

1    **Role of metabolomics in identification of biomarkers related to food intake**

2    Cassandra Collins<sup>1,2</sup>, Aoife McNamara<sup>1,2</sup> and Lorraine Brennan<sup>1,2</sup>

3

4

5    <sup>1</sup> UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield,  
6    Dublin 4, Ireland

7    <sup>2</sup> UCD Conway Institute, UCD, Belfield, Dublin 4, Ireland

8

9

10   Corresponding Author:

11   Professor Lorraine Brennan

12   UCD School of Agriculture and Food Science,

13   UCD Institute of Food and Health,

14   UCD, Belfield, Dublin 4, Ireland.

15

16   Email: [lorraine.brennan@ucd.ie](mailto:lorraine.brennan@ucd.ie)

17   Phone: 00 353 1 7162811

18

19   **Short Title:** Biomarkers of dietary intake

20

21   **Keywords:** metabolomics, biomarkers, food intake, dietary patterns

22

23   **Acknowledgements:** The authors acknowledge the support from Dr Aoife O’Gorman.

24 **Abstract**

25 Dietary assessment methods including food-frequency questionnaires and food diaries are  
26 associated with many measurement errors including energy under-reporting and incorrect  
27 estimation of portion sizes. Such errors can lead to inconsistent results especially when  
28 investigating the relationship between food intake and disease causation. To improve the  
29 classification of a person's dietary intake and therefore clarify proposed links between diet  
30 and disease, reliable and accurate dietary assessment methods are essential. Dietary  
31 biomarkers have emerged as a complimentary approach to the traditional methods and in  
32 recent years, metabolomics has developed as a key technology for the identification of new  
33 dietary biomarkers. The objective of this review is to give an overview of the approaches  
34 used for the identification of biomarkers and potential use of the biomarkers.

35 Over the years a number of strategies have emerged for the discovery of dietary biomarkers  
36 including acute and medium term interventions and cross-sectional/cohort study approaches.  
37 Examples of the different approaches will be presented. Concomitant with the focus on single  
38 biomarkers of specific foods there is an interest in development of biomarker signatures for  
39 the identification of dietary patterns. In the present review we present an overview of the  
40 techniques used in food intake biomarker discover and the experimental approaches used for  
41 biomarker discovery and challenges faced in the field. While significant progress has been  
42 achieved in the field of dietary biomarkers in recent years a number of challenges remain.  
43 Addressing these challenges will be key to ensure success in implementing use of dietary  
44 biomarkers.

45

46

47 **Introduction**

48 In recent years, there has been growing interest in the potential of biomarkers in nutrition  
49 research. One of the areas with great expectations is the field of dietary biomarkers or food  
50 intake biomarkers. The interest in these biomarkers stems from the need for objective  
51 measures of dietary intake. The traditional methods such as food frequency questionnaires  
52 (FFQs), 24 h recalls and food diaries are all associated with a number of well-defined  
53 limitations including under-reporting, recall errors and difficulty in assessment of portion  
54 sizes <sup>(1-3)</sup>. Currently dietary biomarkers include 24h urinary sodium, nitrogen and  
55 sucrose/fructose for estimation of salt, protein and sugar intake <sup>(4-7)</sup>. In recent years, the  
56 concept of biomarkers reflecting specific food intake has emerged. To date a number of  
57 putative biomarkers exist for the intake of a range of foods including but not limited to red  
58 meat, coffee, nuts, wine, vegetables, legumes, citrus fruit, tea, sugar sweetened beverages <sup>(7-11)</sup>.  
59 While some confusion exists in the literature over classification of biomarkers into  
60 recovery or concentration biomarkers we prefer to use the newly defined flexible  
61 classification scheme for biomarkers related to food intake <sup>(12)</sup>. Food intake biomarkers are  
62 single metabolites, or a combination of metabolites, reflecting the consumption of either a  
63 specific food or food group, displaying a clear time- and dose-response after intake <sup>(12)</sup>. With  
64 this in mind, we present here an overview of the techniques used in food intake biomarker  
65 discovery, the experimental approaches used for biomarker discovery and challenges faced in  
66 the field.

