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Abstract 24 

Dietary assessment methods including food-frequency questionnaires and food diaries are 25 

associated with many measurement errors including energy under-reporting and incorrect 26 

estimation of portion sizes. Such errors can lead to inconsistent results especially when 27 

investigating the relationship between food intake and disease causation. To improve the 28 

classification of a person’s dietary intake and therefore clarify proposed links between diet 29 

and disease, reliable and accurate dietary assessment methods are essential. Dietary 30 

biomarkers have emerged as a complimentary approach to the traditional methods and in 31 

recent years, metabolomics has developed as a key technology for the identification of new 32 

dietary biomarkers. The objective of this review is to give an overview of the approaches 33 

used for the identification of biomarkers and potential use of the biomarkers. 34 

Over the years a number of strategies have emerged for the discovery of dietary biomarkers 35 

including acute and medium term interventions and cross-sectional/cohort study approaches. 36 

Examples of the different approaches will be presented. Concomitant with the focus on single 37 

biomarkers of specific foods there is an interest in development of biomarker signatures for 38 

the identification of dietary patterns. In the present review we present an overview of the 39 

techniques used in food intake biomarker discover and the experimental approaches used for 40 

biomarker discovery and challenges faced in the field. While significant progress has been 41 

achieved in the field of dietary biomarkers in recent years a number of challenges remain. 42 

Addressing these challenges will be key to ensure success in implementing use of dietary 43 

biomarkers.  44 

  45 
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 46 

Introduction 47 

In recent years, there has been growing interest in the potential of biomarkers in nutrition 48 

research. One of the areas with great expectations is the field of dietary biomarkers or food 49 

intake biomarkers. The interest in these biomarkers stems from the need for objective 50 

measures of dietary intake. The traditional methods such as food frequency questionnaires 51 

(FFQs), 24 h recalls and food diaries are all associated with a number of well-defined 52 

limitations including under-reporting, recall errors and difficulty in assessment of portion 53 

sizes 
(1–3)

. Currently dietary biomarkers include 24h urinary sodium, nitrogen and 54 

sucrose/fructose for estimation of salt, protein and sugar intake 
(4–7)

. In recent years, the 55 

concept of biomarkers reflecting specific food intake has emerged. To date a number of 56 

putative biomarkers exist for the intake of a range of foods including but not limited to red 57 

meat, coffee, nuts, wine, vegetables, legumes, citrus fruit, tea, sugar sweetened beverages 
(7–

58 

11)
. While some confusion exists in the literature over classification of biomarkers into 59 

recovery or concentration biomarkers we prefer to use the newly defined flexible 60 

classification scheme for biomarkers related to food intake 
(12)

. Food intake biomarkers are 61 

single metabolites, or a combination of metabolites, reflecting the consumption of either a 62 

specific food or food group, displaying a clear time- and dose-response after intake 
(12)

. With 63 

this in mind, we present here an overview of the techniques used in food intake biomarker 64 

discovery, the experimental approaches used for biomarker discovery and challenges faced in 65 

the field.  66 

 67 

Metabolomics: role in biomarker discovery 68 

Metabolomics is the study of endogenous or exogenous metabolites in an organism. 69 

Metabolites are found in tissues and bio-fluids and are influenced by a number of factors 70 

including genetics 
(13)

, the microbiome 
(14)

 and environmental exposures such as food, 71 

exercise and pollutants 
(15,16)

. Metabolomics has emerged as a key tool in biomarker studies 72 

and in particular for biomarkers related to food intake. The sensitivity of modern 73 

instrumentation used in metabolomics can detect metabolite concentrations as low as 74 

0.1  ng/ml in plasma 
(17)

. Metabolites by their nature, have a prodigious range of structures 75 

which can inhibit identification as they can be transitory intermediates or end products of 76 

biological processes. Identification of the vast array of possible metabolites is currently the 77 

limiting factor in biomarker discovery. To aid the identification of metabolites a number of 78 

databases have emerged. The human metabolite database (HMDB - http://www.hmdb.ca/) 
(18)

 79 

http://www.hmdb.ca/
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includes 114,100 empirical and in-silico compounds and is readily  searchable. Other 80 

databases include MyCompoundID, a library of 8,021 endogenous human metabolites with 81 

10, 583,901 predicted products of these metabolites  82 

(http://www.mycompoundid.org/mycompoundid_IsoMS/; 
(19)

