractical [14],
[15]. Big Data platforms (e.g., Apache Hadoop) are complex
distributed systems designed carefully to process big data sets
– i.e., data sets that are extremely large or extremely fast.
Distributed systems are inherently complex as they are an
intricate collection of interconnected machines that interact
at various levels of their hardware, networking and software
stacks. As such, setting up a Big Data platform can often be
seen as a work of art, with capital allocators, data engineers
and data scientists working hand-in-hand to tailor their systems
to their needs. For instance, large multinational companies
often publish papers [16], [17] and blog posts [] describing
the scale and complexity of their systems, as if they were
proud of their ‘masterpieces’ – or if they wanted to use it to
demonstrate that their systems are good to potential candidates
(According to a recent survey published by the multinational
HR consulting firm Randstad [18], Big Data engineer was
the “best in-demand job for 2017”). On top of that, the
algorithms to process Big Data sets are also skill- and labour-
intensive [19]: to address this challenge, large companies build
special data centres/clusters to run their complex algorithms
(often on non linear data structures), complex data sets are
analysed using multiple variants of sophisticated algorithms,
etc.

In short: managing data at this scale/speed is challenging
in terms of infrastructure (i.e., “where to store the data and
how to access it?”) and processing (i.e., “how to efficiently
run parallel and distributed jobs?”): there exists a plethora of
sophisticated Big Data platforms, each designed to address a
type of data structure, data set or algorithm, with multiple
parameters.

Hence the research challenge we address in this paper is
the possibility to build a simulator that: (i) has the ability to
model real Big Data platforms with a high degree of accuracy,



(ii) capture the data movement/migration (i.e., when data is
transferred between nodes in the Big Data platform) with a
high degree of accuracy and (iii) scales up to large clusters of
Big Data platforms.

C. Example
As a motivating example, consider a group of Big Data en-

gineers or architects who need to set up a cluster of machines
for some graph processing using Apache Giraph [20] (i.e.,
Big Data platform for non linear data structures based on the
Hadoop ecosystem and the Bulk Synchronous Parallel concept
introduced first by Pregel [21]). They will have to select the
best infrastructure for their needs (i.e., How many racks? How
many machines? What type of network interfaces?) as well as
the data distribution (e.g., what partitioning algorithm?) and
the job/task distribution when running their algorithms (e.g.,
which nodes to use for a particular algorithm/process?).

A lot of these questions get default answers by the different
elements of the Big Data stack: e.g., there is a default parti-
tioning algorithm in Giraph, there is a default replication factor
in HDFS, there is a default job/task scheduling algorithm in
Hadoop. But there is a lot of parameters and options in these
systems and performance can be impacted by a lot of elements.
Tools, such as, Starfish [10], try to model the performance
of the different elements and to adapt the parameters of the
Big Data platforms (from the infrastructure to the various
scheduling and placement algorithms) and to help the users
of such systems.

However, what developers of Big Data platforms, and
advanced users alike, would like to have is a simulator that tells
them what to expect with the various algorithms implemented
in the Big Data platforms, especially at scale. For instance,
these developers would likely use a simulator that shows them
what is the best data placement or task placement algorithm
for a certain configuration, or which network topology can
provide more performance.

D. BigDataNetSim
In this paper we propose BigDataNetSim, a fully func-

tional1 simulator of data and process placements, as well as
networking/data transfer, for large scale Big Data platforms.
BigDataNetSim is able to simulate most of the components
of the Hadoop ecosystem (we have implementation already
done for HDFS, YARN, MapReduce; and it is easy to add
new components). BigDataNetSim has very good performance
and scales to large (realistic) clusters and can be configured
in many ways (different network topologies, placement algo-
rithms etc.).

Our contributions in this paper are:
• We propose a novel simulator for Big Data platforms,

capable of running Big Data jobs on Big Data plat-
forms and to analyse the performance (e.g., execution
time/throughput) of the modeled platforms and jobs.

• We perform a thorough evaluation of BigDataNetSim us-
ing a real cluster of 20 machines in 2 racks. We compare

1Code will be provided on Github upon acceptance of this paper.

the data placement of HDFS (the data management com-
ponent of the Hadoop stack) and the job scheduling/place-
ment of YARN (the process management component),
and we show that BigDataNetSim is a very accurate
model for real systems (between 2.9% and 9.6% differ-
ence on average for data placement, depending on the file
size, and 4.4% difference on average for job placement).
We also evaluate the scalability of BigDataNetSim and
show that we can simulate easily various classical Hadoop
jobs.