67

68 **Metabolomics: role in biomarker discovery**

69 Metabolomics is the study of endogenous or exogenous metabolites in an organism.  
70 Metabolites are found in tissues and bio-fluids and are influenced by a number of factors  
71 including genetics <sup>(13)</sup>, the microbiome <sup>(14)</sup> and environmental exposures such as food,  
72 exercise and pollutants <sup>(15,16)</sup>. Metabolomics has emerged as a key tool in biomarker studies  
73 and in particular for biomarkers related to food intake. The sensitivity of modern  
74 instrumentation used in metabolomics can detect metabolite concentrations as low as  
75 0.1 ng/ml in plasma <sup>(17)</sup>. Metabolites by their nature, have a prodigious range of structures  
76 which can inhibit identification as they can be transitory intermediates or end products of  
77 biological processes. Identification of the vast array of possible metabolites is currently the  
78 limiting factor in biomarker discovery. To aid the identification of metabolites a number of  
79 databases have emerged. The human metabolite database (HMDB - <http://www.hmdb.ca/>) <sup>(18)</sup>

80 includes 114,100 empirical and *in-silico* compounds and is readily searchable. Other  
81 databases include MyCompoundID, a library of 8,021 endogenous human metabolites with  
82 10, 583,901 predicted products of these metabolites  
83 ([http://www.mycompoundid.org/mycompoundid\\_IsoMS/](http://www.mycompoundid.org/mycompoundid_IsoMS/)); <sup>(19)</sup>, the METLIN database  
84 (<http://metlin.scripps.edu>); <sup>(20)</sup> and MassBank of North America (MoNA)  
85 (<http://mona.fiehnlab.ucdavis.edu/>).

86 *Measurement of the metabolites*

87 Metabolites in biofluid samples represent a wide range of molecules with diverse chemical  
88 nature and dynamic range. As a result, a number of platforms have emerged as key players in  
89 terms of measuring metabolites for biomarker discovery. A complete detailed review of all  
90 the techniques is beyond the scope of this review but an overview is given below and the  
91 readers are referred to the following review for technical details on each approach <sup>(21)</sup>. In the  
92 initial years of emergence of metabolomics, the literature was dominated with Nuclear  
93 Magnetic resonance (NMR) based applications. NMR spectroscopy is a technique which has  
94 comparatively low sensitivity compared with other techniques <sup>(22)</sup>. However, it is useful as it  
95 is non-destructive, reproducible, quantitative and furnishes structural information. Little  
96 sample preparation is required, and results are consistent between different laboratories <sup>(23)</sup>.  
97 The mass spectrometry based approaches are extremely sensitive and are often coupled with  
98 a chromatography step to help with separation of the metabolites. Gas chromatography mass  
99 spectrometry (GC-MS) is a technique particularly suited to compounds of low polarity such  
100 as fatty acids, amino acids and sterols. Preparation of samples is somewhat complicated as  
101 samples must undergo chemical derivatisation prior to analysis to ensure that they are  
102 volatile. Compounds are separated on a column by their chemical properties causing them to  
103 elute at specific times (retention time). The eluted compounds are ionised and their mass -to-  
104 charge ratio (*m/z*) is determined <sup>(24)</sup>. This technique is particularly suited to lipids and all non-  
105 polar compounds <sup>(25)</sup>.

106 Liquid chromatography mass spectrometry (LC-MS) is suitable for analysis of a broad range  
107 of metabolites. Its advantages over GC-MS include simple sample preparation and ability to  
108 analyse highly polar compounds <sup>(26)</sup>. Metabolites are separated on a column and the eluted  
109 compounds are ionized, and their *m/z* and retention time is detected as output. For analysis of  
110 large batches (greater than 100 samples) one must include the necessary controls to account  
111 for instrument instability over time and batch to batch variation <sup>(21)</sup>. Capillary electrophoresis  
112 (CE) separates compounds by their mobility in an electric field, based on their charge,  
113 viscosity and size. It is well suited to highly charged polar metabolites such as organics acids,

114 nucleotides, peptides and their conjugates. It is coupled to MS instruments using electrospray  
115 ionisation (ESI)<sup>(27)</sup>. For high through-put techniques where it is desirable to have low run  
116 time per sample direct infusion mass spectrometry (DIMS) is often employed. In this  
117 approach metabolites are analysed by nano-electrospray ion source after infusion directly into  
118 the ion source without prior separation. A high-resolution, high accuracy instrument such as a  
119 Q-Exactive Orbitrap can identify individual metabolites based on their *m/z* ratios<sup>(28)</sup>.

120 As mentioned above, a key bottleneck in employing any of these techniques is the  
121 identification of the compounds. Tandem MS or MS/MS is a powerful technique which  
122 enables identification of compounds. Using this approach initial ionised analytes are  
123 fragmented to produce smaller product ions from a parent ion. The ions can undergo several  
124 rounds of fragmentation, depending on the instrument. The first round (MS) is known as MS1  
125 and the subsequent fragmentation is MS2, MS3,.....MS<sup>n</sup>. As modern instruments have high  
126 mass accuracy, *m/z* of the fragments are used to build up a profile of a compound enabling  
127 identification which can then be confirmed with original standards<sup>(29,30)</sup>. Finally, it is worth  
128 noting that all these techniques can be run in either a targeted or un-targeted mode. In the  
129 targeted mode a predefined list of metabolites are measured, whereas, in an un-targeted mode  
130 as many features as possible are measured. Depending on the research question, one can  
131 decide to operate in either mode or use a combination of both.