, the METLIN database 83 

(http://metlin.scripps.edu; 
(20)

 and MassBank of North America (MoNA) 84 

(http://mona.fiehnlab.ucdavis.edu/).  85 

Measurement of the metabolites 86 

Metabolites in biofluid samples represent a wide range of molecules with diverse chemical 87 

nature and dynamic range. As a result, a number of platforms have emerged as key players in 88 

terms of measuring metabolites for biomarker discovery. A complete detailed review of all 89 

the techniques is beyond the scope of this review but an overview is given below and the 90 

readers are referred to the following review for technical details on each approach 
(21)

. In the 91 

initial years of emergence of metabolomics, the literature was dominated with Nuclear 92 

Magnetic resonance (NMR) based applications.  NMR spectroscopy is a technique which has 93 

comparatively low sensitivity compared with other techniques 
(22)

. However, it is useful as it 94 

is non-destructive, reproducible, quantitative and furnishes structural information. Little 95 

sample preparation is required, and results are consistent between different laboratories 
(23)

.  96 

The mass spectrometry based approaches are extremely sensitive and are often coupled with 97 

a chromatography step to help with separation of the metabolites. Gas chromatography mass 98 

spectrometry (GC-MS) is a technique particularly suited to compounds of low polarity such 99 

as fatty acids, amino acids and sterols. Preparation of samples is somewhat complicated as 100 

samples must undergo chemical derivatisation prior to analysis to ensure that they are 101 

volatile. Compounds are separated on a column by their chemical properties causing them to 102 

elute at specific times (retention time). The eluted compounds are ionised and their mass -to-103 

charge ratio (m/z) is determined 
(24)

. This technique is particularly suited to lipids and all non-104 

polar compounds 
(25)

.  105 

Liquid chromatography mass spectrometry (LC-MS) is suitable for analysis of a broad range 106 

of metabolites. Its advantages over GC-MS include simple sample preparation and ability to 107 

analyse highly polar compounds 
(26)

. Metabolites are separated on a column and the eluted 108 

compounds are ionized, and their m/z and retention time is detected as output. For analysis of 109 

large batches (greater than 100 samples) one must include the necessary controls to account 110 

for instrument instability over time and batch to batch variation 
(21)

. Capillary electrophoresis 111 

(CE) separates compounds by their mobility in an electric field, based on their charge, 112 

viscosity and size. It is well suited to highly charged polar metabolites such as organics acids, 113 

http://www.mycompoundid.org/mycompoundid_IsoMS/
http://metlin.scripps.edu/
http://mona.fiehnlab.ucdavis.edu/


5 
 

nucleotides, peptides and their conjugates. It is coupled to MS instruments using electrospray 114 

ionisation (ESI) 
(27)

. For high through-put techniques where it is desirable to have low run 115 

time per sample direct infusion mass spectrometry (DIMS) is often employed. In this 116 

approach metabolites are analysed by nano-electrospray ion source after infusion directly into 117 

the ion source without prior separation. A high-resolution, high accuracy instrument such as a 118 

Q-Exactive Orbitrap can identify individual metabolites based on their m/z ratios 
(28)

. 119 

As mentioned above, a key bottleneck in employing any of these techniques is the 120 

identification of the compounds. Tandem MS or MS/MS is a powerful technique which 121 

enables identification of compounds. Using this approach initial ionised analytes are 122 

fragmented to produce smaller product ions from a parent ion. The ions can undergo several 123 

rounds of fragmentation, depending on the instrument. The first round (MS) is known as MS1 124 

and the subsequent fragmentation is MS2, MS3,…..MS
n
. As modern instruments have high 125 

mass accuracy, m/z of the fragments are used to build up a profile of a compound enabling 126 

identification which can then be confirmed with original standards 
(29,30)

. Finally, it is worth 127 

noting that all these techniques can be run in either a targeted or un-targeted mode. In the 128 

targeted mode a predefined list of metabolites are measured, whereas, in an un-targeted mode 129 

as many features as possible are measured. Depending on the research question, one can 130 

decide to operate in either mode or use a combination of both. 131 

 132 

Food Intake Biomarkers  133 

There are multiple study designs in which metabolomics can be applied to identify food 134 

intake biomarkers. Previous research study designs have employed one of two approaches 135 

either conducting an intervention study or using samples from a cross sectional or 136 

epidemiology study to identify metabolites associated with food intake 
(31, 32)