The rest of this paper is organised as follows: Section II de-
scribes the simulator and its architecture, Section III describes
the set-up for the evaluation tests, Section IV discusses the
evaluation results and Section V concludes this paper.

II. BigDataNetSim Architecture

BigDataNetSim is a simulator designed to execute analysis
of data placement, task placement and network parameters
of a Big Data cluster based on Hadoop (HDFS/YARN) and
data processing engines running on top of it, like MapReduce,
Hive or Spark. BigDataNetSim is intended to simulate large
cluster configurations, with several thousands nodes, allowing
the analysis of network and data processing engine parameters
on those large clusters.

The simulator development was based on Java language,
making available command line and web based interfaces.
Simulation parameters describe the cluster, the environment
and the network connecting the nodes. The following sections
will describe the requirements for the simulator and its archi-
tecture, internal operation and usage.

A. Requirements for BigDataNetSim

As BigDataNetSim was developed to support certain re-
search tasks, regarding data and task placement, as well as
network topologies and protocols, its requirements are based
on the type of analysis that research need to perform, which
scenarios and tests will be executed, and which data is needed
as a result from the simulations.

1) Which data we need from the simulator?: In general,
the simulator requires the following:

• Distributed File System: information about the files stored
in the file system, the location of the file blocks among
the nodes, number of replicas.

• Executing Tasks: how many tasks each job generates,
where are the tasks running, from where each task is
reading the data, classification of a task based on the
location of data to read (local, rack, external).

• Network Infrastructure: how much data is passing through
the network, how the network topology and the switching
protocol work together, how much time a particular
amount of data will use to be transferred in the network
segments.

We answer these questions in detail in the next sections.



2) Scenarios to simulate: The typical scenarios we have
in mind reflect real clusters where 1000s of machines is not
unusual [22]. In terms of network organization, Hadoop con-
figuration only registers in which rack each node is. In addition
to that, in the simulations, we need to select which topology
will be used on the cluster (hierarchical, FatTree based, new
proposed topologies), and which switching protocol will be
used among the switches in the network (Spanning Tree,
Shortest Path Bridging, SDN based protocols). These features
are complex and expensive to implement in a real cluster,
so the simulator is important to help in the selection of the
most appropriate and viable set of features, in a simulated
environment, and later progressing for the physical tests with
the best solutions.

As mentioned before, the reading part of a big data job is the
only constant among the different tools and frameworks, so the
research is focused on this particular phase as it could be costly
to simulate all these frameworks. Still, as the reading part is
a costly one in terms of resources and time, optimizing just
this part can result in significant gains for the job processing,
becoming a generic way of improve any available tool on
top of HDFS. In this reading phase, the focus is on the data
movement, affected for the data and task placement, and the
underlying network structure, including the topology, protocols
and network features. And as a result of this focus on the
reading phase, this simulator is not required to model the
remaining phases of a big data job.

3) Remote Reading in Big Data Platforms: As the data is
distributed in a big data cluster, so is the task of reading those
data, considering that HDFS is a common base for several big
data tools and frameworks [22].

Several cluster processing engines can be used over HDFS,
but YARN is a very common one, and supports several
frameworks, like MapReduce, Hive and Spark. Besides, YARN
is the default processing engine available in Hadoop, making
easy for other tools to use it.

In general, big data platforms are based on the ”move the
code, not the data” concept, meaning that when possible, it is
desirable to process data in a local way, transferring a piece
of code (very small, compared to data) to a node, and then
reading and processing data blocks stored on that particular
node. As each node has limited resources to start containers
to execute the code [23] (usually related to the number of
available cores on the node), there is also a limit of how many
simultaneous tasks can be executed at a given time in a specific
node.

In real cluster when the number of jobs and tasks is large,
it is likely that processes cannot always be executed on
the machines that are storing the data blocks. Hadoop does
not have a very sophisticated algorithm for task placement,
as decisions have to be taken quickly and optimising task
placement is a difficult (NP Hard) problem - which makes the
issue even more prevalent. Eventually there will be a divide
between data blocks and tasks that creates a large overhead
on the Big Data platforms’ performance.