132

### 133 **Food Intake Biomarkers**

134 There are multiple study designs in which metabolomics can be applied to identify food  
135 intake biomarkers. Previous research study designs have employed one of two approaches  
136 either conducting an intervention study or using samples from a cross sectional or  
137 epidemiology study to identify metabolites associated with food intake<sup>(31, 32)</sup>. Human  
138 intervention study designs involve requesting participants to consume specific food(s) over a  
139 defined period of time and biofluids, such as blood and urine, are collected at specific time-  
140 points depending on research interests. Once biofluids are collected a range of metabolomic  
141 techniques as described above can be used to identify metabolites associated with the food  
142 intake. The time period involved in intervention studies varies depending on the research  
143 aims and can range from acute (single day food challenge), to short- (days) or medium-  
144 (weeks) term interventions. Within the umbrella term of intervention studies, there are  
145 multiple designs and considerations. When implementing a cross-over design participants are  
146 asked to follow specific dietary instructions, i.e. consuming a specific amount of a food of  
147 interest for a set time and changing to a diet with different amounts of, or completely lacking,

148 the food of interest, thereby acting as their own control. Cross *et al* (2011) employed this  
149 approach when examining 24h urine samples for biomarkers of meat consumption.  
150 Participants were asked to consume 4 different diets for 14 days each containing a low  
151 (60g/d), medium (120g/d)-, high-portion of red meat (420g/d) or a protein equivalent  
152 vegetarian diet <sup>(32)</sup>. Targeted metabolic analyses were performed for four known meat-  
153 specific urinary metabolites, creatine, taurine, 1-methylhistidine and 3-methylhistidine. All  
154 four metabolites increased in concentration with increased meat consumption but only 1- and  
155 3-methylhistidine concentrations were statistically different for each meat dose. In these  
156 cross-over studies it is often necessary to consider a 'washout period': in this period certain  
157 dietary restrictions are in place, for example avoiding specific foods/food groups for a time  
158 prior to consuming a high "food of interest" diet. In a study related to cruciferous vegetables  
159 (CV) participants avoided CV and alliums for 12 days either side of a high CV diet  
160 intervention, containing broccoli and Brussel sprouts <sup>(33)</sup>. Clear urinary metabolic  
161 differentiation was seen between high and low CV diets, as signified in NMR spectra by four  
162 singlet peaks which were exclusive to high CV consumption and remained elevated above  
163 baseline at 48h post consumption. The peaks were identified as S-methyl cysteine sulfoxide,  
164 a sulfur containing amino acid ubiquitous in CV, and its metabolites.  
165 Parallel group intervention studies have also been successful in food intake biomarker  
166 discovery. Hanhineva and colleagues randomised participants to follow one of three diets  
167 over a twelve week period including a healthy diet (wholegrain enriched diet, fatty fish and  
168 bilberries), a wholegrain-enriched diet or a control diet (avoiding whole grain cereals and  
169 bilberries, consuming low-fibre products, limiting fatty fish intake to one portion per  
170 week)<sup>(34)</sup>. Plasma metabolomics revealed that CMPF (3-carboxy-4-methyl-5-propyl-2-  
171 furanpropionic acid) was associated with fatty fish intake and alkylresorcinol metabolites  
172 were associated with wholegrain intake.  
173 Using samples from epidemiology studies one examines correlations between self-reported  
174 food intake and biomarkers measured in urine or blood samples. Guertin *et al* (2014), applied  
175 an UPLC (ultra high pressure liquid chromatography)- and GC-MS metabolomics approach  
176 when examining serum samples from a subset of the Prostate, Lung, Colorectal, and  
177 Ovarian (PLCO) Cancer Screening Trial to identify biomarkers related to intake of 36 food  
178 groups <sup>(8)</sup>. The data revealed that 39 biomarkers were significantly associated with intake of  
179 food groups such as citrus, green vegetables, red meat, fish, shellfish, butter, peanuts, rice,  
180 coffee, beer, liquor, total alcohol, and multivitamins. Other approaches have compared

181 consumer and non-consumers of certain foods to identify biomarkers increased in the  
182 consumers. Using this approach Rothwell et al. identified discriminating biomarkers in the  
183 urinary metabolome of 20 high coffee consumers and 19 non-consumers in a subset of the  
184 SU.VI.MAX2 cohort <sup>(35)</sup>. Many other examples using this approach have emerged in recent  
185 years and the readers are referred to Guasch-Ferré et al. (2018), for an overview of such  
186 studies<sup>(36)</sup>.