. Human 137 

intervention study designs involve requesting participants to consume specific food(s) over a 138 

defined period of time and biofluids, such as blood and urine, are collected at specific time-139 

points depending on research interests. Once biofluids are collected a range of metabolomic 140 

techniques as described above can be used to identify metabolites associated with the food 141 

intake. The time period involved in intervention studies varies depending on the research 142 

aims and can range from acute (single day food challenge), to short- (days) or medium- 143 

(weeks) term interventions. Within the umbrella term of intervention studies, there are 144 

multiple designs and considerations. When implementing a cross-over design participants are 145 

asked to follow specific dietary instructions, i.e. consuming a specific amount of a food of 146 

interest for a set time and changing to a diet with different amounts of, or completely lacking, 147 
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the food of interest, thereby acting as their own control. Cross et al (2011) employed this 148 

approach when examining 24h urine samples for biomarkers of meat consumption. 149 

Participants were asked to consume 4 different diets for 14 days each containing a low 150 

(60g/d), medium (120g/d)-, high-portion of red meat (420g/d) or a protein equivalent 151 

vegetarian diet
 (32)

. Targeted metabolic analyses were performed for four known meat-152 

specific urinary metabolites, creatine, taurine, 1-methylhistidine and 3-methylhistidine. All 153 

four metabolites increased in concentration with increased meat consumption but only 1- and 154 

3-methylhistidine concentrations were statistically different for each meat dose. In these 155 

cross-over studies it is often necessary to consider a ‘washout period’: in this period certain 156 

dietary restrictions are in place, for example avoiding specific foods/food groups for a time 157 

prior to consuming a high “food of interest” diet. In a study related to cruciferous vegetables 158 

(CV) participants avoided CV  and alliums for 12 days either side of a high CV diet 159 

intervention, containing broccoli and Brussel sprouts 
(33)

. Clear urinary metabolic 160 

differentiation was seen between high and low CV diets, as signified in NMR spectra by four 161 

singlet peaks which were exclusive to high CV consumption and remained elevated above 162 

baseline at 48h post consumption. The peaks were identified as S-methyl cysteine sulfoxide, 163 

a sulfur containing amino acid ubiquitous in CV, and its metabolites.  164 

Parallel group intervention studies have also been successful in food intake biomarker 165 

discovery. Hanhineva and colleagues randomised participants to follow one of three diets 166 

over a twelve week period including a healthy diet (wholegrain enriched diet, fatty fish and 167 

bilberries), a wholegrain-enriched diet or a control diet (avoiding whole grain cereals and 168 

bilberries, consuming low-fibre products, limiting fatty fish intake to one portion per 169 

week)
(34)

. Plasma metabolomics revealed that CMPF (3-carboxy-4-methyl-5-propyl-2-170 

furanpropionic acid) was associated with fatty fish intake and alkylresorcinol metabolites 171 

were associated with wholegrain intake.  172 

Using samples from epidemiology studies one examines correlations between self-reported 173 

food intake and biomarkers measured in urine or blood samples. Guertin et al (2014), applied 174 

an UPLC (ultra high pressure liquid chromatography)- and GC-MS metabolomics approach 175 

when examining serum samples from a subset of the Prostate, Lung, Colorectal, and 176 

Ovarian  (PLCO) Cancer Screening Trial to identify biomarkers related to intake of 36 food 177 

groups 
(8)

. The data revealed that 39 biomarkers were significantly associated with intake of 178 

food groups such as citrus, green vegetables, red meat, fish, shellfish, butter, peanuts, rice, 179 

coffee, beer, liquor, total alcohol, and multivitamins. Other approaches have compared 180 
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consumer and non-consumers of certain foods to identify biomarkers increased in the 181 

consumers. Using this approach Rothwell et al. identified discriminating biomarkers in the 182 

urinary metabolome of 20 high coffee consumers and 19 non-consumers in a subset of the 183 

SU.VI.MAX2 cohort 
(35)

. Many other examples using this approach have emerged in recent 184 

years and the readers are referred to Guasch-Ferré et al. (2018), for an overview of such 185 

studies
(36)

. 186 

Once identified it is critical that the biomarkers are assessed for validity as biomarkers of 187 

food intake. Recently a validation procedure was put forward as part of the FoodBall 188 

consortium which included plausibility, dose-response, time-response, robustness, reliability, 189 

stability, analytical performance, and inter-laboratory reproducibility as the eight criteria for 190 

assessment of validation 
(37)