This is the concept of “data locality” [23], that Hadoop tries

Fig. 1. Local, same rack and external reads.

to keep when possible. Following this concept, the tasks can be
classified as “local”, when reading data from the local storage,
“rack”, when accessing data from a different node in the same
rack, and “external” when reading data from another node in
another rack, as shown in Figure 1. As expected, the network
latency increases when data locality decreases.

In a cluster with a low level of usage, and no concurrent jobs
using the same input data, it is expected that the majority of
the tasks could be local, affected only by the processing engine
strategy for task placement. However, the usual conditions for
a cluster points to a scenario when several applications and
jobs are using the cluster at a given point in time, and several
jobs are probably using the same input information for its
processing. In this case, the processing slots or containers
could be exhausted for part of the nodes, forcing the processing
engine to find an available container in a node other than one
containing the input data. This process is increasing with the
number of concurrent applications and jobs running in the
cluster. In the limit scenario, with all the containers in all the
nodes being used, it is expected that the majority of tasks
run as external ones. This poses a heavy load in the network
infrastructure, hence the importance in properly measure that.

B. How Does the Simulator Work

In general, simulations are used in the initial phase of a
research or test set, to select ideas and concepts, testing it in
a quick and inexpensive way.

So, in these cases, the common use case for our simulator
in our project is to generate a cluster of a particular size,
with a particular network topology, create the file system in
it, populate the file system with files of a specific size, submit
a given number of concurrent jobs, generate the metrics for the
network usage and generate the reports about the simulation.

The details of how the simulator accomplish that are de-
scribed in the following sections.

1) Parameters for the Simulations: For the simulations nec-
essary to the ongoing research, we selected a set of parameters
that best represented the real scenario, with the appropriate



level of simplification, in the sense that not all the parameters
available for a Hadoop cluster make a significant difference to
the results we need.

In a general way, the parameters can be divided into three
main categories, the cluster structure (including distributed
file system), network structure and frameworks structure, as
described below. In addition to the parameters that describe
the scenario, there is also a set of parameters that describe a
test execution, and those will be described at the end of the
section.

Cluster configuration: Number of nodes in the cluster,
number of nodes per rack in the cluster, number of available
processing slots in each node, nodes with different configu-
ration in the number of processing nodes. The simulated file
system can configure the size of a file block, the level of
replication of each block and the read rate for the storage,
including a value for overhead. All these parameters are
discrete values, and can be set for each execution. For HDFS,
the block placement policy can be configured, either using the
default one, or a custom one, implemented using the simulator
structure.

Network configuration: Network link bandwidth (classi-
fied by the topology layers), link delay, switch delay, network
overhead, frame size, MSS (maximum segment size). Based
on these parameters, the effective link bandwidth can be
calculated. Apart from these discrete values, the simulator can
configure other behaviors in the network: switching protocol
(STP, SPB, SDN oriented, custom) and the topology. The
topology can be set as a regular hierarchical topology, like
a FatTree, or as a custom topology, defined using a graph. In
either way, it is possible to configure the number of switches in
each level or place and the connections between the switches,
including redundant and loop connections.

Frameworks and policies/algorithms: These parameters
control how the jobs will execute on the simulator, and have
a direct impact on how the tasks will be distributed among
the nodes, hence their importance. Job processing engine: the
simulator have one processing engine modeled: MapReduce
over YARN. Others are in project to development, like Spark
over YARN and Spark over HDFS. For YARN, the capacity
scheduler is modeled, others will be modeled in the future. For
MapReduce engine, some details are modeled, like turning on
and off the speculative execution .

Test execution parameters: Number of concurrent job-
s/users, including the range of concurrent jobs (from 1 to 256,
for instance) and the step used (from 8 to 8, for instance).
Number of tries/rounds for each test, to diminish any devia-
tion caused for the several random aspects of the tests, this
parameter is usually configured for at least a few dozens.

2) Interfaces for the simulator: The amount of available
parameters and the number of generated reports can make
the simulator operation complex, so user interfaces were
developed to help each major use case to fulfill the objectives
with the minimum overhead in operation.