187 Once identified it is critical that the biomarkers are assessed for validity as biomarkers of  
188 food intake. Recently a validation procedure was put forward as part of the FoodBall  
189 consortium which included plausibility, dose-response, time-response, robustness, reliability,  
190 stability, analytical performance, and inter-laboratory reproducibility as the eight criteria for  
191 assessment of validation <sup>(37)</sup>. While assessment of all these criteria may not be possible in a  
192 single study – it is important that they are considered and that at least the plausibility and  
193 dose response are assessed. Using the above study designs a number of putative biomarkers  
194 have emerged in the literature- a full review of such markers is beyond the scope of this  
195 review and the readers are referred to work by the FoodBall consortium which has performed  
196 a series of systematic reviews for commonly consumed foods. The foods covered to date in  
197 the systematic reviews include (1) apples, pears and stone fruit, (2) legumes, (3) dairy and  
198 egg products and (4) non-alcoholic beverages <sup>(38-41)</sup> Other reviews which cover the  
199 commonly consumed foods in Europe are underway. From the presently published reviews it  
200 is obvious that a number of putative markers exist, however, there are no fully validated  
201 makers of these foods. This highlight the urgency in developing strategies to ensure that we  
202 have fully validated biomarkers.

203

#### 204 Use of food intake biomarkers in quantifying intake

205 The ultimate goal of a food intake biomarker is to quantify intake of the specific food.  
206 Despite the proliferation in the number of putative biomarkers of food intake there is paucity  
207 of data demonstrating the quantitative ability of food intake biomarkers. Notwithstanding  
208 this, there are two examples in the literature that demonstrate the potential.

209 Examining the potential of the well-established marker of citrus intake our previous work  
210 demonstrated that proline betaine could be used to determine citrus intake. Using a controlled  
211 dietary intervention approach participants consumed standardized breakfasts for three  
212 consecutive days over three weeks where orange juice intake was decreased over the three  
213 week period <sup>(42)</sup>. Using the urinary proline betaine concentrations calibration curves were  
214 established. Using these calibration curves the citrus intake was determined in an independent

215 cross sectional study of 560 individuals. There was excellent agreement between the self-  
216 report intake (estimated from a 4 day semi-weighed food diary) and the estimated intake from  
217 the biomarker with a low mean bias of 4.3g between the methods. This study clearly  
218 demonstrates the potential of well validated food intake biomarkers. In a separate study  
219 Garcia-Perez and colleagues examined the ability of tartaric acid to determine grape intake  
220 <sup>(43)</sup>. A dose response relationship was established between grape intake and urinary tartaric  
221 acid levels. The agreement between estimated intake and actual intake was good and a  
222 correlation coefficient of  $R^2=0.9$  was reported. Overall, these two examples provide strong  
223 evidence of the potential of food intake biomarkers and demonstrate the importance of  
224 assessing dose response relationships on identified biomarkers. However, it is also worth  
225 noting that not all biomarkers will be fully quantitative but will still yield useful information  
226 for examining relationships with health outcomes (Figure 1).

227

## 228 **Biomarkers of Dietary patterns**

229 In nutrition research, there has been an increased interest in examining the diet as a whole  
230 instead of examining intake of single foods or nutrients. With this in mind the concept of  
231 dietary patterns has emerged and the potential of using biomarkers to classify individuals into  
232 different dietary patterns is of interest. For the present review we focus on the studies that  
233 have used a metabolomics based approach to classify individuals into dietary patterns.

234 Andersen and colleagues used an untargeted metabolic phenotyping approach to distinguish  
235 between two dietary patterns with the purpose of developing a compliance measure for  
236 adherence to the New Nordic Diet (NND) or an Average Danish Diet (ADD) <sup>(44)</sup> (see Table  
237 1). Using the urinary metabolic profile a multivariate model was established that could  
238 distinguish the two dietary patterns with a low misclassification error rate (19%) clearly  
239 indicating that this approach could be used for examination of compliance to a certain dietary  
240 pattern. A follow up paper also demonstrated that a classification model could be built using  
241 plasma metabolites to assess compliance to the NND and ADD diets (11). Esko and  
242 colleagues used a controlled feeding study to examine three different dietary patterns. These  
243 dietary patterns differed in macronutrient composition: low fat (60% carbohydrate, 20% fat,  
244 20% protein), low glycemic index (40% carbohydrate, 40% fat, 20% protein) and very-low  
245 carbohydrate (10% carbohydrate, 60% fat, 30% protein) <sup>(45)</sup>. A classification model was built  
246 that could distinguish the three dietary patterns using plasma metabolites. These results  
247 support the concept that a metabolite based model could be used in checking for adherence to  
248 specific diets and for the examination of relationship between dietary patterns and health

249 outcomes in large epidemiological studies. Garcia-Perez and colleagues used a controlled  
250 intervention to develop a urinary metabolomics model that could classify individuals into  
251 dietary patterns <sup>(46)</sup>. The four diets were based on the WHO healthy eating guidelines for the  
252 prevention of non-communicable diseases (NCDs). Work from our laboratory, used a cross  
253 sectional study to develop a model based on urinary metabolomic data which could classify  
254 subjects into either a healthy or an unhealthy dietary pattern (16). The classification into the  
255 dietary patterns was supported by significant differences in blood parameters such as higher  
256 folate and 25(OH)-vitamin D in the healthy dietary pattern. The work presented by these  
257 examples demonstrate the potential of metabolomics based approaches to identify dietary  
258 patterns and study the relationships with health outcomes. However, further work is needed  
259 to refine and develop these concepts further so that metabolomics based biomarkers can be  
260 used for rapid and objective classification of individuals into dietary patterns.