. While assessment of all these criteria may not be possible in a 191 

single study – it is important that they are considered and that at least the plausibility and 192 

dose response are assessed. Using the above study designs a number of putative biomarkers 193 

have emerged in the literature- a full review of such markers is beyond the scope of this 194 

review and the readers are referred to work by the FoodBall consortium which has performed 195 

a series of systematic reviews for commonly consumed foods. The foods covered to date in 196 

the systematic reviews include (1) apples, pears and stone fruit, (2) legumes, (3) dairy and 197 

egg products and (4) non-alcoholic beverages 
(38–41)

 Other reviews which cover the 198 

commonly consumed foods in Europe are underway. From the presently published reviews it 199 

is obvious that a number of putative markers exist, however, there are no fully validated 200 

makers of these foods. This highlight the urgency in developing strategies to ensure that we 201 

have fully validated biomarkers.  202 

 203 

Use of food intake biomarkers in quantifying intake 204 

The ultimate goal of a food intake biomarker is to quantify intake of the specific food. 205 

Despite the proliferation in the number of putative biomarkers of food intake there is paucity 206 

of data demonstrating the quantitative ability of food intake biomarkers. Notwithstanding 207 

this, there are two examples in the literature that demonstrate the potential. 208 

Examining the potential of the well-established marker of citrus intake our previous work 209 

demonstrated that proline betaine could be used to determine citrus intake. Using a controlled 210 

dietary intervention approach participants consumed standardized breakfasts for three 211 

consecutive days over three weeks where orange juice intake was decreased over the three 212 

week period 
(42)

. Using the urinary proline betaine concentrations calibration curves were 213 

established. Using these calibration curves the citrus intake was determined in an independent 214 
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cross sectional study of 560 individuals. There was excellent agreement between the self-215 

report intake (estimated from a 4 day semi-weighed food diary) and the estimated intake from 216 

the biomarker with a low mean bias of 4.3g between the methods. This study clearly 217 

demonstrates the potential of well validated food intake biomarkers. In a separate study 218 

Garcia-Perez and colleagues examined the ability of tartaric acid to determine grape intake 219 

(43)
. A dose response relationship was established between grape intake and urinary tartaric 220 

acid levels. The agreement between estimated intake and actual intake was good and a 221 

correlation coefficient of R
2
=0.9 was reported. Overall, these two examples provide strong 222 

evidence of the potential of food intake biomarkers and demonstrate the importance of 223 

assessing dose response relationships on identified biomarkers. However, it is also worth 224 

noting that not all biomarkers will be fully quantitative but will still yield useful information 225 

for examining relationships with health outcomes (Figure 1). 226 

 227 

Biomarkers of Dietary patterns 228 

In nutrition research, there has been an increased interest in examining the diet as a whole 229 

instead of examining intake of single foods or nutrients. With this in mind the concept of 230 

dietary patterns has emerged and the potential of using biomarkers to classify individuals into 231 

different dietary patterns is of interest. For the present review we focus on the studies that 232 

have used a metabolomics based approach to classify individuals into dietary patterns. 233 

Andersen and colleagues used an untargeted metabolic phenotyping approach to distinguish 234 

between two dietary patterns with the purpose of developing a compliance measure for 235 

adherence to the New Nordic Diet (NND) or an Average Danish Diet (ADD) 
(44)

 (see Table 236 

1). Using the urinary metabolic profile a multivariate model was established that could 237 

distinguish the two dietary patterns with a low misclassification error rate (19%) clearly 238 

indicating that this approach could be used for examination of compliance to a certain dietary 239 

pattern. A follow up paper also demonstrated that a classification model could be built using 240 

plasma metabolites to assess compliance to the NND and ADD diets (11). Esko and 241 

colleagues used a controlled feeding study to examine three different dietary patterns. These 242 

dietary patterns differed in macronutrient composition: low fat (60% carbohydrate, 20% fat, 243 

20% protein), low glycemic index (40% carbohydrate, 40% fat, 20% protein) and very-low 244 

carbohydrate (10% carbohydrate, 60% fat, 30% protein ) 
(45)