The simulator was designed to be used mainly in two ways,
as an exploratory tool, executing quick tests in different scenar-

Fig. 2. Network structure view in Gephi.

ios with different configurations, and as a batch tool, to execute
a massive amount of tests for a particular configuration. Those
two kinds of usage leaded to two main ways of using the
simulator, through a Web Interface, and a CLI (Command Line
Interface).

About the exploratory tests, these are used to quickly test
a given configuration, to check if that particular setup is
reasonable or not for a longer simulation. Those tests are often
executed with reduced parameters and point to more extensive
tests, once the proper configuration is decided. For this kind
of test, the web interface was develop, with a predefined set
of parameters and a intuitive interface to show quick results.

Follows a brief description of each interface and auxiliary
tools:

Command line interface: The main interface for using the
simulator is the command line, and the parameters can be set
either as a JSON configuration file, or a list in the command
line itself. This allows to the simulator to be included in larger
batches of scenarios, to be executed as a whole, in a script.
The results will be shown in the standard output, and saved
to CSV files, if requested.

GUI helper interfaces for network design: There is a
particular complex parameter in the simulation process, the
network topology design. Besides the conventional hierar-
chical topology, the simulator allows any custom designed
topology to be used as the base infrastructure for the cluster
network. For this reason, the simulator can export a graph file
in a GEXF format [24] to allow the analysis of a particularly
complex topology in graph analysis tool like Gephi, as shown
in Figure 2. For the same kind of complex topology, was
developed a GUI interface that shows the resulting graph,
allowing minor changes in the topology, like adding more
connections between the Top of the Racks switches and the
core switches, and increasing the density of links between the
core switches, as shown in Figure 3. This GUI tool needs to
be customized for a particular kind of network topology.

Web interface: As mentioned, the web interface was de-
veloped to allows quick exploratory tests, with a subset of
parameters, in order to find proper configurations for more
extensive tests. It was alse developed to allow the simulator
to be used by a larger team, and taking advantage of more
processing power available in a proper server, rather than the
user own computer. In this case, the results will be displayed



Fig. 3. Network structure design.

Fig. 4. Simulator Web Interface.

as web reports, in addition to the CSV files. The web interface
is shown in Figure 4.

Configuration files: As the number of parameters grow,
it can be prone to errors and mistakes when using command
line parameters. For this, the simulator can use a configuration
file for the input parameters, in the command line interface.
The configuration file can be expressed in two formats: a Java
Properties file or a JSON file, with the named parameters and
the corresponding value.

Results output: The simulator interface can return the
information in text reports in CSV format, and charts using the
popular GNUPlot format. Execution parameters can configure
which of the reports will be generated in each simulation run,
and the detail level needed.

C. Phases of a Simulation

In this To better understand how a simulation is conducted in
the simulator, it is interesting to detail the steps of a simulation
task, and how these steps are feed with the parameters and
relate with each other.

In a general way, a simulation follows a workflow with this
main phases, as shown in Figure 5:
• Cluster configuration: when the parameters for the file

system, network topology and cluster are set, preparing

Fig. 5. Simulation execution workflow.

the environment for the execution. Data placement strat-
egy is also configured in this phase.

• File system generation: generation of the files, according
with size and number parameters, and using information
from the cluster and network configuration to apply the
data placement strategy.

• Job configuration: parameters for the job execution are set
on this phase, including the number of concurrent jobs,
which file (s) will be used as input, which processing
framework and its parameters and the strategy for task
placement and scheduling.

• Simulation execution: execution of the simulation ac-
cording with the configured parameters while storing the
intermediate results.

• Report generation: aggregation of results and generation
of the requested reports.

In the workflow, a critical phase is the process to calculate
the amount of network traffic for the jobs execution, as
described in the Algorithm 1. This values are particularly im-
portant for the research that started the simulator development,
as network optimizations are the goal for that. In this sense, the
information needed is the amount of data transferred between
the nodes, and the impact of this in the network infrastructure,
regarding the topology and protocols on place.