261 While the above papers have developed the concept of examination of dietary patterns using  
262 metabolite biomarkers there is also a large interest in examining the relationship between the  
263 metabolomic profile and known predefined dietary patterns such as the Mediterranean Diet.  
264 The potential of such approaches is that it will allow the examination of the impact of dietary  
265 patterns on metabolic processes and pathways <sup>(47)</sup>. Collectively, the studies presented above  
266 provide compelling evidence for the potential of metabolite biomarkers as a method for  
267 objectively assigning individuals into dietary patterns and for studying the effects of the  
268 certain dietary patterns on metabolic pathways.

269

## 270 **Future Challenges and outlook**

271 While significant progress has been made in the last 5 years in the area of dietary biomarkers  
272 there remain a number of challenges that need to be addressed. The validation of putative  
273 biomarkers is often overlooked and confusion thus arises as to the validity of biomarkers. It is  
274 essential in moving forward that all food intake biomarkers are validated and a suggested  
275 validation scheme now exists. In many metabolomics studies the identification of metabolites  
276 to a high degree of certainty is challenging and many of the current databases lack  
277 metabolites that are related to food intake. International collaborative efforts are needed to try  
278 optimise the identification process. To ensure that the food intake biomarkers are functional  
279 in different ethnic groups it will be essential to develop quantitative methods for biomarker  
280 measurement to ensure reliable cross-cohort comparison. Examples of other challenges  
281 include the potential use of multiple biomarkers for single foods: optimal methods for their  
282 use to estimate intake will need to be developed. Furthermore, many biomarkers will be

283 indicators of short term intake and defining strategies to obtain measures of longterm intake  
284 still remains a challenge. While multiple challenges exist for the field it is also worth noting  
285 that considerable advances have been made in recent years and with global consolidated  
286 efforts it remains a possibility that objective biomarkers will improve our methods for  
287 assessing dietary intake.

288

## 289 **Financial Support**

290 This work was supported by a H2020 European Research Council (647783).

291

292 **Acknowledgements:** The authors acknowledge the support from Dr Aoife O’Gorman.

293

## 294 **Conflict of Interest**

295 The authors have conflict of interest.

296

## 297 **Figure Legend**

298 Figure 1. An overview of the applications of Dietary biomarkers. Biomarkers can give  
299 information on (1) food intake (2) dietary patterns and (3) relationships with health outcomes.

300



301

302

## REFERENCES

1. Bingham SA. Biomarkers in nutritional epidemiology. *Public Health Nutr* [Internet]. 2002;5(6a):821–7. Available from: [http://www.journals.cambridge.org/abstract\\_S136898000200109X](http://www.journals.cambridge.org/abstract_S136898000200109X)
2. Kipnis V, Midthune D, Freedman L et al. Bias in dietary-report instruments and its implications for nutritional epidemiology. *Public Health Nutr* [Internet]. 2002;5(6a):915–23. Available from: [http://www.journals.cambridge.org/abstract\\_S1368980002001234](http://www.journals.cambridge.org/abstract_S1368980002001234)
3. Dhurandhar N, Schoeller D, Brown AW et al. Energy Balance Measurement: When Something is Not Better than Nothing. *Int J Obes*. 2015;39(7):1109–13.
4. Ovesen L, Boeing H. The use of biomarkers in multicentric studies with particular consideration of iodine, sodium, iron, folate and vitamin D. *Eur J Clin Nutr*. 2002;56(SUPPL. 2):12–7.
5. Freedman LS, Commins JM, Moler JE et al. Pooled Results From 5 Validation Studies of Dietary Self-Report Instruments Using Recovery Biomarkers for Energy and Protein Intake Laurence. *Am J Epidemiol*. 2014;180(2):172–88.
6. Tasevska N, Runswick SA, McTaggart A et al. Urinary sucrose and fructose as biomarkers for sugar consumption. *Cancer Epidemiol Biomarkers Prev*. 2005;14(5):1287–94.
7. Gibbons H, McNulty BA, Nugent AP et al. A metabolomics approach to the identification of biomarkers of sugar-sweetened beverage intake. *Am J Clin Nutr*. 2015;101(3):471–7.
8. Guertin KA, Moore SC, Sampson JN et al. Metabolomics in nutritional epidemiology: Identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. *Am J Clin Nutr*. 2014;100(1):208–17.
9. Schmidt JA, Rinaldi S, Ferrari P et al. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort. *Am J Clin Nutr*. 2015;102(6):1518–26.
10. Rådjursöga M, Karlsson GB, Lindqvist HM et al. Metabolic profiles from two different breakfast meals characterized by <sup>1</sup>H NMR-based metabolomics. *Food Chem*. 2017;231:267–74.
11. Acar E, Gürdeniz G, Khakimov B et al. Biomarkers of Individual Foods, and Separation of Diets Using Untargeted LC-MS Based Plasma Metabolomics in a Randomized Controlled Trial. *Mol Nutr Food Res* [Internet]. 2018;1800215:1800215. Available from: <http://doi.wiley.com/10.1002/mnfr.201800215>
12. Gao Q, Praticò G, Scalbert A et al. A scheme for a flexible classification of dietary and health biomarkers. *Genes Nutr*. 2017;12(1):1–15.
13. Falcke JM, Bose N, Artyukhin AB et al. Linking Genomic and Metabolomic Natural Variation Uncovers Nematode Pheromone Biosynthesis. *Cell Chem Biol*. 2018;787–96.
14. Schuijt TJ, Lankelma JM, Scicluna BP et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. *Gut*. 2016;65(4):575–83.