. A classification model was built 245 

that could distinguish the three dietary patterns using plasma metabolites. These results 246 

support the concept that a metabolite based model could be used in checking for adherence to 247 

specific diets and for the examination of relationship between dietary patterns and health 248 
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outcomes in large epidemiological studies. Garcia-Perez and colleagues used a controlled 249 

intervention to develop a urinary metabolomics model that could classify individuals into 250 

dietary patterns 
(46)

. The four diets were based on the WHO healthy eating guidelines for the 251 

prevention of non-communicable diseases (NCDs). Work from our laboratory, used a cross 252 

sectional study to develop a model based on urinary metabolomic data which could classify 253 

subjects into either a healthy or an unhealthy dietary pattern (16). The classification into the 254 

dietary patterns was supported by significant differences in blood parameters such as higher 255 

folate and 25(OH)-vitamin D in the healthy dietary pattern. The work presented by these 256 

examples demonstrate the potential of metabolomics based approaches to identify dietary 257 

patterns and study the relationships with health outcomes. However, further work is needed 258 

to refine and develop these concepts further so that metabolomics based biomarkers can be 259 

used for rapid and objective classification of individuals into dietary patterns. 260 

While the above papers have developed the concept of examination of dietary patterns using 261 

metabolite biomarkers there is also a large interest in examining the relationship between the 262 

metabolomic profile and known predefined dietary patterns such as the Mediterranean Diet. 263 

The potential of such approaches is that it will allow the examination of the impact of dietary 264 

patterns on metabolic processes and pathways 
(47)

. Collectively, the studies presented above 265 

provide compelling evidence for the potential of metabolite biomarkers as a method for 266 

objectively assigning individuals into dietary patterns and for studying the effects of the 267 

certain dietary patterns on metabolic pathways. 268 

 269 

Future Challenges and outlook 270 

While significant progress has been made in the last 5 years in the area of dietary biomarkers 271 

there remain a number of challenges that need to be addressed. The validation of putative 272 

biomarkers is often overlooked and confusion thus arises as to the validity of biomarkers. It is 273 

essential in moving forward that all food intake biomarkers are validated and a suggested 274 

validation scheme now exists. In many metabolomics studies the identification of metabolites 275 

to a high degree of certainty is challenging and many of the current databases lack 276 

metabolites that are related to food intake. International collaborative efforts are needed to try 277 

optimise the identification process. To ensure that the food intake biomarkers are functional 278 

in different ethnic groups it will be essential to develop quantitative methods for biomarker 279 

measurement to ensure reliable cross-cohort comparison. Examples of other challenges 280 

include the potential use of multiple biomarkers for single foods: optimal methods for their 281 

use to estimate intake will need to be developed. Furthermore, many biomarkers will be 282 
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indicators of short term intake and defining strategies to obtain measures of longterm intake 283 

still remains a challenge.  While multiple challenges exist for the field it is also worth noting 284 

that considerable advances have been made in recent years and with global consolidated 285 

efforts it remains a possibility that objective biomarkers will improve our methods for 286 

assessing dietary intake. 287 
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Figure Legend 297 

Figure 1. An overview of the applications of Dietary biomarkers.  Biomarkers can give 298 

information on (1) food intake (2) dietary patterns and (3) relationships with health outcomes.   299 

 300 

 301 

 302 
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Table 1. Overview of studies using biomarkers for determining dietary patterns. 

Dietary Pattern Study Type 

(N) 

Dietary 

Assessment 

tool 

Biofluid Analytic 

technique 

Results Reference 

New Nordic Diet 

(NND) or 

Average Danish Diet 

(ADD)  

6 month 

parallel 

intervention 

study (181) 

Weighed 

dietary 

records  

 

24h urine 

samples 

UPLC-

qTOF-MS 

Identified metabolite markers of individual foods 

such as citrus, cocoa-containing products, & fish 

as well as more general dietary traits such as high 

fruit & vegetable intake or high intake of heat-

treated foods. Misclassification rate for two 

dietary patterns in a validation set with 139 

samples was 19% based on 67 selected features in 

urine. 

(44) 

New Nordic Diet 

(NND) or 

Average Danish Diet 

(ADD) 

26 week 

parallel 

intervention 

study (146) 

N/A had 

control of 

food 

provided 

Fasting 

plasma 

samples 

at 0,12 

and 26 

weeks 

UPLC-

qTOF-MS 

Demonstrated that supervised machine learning 

with feature selection can separate NND and 

ADD samples (average test set performance AUC 

= 0.88). NND plasma metabolome characterized 

by diet-related metabolites, such as pipecolic acid 

betaine (whole grain), trimethylamine oxide, and 

prolyl hydroxyproline (both fish intake), 

theobromine (chocolate). Metabolites of amino 

acid (i.e., indolelactic acid and hydroxy-3-

methylbutyrate) and fat metabolism (butyryl 

carnitine) characterized ADD whereas NND was 

associated with higher concentrations of 

polyunsaturated phosphatidylcholines. 