For this calculation, some information must be available:
• list of tasks of all running jobs and its locations in the

cluster
• list of all data blocks to being read for each running task,

and its locations in the cluster
• list of all network paths in the cluster, following the

network topology
• list of all nodes in the cluster and its locations in the

network topology, in which rack each node is
• network features (bandwidth, latency, etc)
As shown in the algorithm, the list of tasks is evaluated,

and the external and rack tasks are selected for the network
traffic calculation. For each task, the paths used between the



processing node and the data node are obtained from the
network topology graph, according to the switching protocol
in place. All the traffic flows in all the paths are accumulated
by the algorithm, and placed in a list. For this, the underling
network features are take into account, like the frame size,
payload size and overhead. The method to obtain the network
path also takes into consideration the protocols in place,
considering multiple paths and load balancing when available
and requested. The analysis is executed later based on this list,
following the options available in the simulator. The traffic can
be considered as a simple accumulation or average, but can
be also considered as a step list, when the network flow pairs
are solved in order, regarding the available bandwidth in each
network segment.

Algorithm 1: Network Traffic Calculation Algorithm

// considering i,j as processingNode and

dataNode

input : jobTasks: List< task >, dataBlocks:
List< block >, steps: List< pathi, j >

output: segmentList: List< segments >
for task ∈ jobTasks do

if task.type , LOCAL then
// get processing and data node from

task

processingNode, dataNode← getNodePair(task)
// get network path between the

nodes

taskNetS egments←
getNetPath(processingNode, dataNode)
// get the data blocks for the task

dataBlocks← getDataBlocks(task)
for segment ∈ taskNetS egments do
// aggregate traffic in list

increaseTrafficSegment(segment, dataBlocks,
segmentList)

return segmentList

D. Simulation Usage Examples

The main purpose of this simulator is to help in research
concerning novel strategies in data and task placement in big
data frameworks, and in novel network designs and tools to
improve performance and reduce energy consumption in the
mentioned frameworks.

In this sense, and based on the available features, there are
some test scenarios better suited for the simulator, as follows:

1) Evaluation of data placement strategies on HDFS:
These strategies can have an impact in how the tasks are
executed, due to the need to read and aggregate the source data.
The simulator provides a set of Java interfaces to implement
the main methods that control the data placement, with the
intention of making this implementation simpler.

2) Evaluation of task placement strategies or scheduling
algorithms: These strategies and algorithms can also have an
impact in performance and network usage, so the simulator
was designed to test these as well. In the current state, the
simulator can simulate MapReduce API over YARN, using
the standard scheduler for tasks. As the class structure was
prepared using the same level of abstraction of data placement
strategies, more options will be implemented in the future (like
Spark), besides custom strategies as well.

3) Evaluation of network topologies: The simulator has a
conventional hierarchical topology implemented, with a Spine-
Leaf strategy, and new ones can be implemented using graphs,
which include complex topologies. At least one complex
topology, based on rings and parallel paths was implemented
as a evaluation of data center networks, using the simulator
graph capabilities.

4) Evaluation of network protocols and routing/switching
strategies: The protocols STP (Spanning Tree Protocol) and
SPB (Shortest Path Bridging) are already implemented, and
any cluster and topology can be tested using. Other protocols
or routing/switching strategies can be implemented in a simple
way, using interfaces to order behavior. At least one more was
already implemented, for a particular research.

It is important to remember that the simulator implements
the reading phase of big data job execution, not being suitable
for simulations that involve other phases than this one.

III. Evaluation set-up

In this paper we aim at answering the following three
questions:
• RQ 1: Is BigDataNetSim’s data placement model accu-

rate?
• RQ 2: Is BigDataNetSim’s job placement model accu-

rate?
• RQ 3: How does BigDataNetSim scale to large clusters?

We use a real cluster of 20 machines (+ 1 master nodes) to
evaluate the accuracy of our models (RQ 1 & 2). Hadoop
installed version is 2.7.6 in a single and dual rack network
configuration. The nodes are regular PCs, with Intel Core i5
processors, 8 GB of RAM and SATA hard drives with 1 TB
each and the master is a Core i7 with 32 GB of RAM.