15. Lampe JW, Huang Y, Neuhouser ML et al. Dietary biomarker evaluation in a controlled feeding study in women from the Women's Health Initiative cohort. *Am J Clin Nutr.* 2017;105(April):466–75.
16. O'Sullivan A, Gibney MJ, Brennan L. Dietary intake patterns are reflected in metabolomic profiles : potential role in dietary assessment studies 1 – 3. *Am J Clin Nutr.* 2011;(July):314–21.
17. Li W, Yang H, Buckley B, Wang L et al. A Novel Triple Stage Ion Trap MS method validated for curcumin pharmacokinetics application: A comparison summary of the latest validated curcumin LC/MS methods. *J Pharm Biomed Anal* [Internet]. 2018;156:116–24. Available from: <https://doi.org/10.1016/j.jpba.2018.04.022>
18. Wishart DS, Feunang YD, Marcu A et al. HMDB 4.0: The human metabolome database for 2018. *Nucleic Acids Res.* 2018;46(D1):D608–17.
19. Huan T, Tang C, Li R et al. MyCompoundID MS/MS Search: Metabolite Identification Using a Library of Predicted Fragment-Ion-Spectra of 383,830 Possible Human Metabolites. *Anal Chem.* 2015;87(20):10619–26.
20. Tautenhahn R, Patti GJ, Rinehart D et al. XCMS Online: a web-based platform to process untargeted metabolomic data. *Anal Chem.* 2012;84(11):5035–9.
21. Ułaszewska MM, Weinert CH, Trimigno A, et al. Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. *Mol Nutr Food Res* [Internet]. 2018;1800384. Available from: <http://doi.wiley.com/10.1002/mnfr.201800384>
22. Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. *Anal Bioanal Chem.* 2007;387(2):525–7.
23. Gibbons H, O'Gorman A, Brennan L. Metabolomics as a tool in nutritional research. *Curr Opin Lipidol.* 2015;26(1):30–4.
24. Sparkman OD, Penton ZE, Kitson FG. Gas Chromatography and Mass Spectrometry, A Practical Guide [Internet]. *Gas Chromatography and Mass Spectrometry* (Second edition). Academic Press; 2011 [cited 2018 Jul 24]. 285-292 p. Available from: <http://www.sciencedirect.com/science/article/pii/B9780123736284000538%5Cn>
25. Halket JM, Waterman D, Przyborowska AM et al. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. *J Exp Bot* [Internet]. 2005 Jan 1 [cited 2018 Mar 7];56(410):219–43. Available from: <https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eri069>
26. Marquet P. LC-MS vs. GC-MS, online extraction systems, advantages of technology for drug screening assays. *Methods Mol Biol* [Internet]. 2012 [cited 2018 Sep 25];902:15–27. Available from: [http://link.springer.com/10.1007/978-1-61779-934-1\\_2](http://link.springer.com/10.1007/978-1-61779-934-1_2)
27. Mikšík I. Coupling of CE-MS for protein and peptide analysis. *J Sep Sci* [Internet]. 2018;1–37. Available from: <http://doi.wiley.com/10.1002/jssc.201800817>
28. Ren JL, Zhang AH, Kong L et al. Advances in mass spectrometry-based metabolomics for investigation of metabolites. *RSC Adv.* 2018;8(40):22335–50.
29. Sumner LW, Amberg A, Barrett D et al. Proposed minimum reporting standards for

chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). *Metabolomics*. 2007;3(3):211–21.