(11) 

low fat (60% CHO, 

20% fat, 20% 

protein),  

low GI (40% CHO, 

40% fat, 20% 

protein),  

3 test diets, 

each for a 4-

wk period 

crossover 

design (21) 

N/A observed 

consumption 

Fasting 

Plasma 

samples 

at 

baseline 

& end of 

LC-

MS/MS 

Identified 152 metabolites whose concentrations 

differed for ≥1 diet compared with the others, 

including DAGs & TAGSs, BCAAs, & markers 

reflecting metabolic status. A classifier model 

was constructed to identify each diet.  

(45) 
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or very-low CHO 

(10% CHO, 60% fat, 

30% protein) 

each 4-

wk 

period  

4 dietary 

interventions in 

concordance with the 

WHO healthy eating 

guidelines  

 

RCT 

crossover 4 

x 72 h study 

stays (19) 

Cohort 

studies: 

INTERMA

P UK (225) 

Healthy 

eating 

Danish (66) 

N/A observed 

consumption 

24 h 

pooled 

urine 

samples  

¹H-NMR  Developed urinary metabolite models for each 

diet & identified the associated metabolic 

profiles. Validated the models using data & 

samples from the cohort studies. Significant 

stepwise differences in metabolite concentrations 

were seen between diets with the lowest & 

highest metabolic risks. Application of metabolite 

models to the validation datasets confirmed the 

association between urinary metabolic & dietary 

profiles in the cohort studies: INTERMAP UK 

(p<0·0001) & Danish (p<0·0001). 

(46) 

Healthy Eating Index 

(HEI) 2010,  

Alternate 

Mediterranean Diet 

Score (aMED),  

WHO Healthy Diet 

Indicator (HDI),  

& Baltic Sea Diet 

(BSD) 

Alpha- 

Tocopherol, 

Beta 

Carotene 

Cancer 

Prevention 

Study 

cohort 

(1336) 

12 month 

validated 

FFQ 

fasting 

serum 

samples 

LC-MS, 

UHPLC-

MS/MS, 

& GC-MS 

The HEI-2010, aMED, HDI, & BSD were 

associated with 23, 46, 23, & 33 metabolites, 

respectively (17, 21, 11&10 metabolites, 

respectively, were chemically identified; r-range: 

-0.30 to 0.20; P = 6x10
-15

 to 8x10
-6

). Food-based 

diet indexes (HEI-2010, aMED, & BSD) were 

associated with metabolites correlated with most 

components used to score adherence (e.g. fruit, 

vegetables, wholegrains, fish, & unsaturated fat). 

HDI correlated with metabolites related to 

polyunsaturated fat & fibre components, but not 

other macro- or micronutrients (e.g., percentages 

of protein & cholesterol). The lysolipid & food & 

plant xenobiotic pathways were most strongly 

associated with diet quality. 

(47) 

Healthy cluster 

Unhealthy cluster 

National 

Adult 

Nutrition 

Four day 

semi-weighed 

food diaries 

50 mL 

first void 

urine 

1
H-NMR Two-step cluster analysis applied to the urinary 

data to identify clusters. The subsequent model 

was used to classify an independent cohort into 

(48) 



17 
 

Survey 

(NANS) 

(567) 

 

 

sample 

 

fasting 

spot urine 

samples 

dietary patterns. Classification was supported by 

significant differences in nutrient status (p<0.05). 

Validation in an independent group revealed that 

94% of subjects were correctly classified 

Note: UPLC-qTOF-MS; ultra high performance liquid chromatography quadrupole time of flight mass spectrometry, AUC; area under the curve, CHO; carbohydrate, GI; 

glycaemic index, DAGs; diacylglycerols, TAGSs; triacylglycerols, BCAAs; branched chain amino acids, RCT; randomized control trial, ¹H-NMR; proton nuclear magnetic 

resonance, FFQ; food frequency questionnaire, GC-MS; gas chromatography mass spectrometry. 
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