A. Jobs executed

As the simulator is designed to mainly generate data from
the reading phase of big data jobs (the reading part of Map
phase, in MapReduce jobs, for instance), we focused on the
kind of tasks where this particular phase is prominent. We need
jobs with significant amount of data to read, in order to force
a heavy network traffic in high level of concurrency situations,
and as the remaining phases of the frameworks are not covered
by the simulator, the tests will not cover the additional phases.
The amount of data is also related with the size of the cluster,
as the intention of the simulations is to use most or all of the
network resources available. In this sense, we need to occupy
the highest possible number of processing slots available in
the cluster. Therefore, considering that a processing slot is



responsible for reading a block of data (128 MB in regular
HDFS configurations), the amount of data to be processed
can increase as the size of the cluster increase as well.

For these reasons, we selected 3 job types to test the
simulator:
• TestDFSIO: Test job distributed with Hadoop that gener-

ates configurable amounts of data to write and read from
HDFS using MapReduce jobs.

• WordCount: An standard job that counts the occurrences
of words in a text data input.

• TPC-H query 6: A query based on a large reading portion
and little processing running on a structure dataset.

As the TPC group is well-know for the standardized tests, most
of our tests were conducted using this last one. As shown in
the following listing, TPC-H Query 6 is based on a single
table (thus a single CSV file in HDFS) and goes through the
entire file to select part of the dataset to execute an aggregation
operation.

1 SELECT
2 sum(l_extendedprice * l_discount) as

revenue

3 FROM
4 lineitem

5 WHERE
6 l_shipdate >= date '1994-01-01'
7 AND l_shipdate < date '1994-01-01' +

interval '1' year
8 AND l_discount between 0.06 - 0.01

AND 0.06 + 0.01
9 AND l_quantity < 24;

As the reduce phase is limited to an aggregation function
and a simple arithmetic operation, the reading part will be the
majority of the time consumed, keeping the tests focused on
the results the simulator can obtain, and don’t spending time
in operations not covered by the simulator (like the shuffle and
reduce phases).

B. Metrics

The simulator accuracy is based on two metrics, the degree
of data distribution in the distributed file system, and the
distribution of tasks among the local, rack and external classes.

For the data distribution metric, we measure the average
number of blocks per node in the cluster, and the standard
deviation of this value. As most of the choices made by the
frameworks rely upon the data locality, an accurate distribution
of data in the simulated file system is important in order to
have the most approximate results for the job execution.

And for the task placement, the classification among local,
rack or external shows how much data is transmitted over
the network, and between which computers, and this can be
modeled for different topologies and network features. This
metric is important not only for being a measure of the overall
performance of a job (as data transmitted over the network
poses as a bottleneck), but also to allows a realistic analysis of

Fig. 6. Block distribution - 50GB.

the network paths used in different network topologies, using
different network protocols.

Besides these two functional metrics, a performance anal-
ysis was conducted, to show how much time each simulation
run can take, in order to determine the expected time to
complete a longer simulation.

IV. Evaluation Results

We have conduct tests using the simulator and the described
test bed, and the results show that the simulator have a reason-
able accuracy when compared to a real setup. We presented
three ways to compare and assess the accuracy and efficiency
of the simulator: data distribution, task distribution in job
executions and a performance measurement of execution.

A. Data distribution in HDFS

The data distribution reports show how the blocks of a
particular file are distributed among the cluster nodes. The
simulation takes into account HDFS replication factor and the
data placement policy.

For these tests, were considered the HDFS standard repli-
cation factor of 3, and the default block placement strategy.
The tests were executed in files with 1, 3, 5, 10, 20, 30, 40
and 50 GB in the physical cluster, and in a simulation. Both
clusters have 20 nodes and 2 racks. The charts shown the block
distribution among the nodes, and the standard deviation for
the files.

In Figure 6, we can observe the distribution of file blocks
among the cluster nodes for a 50GB file. The values are
ordered in descending order, to better compare the results. The
distribution of blocks is similar, with a maximum difference
of 7.7% and an average difference less than 1%.

Figure 7 shows the comparison of standard deviation for
number of blocks per node for each file size. The standard
deviation shows how even is the distribution of blocks among
the nodes, and this can have an impact on how the processing
engines locate the data. The standard deviation decreases
as the file size increases, for both the physical and the
simulated cluster, being slightly bigger in the simulations, but
the progression follows the same pattern, with the difference
decreasing as the file size increases. For instance, in the 1GB
file, the difference in standard deviation between the physical



Fig. 7. Data distribution comparison.

cluster and the simulated one is around 19%, in the 50GB file
is around 8%.