30. Blaženović I, Kind T, Ji J et al. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. *Metabolites*. 2018;8(2).
31. O’Gorman A, Gibbons H, Brennan L. Metabolomics in the identification of biomarkers of dietary intake. *Comput Struct Biotechnol [Internet]*. 2013;4(5):1–7. Available from: <http://dx.doi.org/10.5936/csbt.201301004>
32. Cross AJ, Major JM, Sinha R. Urinary Biomarkers of Meat Consumption. *Cancer Epidemiol Biomarkers Prev*. 2011;20(6):1107–11.
33. Edmands WMB, Beckonert OP, Stella C, et al. Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. *J Proteome Res*. 2011;10(10):4513–21.
34. Hanhineva K, Lankinen MA, Pedret A et al. Nontargeted Metabolite Profiling Discriminates Diet-Specific Biomarkers for Consumption of Whole Grains, Fatty Fish, and Bilberries in a Randomized Controlled Trial. *J Nutr [Internet]*. 2015;145(1):7–17. Available from: <http://jn.nutrition.org/cgi/doi/10.3945/jn.114.196840>
35. Rothwell JA, Fillâtre Y, Martin JF et al. New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects. *PLoS One*. 2014;9(4).
36. Guasch-Ferré M, Bhupathiraju SN, Hu FB. Use of Metabolomics in Improving Assessment of Dietary Intake. *Clin Chem [Internet]*. 2018 Jan 16 [cited 2018 Sep 26];64(1):82–98. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/29038146>
37. Dragsted L, Gao Q, Scalbert A et al. Validation of food intake biomarkers - critical assessment of candidate biomarkers. *Genes Nutr*. 2018;13(14):1–14.
38. Ułaszewska M, Vázquez-Manjarrez N, Garcia-Aloy M et al. Food intake biomarkers for apple, pear, and stone fruit. *Genes Nutr*. 2018;1–16.
39. Sri Harsha PSC, Wahab RA, Garcia-Aloy M et al. Biomarkers of legume intake in human intervention and observational studies: a systematic review. *Genes Nutr*. 2018;13(1):25.
40. Münger LH, Garcia-Aloy M, Vázquez-Fresno R et al. Biomarker of food intake for assessing the consumption of dairy and egg products. *Genes Nutr*. 2018;13(1):26. Available from: <https://genesandnutrition.biomedcentral.com/articles/10.1186/s12263-018-0615-5>
41. Rothwell JA, Madrid-Gambin F, Garcia-Aloy M et al. Biomarkers of intake for coffee, tea, and sweetened beverages. *Genes Nutr*. 2018;13(1):1–18.
42. Gibbons H, Michielsen CJR, Rundle M et al. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. *Mol Nutr Food Res*. 2017;61(10):1–8.
43. Garcia-Perez I, Posma JM, Chambers ES et al. An Analytical Pipeline for Quantitative Characterization of Dietary Intake: Application to Assess Grape Intake. *J Agric Food Chem*. 2016;64(11):2423–31.

44. Andersen MBS, Rinnan Å, Manach C et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. *J Proteome Res.* 2014;13(3):1405–18.
45. Esko TT, Hirschhorn JN, Feldman HA et al. Metabolomic profiles as reliable biomarkers of dietary composition. *Am J Clin Nutr.* 2017;105(3):547–54.
46. Garcia-Perez I, Posma JM, Gibson R et al. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. *Lancet Diabetes Endocrinol [Internet].* 2017;5(3):184–95. Available from: [http://dx.doi.org/10.1016/S2213-8587\(16\)30419-3](http://dx.doi.org/10.1016/S2213-8587(16)30419-3)
47. Playdon MC, Moore SC, Derkach A et al. Identifying biomarkers of dietary patterns by using metabolomics. *Am J Clin Nutr [Internet].* 2017;105(2):ajcn144501. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/28031192%0Ahttp://ajcn.nutrition.org/lookup/doi/10.3945/ajcn.116.144501>
48. Gibbons H, Carr E, McNulty BA et al. Metabolomic-based identification of clusters that reflect dietary patterns. *Mol Nutr Food Res.* 2017;61(10):1–11.

**Table 1. Overview of studies using biomarkers for determining dietary patterns.**

| Dietary Pattern                                                                  | Study Type (N)                                             | Dietary Assessment tool          | Biofluid                                    | Analytic technique | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reference |
|----------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------|---------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| New Nordic Diet (NND) or Average Danish Diet (ADD)                               | 6 month parallel intervention study (181)                  | Weighed dietary records          | 24h urine samples                           | UPLC-qTOF-MS       | Identified metabolite markers of individual foods such as citrus, cocoa-containing products, & fish as well as more general dietary traits such as high fruit & vegetable intake or high intake of heat-treated foods. Misclassification rate for two dietary patterns in a validation set with 139 samples was 19% based on 67 selected features in urine.                                                                                                                                                                                                                                           | (44)      |
| New Nordic Diet (NND) or Average Danish Diet (ADD)                               | 26 week parallel intervention study (146)                  | N/A had control of food provided | Fasting plasma samples at 0,12 and 26 weeks | UPLC-qTOF-MS       | Demonstrated that supervised machine learning with feature selection can separate NND and ADD samples (average test set performance AUC = 0.88). NND plasma metabolome characterized by diet-related metabolites, such as pipecolic acid betaine (whole grain), trimethylamine oxide, and prolyl hydroxyproline (both fish intake), theobromine (chocolate). Metabolites of amino acid (i.e., indolelactic acid and hydroxy-3-methylbutyrate) and fat metabolism (butyryl carnitine) characterized ADD whereas NND was associated with higher concentrations of polyunsaturated phosphatidylcholines. | (11)      |
| low fat (60% CHO, 20% fat, 20% protein), low GI (40% CHO, 40% fat, 20% protein), | 3 test diets, each for a 4-wk period crossover design (21) | N/A observed consumption         | Fasting Plasma samples at baseline & end of | LC-MS/MS           | Identified 152 metabolites whose concentrations differed for $\geq 1$ diet compared with the others, including DAGs & TAGSs, BCAAs, & markers reflecting metabolic status. A classifier model was constructed to identify each diet.                                                                                                                                                                                                                                                                                                                                                                  | (45)      |

|                                                                                                                                       |                                                                                                                  |                                    |                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| or very-low CHO<br>(10% CHO, 60% fat,<br>30% protein)                                                                                 |                                                                                                                  |                                    | each 4-wk period          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 4 dietary interventions in concordance with the WHO healthy eating guidelines                                                         | RCT crossover 4 x 72 h study stays (19)<br>Cohort studies:<br>INTERMAP UK (225)<br>Healthy eating<br>Danish (66) | N/A observed consumption           | 24 h pooled urine samples | <sup>1</sup> H-NMR          | Developed urinary metabolite models for each diet & identified the associated metabolic profiles. Validated the models using data & samples from the cohort studies. Significant stepwise differences in metabolite concentrations were seen between diets with the lowest & highest metabolic risks. Application of metabolite models to the validation datasets confirmed the association between urinary metabolic & dietary profiles in the cohort studies: INTERMAP UK (p<0.0001) & Danish (p<0.0001).                                                                                                                                                                                                                      | (46) |
| Healthy Eating Index (HEI) 2010, Alternate Mediterranean Diet Score (aMED), WHO Healthy Diet Indicator (HDI), & Baltic Sea Diet (BSD) | Alpha-Tocopherol, Beta Carotene Cancer Prevention Study cohort (1336)                                            | 12 month validated FFQ             | fasting serum samples     | LC-MS, UHPLC-MS/MS, & GC-MS | The HEI-2010, aMED, HDI, & BSD were associated with 23, 46, 23, & 33 metabolites, respectively (17, 21, 11&10 metabolites, respectively, were chemically identified; r-range: -0.30 to 0.20; P = 6x10 <sup>-15</sup> to 8x10 <sup>-6</sup> ). Food-based diet indexes (HEI-2010, aMED, & BSD) were associated with metabolites correlated with most components used to score adherence (e.g. fruit, vegetables, wholegrains, fish, & unsaturated fat). HDI correlated with metabolites related to polyunsaturated fat & fibre components, but not other macro- or micronutrients (e.g., percentages of protein & cholesterol). The lysolipid & food & plant xenobiotic pathways were most strongly associated with diet quality. | (47) |
| Healthy cluster<br>Unhealthy cluster                                                                                                  | National Adult Nutrition                                                                                         | Four day semi-weighed food diaries | 50 mL first void urine    | <sup>1</sup> H-NMR          | Two-step cluster analysis applied to the urinary data to identify clusters. The subsequent model was used to classify an independent cohort into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (48) |

|  |                           |  |                                            |  |                                                                                                                                                                                                       |  |
|--|---------------------------|--|--------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  | Survey<br>(NANS)<br>(567) |  | sample<br>fasting<br>spot urine<br>samples |  | dietary patterns. Classification was supported by significant differences in nutrient status ( $p<0.05$ ). Validation in an independent group revealed that 94% of subjects were correctly classified |  |
|--|---------------------------|--|--------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

Note: UPLC-qTOF-MS; ultra high performance liquid chromatography quadrupole time of flight mass spectrometry, AUC; area under the curve, CHO; carbohydrate, GI; glycaemic index, DAGs; diacylglycerols, TAGSs; triacylglycerols, BCAAs; branched chain amino acids, RCT; randomized control trial,  $^1\text{H-NMR}$ ; proton nuclear magnetic resonance, FFQ; food frequency questionnaire, GC-MS; gas chromatography mass spectrometry.