Judging by this results, we can conclude that the file system
simulation is adequate, when compared to a real testbed,
not presenting differences that could affect the results of the
simulations executed on the file system.

B. Task distribution in YARN/MapReduce

As mentioned earlier, the classification of tasks between
local, rack and external is important to better measure the
amount of data movement in the network.

For this, the tested scenario was planned to use all the
available processing slots in the cluster, determined by the
configured number of vCores in each node. The tests were
conducted with concurrent jobs varying from 1 to 20, in steps
of 4 (1, 4, 8, 12, 16 and 20). For a physical cluster of 20 nodes
with 4 vCores per node, this is enough to occupy all the slots.

Both tests (simulator and physical cluster) were configure
with the Speculative Map Execution as off, and with the
yarn.scheduler.capacity.node-locality-delay turned on, using
double the number of nodes as metric. Those parameters affect
how many tasks are launched to satisfy a given map function,
and how much time YARN will wait for an ideal node with
data locality guaranteed [23].

Figure 8 shows the comparison between the results in the
cluster and in the simulator, showing similar lines. The average
difference is 4.4%, with the difference being bigger with a
small number of concurrent jobs, when the random parts of
the algorithms, combined with a underutilized cluster, prevail.

C. Scalability and performance on simulations

Another important metric is the performance of the simu-
lator itself. The amount of time spent by the simulator to run
a particular test case was measured, and the results show that
even for larger clusters, the performance is reasonable, even
for a conventional desktop computer.

The tests were conducted in a desktop computer equipped
with a Intel Core i7 processor (4 cores at 3.40GHz) with
32 GB of RAM memory, running Linux Operating System
(LinuxMint v18.02) and Oracle JDK 8. All the tests results
are from only one execution, but in real tests, it’s expected to
run multiple tries (up to 100) in order to avoid any statistical
errors.

Fig. 8. Task distribution comparison.

Fig. 9. Scalability analysis.

Usually, the simulator is used to execute a set of tests
for a particular cluster and job configuration, running from
1 concurrent job to 128 or 256 concurrent jobs, in steps of
16 or 32. Each step is executed 100 times, and the results are
aggregated. For some configurations, a test set like this can
take more than 30 minutes to execute.

Figure 9 shows the results for 1000, 2000 and 4000 nodes
clusters, running a number of concurrent jobs.

V. Conclusion

As shown by the experiment results, we can answer the
research questions with some degree of confidence. As shown
by the experiment results, BigDataNetSim is capable of simu-
late with accuracy the data placement algorithm of HDFS, in
order to provide accurate results for the simulations on top of
it. Using the abstraction in its implementation, it is possible to



implement and test novel data placement strategies and study
its impact on the overall operation of a big data framework.

BigDataNetSim is also capable of accurately simulate the
number of local, rack and external tasks, which is important
to provide accurate data for simulations involving network
topologies and protocols, besides the task placement strategy
itself.

The graphical user interfaces provided are alse useful for
novel network topologies design, and makes these analysis
simpler and easier to evolve.

Based on its expected usage, the simulator have some
limitations. As the research that originated the simulator is
focused on network information and reading phase, so this
limits the expected results and the coverage of the simulations.
The simulations are not considering subsequent phases of
processing engines, like the combiner, sort or reduce phase
of MapReduce, mainly because these phases transfer less
data through the network, compared to the reading phase,
and because as these phases can vary in several ways (apart
from MapReduce, and considering Spark, Impala, Tez, etc),
making the simulation more complex. The impact is reduced
by the bigger usage of the reading phase compared with the
subsequent ones, specially in network transfer.

Ultimately, the simulator is useful for analysis and devel-
opment of data and task placement strategies and network
topologies and algorithms, for the impact on the network
usage, and performance estimates.

A. Future works

As future developments, will be implemented new job
processing frameworks, like Spark, and new scheduling al-
gorithms. Some features of Hadoop 3, like the new HDFS
Erasure Coding will be added as configuration options in the
simulator, as these features can impact future research.

The use of an external tool like Gephi to help in the design
of complex network topology will be studied. Currently, Gephi
is used only to visualize the network topology, but this can be
extended in the future, as well as a Mininet script generator
based on Gephi files.

And finally, the development team will start efforts to make
the source code available for the community.
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