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Abstract

Dietary assessment methods including food-frequency questionnaires and food diaries are
associated with many measurement errors including energy under-reporting and incorrect
estimation of portion sizes. Such errors can lead to inconsistent results especially when
investigating the relationship between food intake and disease causation. To improve the
classification of a person’s dietary intake and therefore clarify proposed links between diet
and disease, reliable and accurate dietary assessment methods are essential. Dietary
biomarkers have emerged as a complimentary approach to the traditional methods and in
recent years, metabolomics has developed as a key technology for the identification of new
dietary biomarkers. The objective of this review is to give an overview of the approaches
used for the identification of biomarkers and potential use of the biomarkers.

Over the years a number of strategies have emerged for the discovery of dietary biomarkers
including acute and medium term interventions and cross-sectional/cohort study approaches.
Examples of the different approaches will be presented. Concomitant with the focus on single
biomarkers of specific foods there is an interest in development of biomarker signatures for
the identification of dietary patterns. In the present review we present an overview of the
techniques used in food intake biomarker discover and the experimental approaches used for
biomarker discovery and challenges faced in the field. While significant progress has been
achieved in the field of dietary biomarkers in recent years a number of challenges remain.
Addressing these challenges will be key to ensure success in implementing use of dietary

biomarkers.
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Introduction

In recent years, there has been growing interest in the potential of biomarkers in nutrition
research. One of the areas with great expectations is the field of dietary biomarkers or food
intake biomarkers. The interest in these biomarkers stems from the need for objective
measures of dietary intake. The traditional methods such as food frequency questionnaires
(FFQs), 24 h recalls and food diaries are all associated with a number of well-defined
limitations including under-reporting, recall errors and difficulty in assessment of portion

sizes 9,

Currently dietary biomarkers include 24h urinary sodium, nitrogen and
sucrose/fructose for estimation of salt, protein and sugar intake “™. In recent years, the
concept of biomarkers reflecting specific food intake has emerged. To date a number of
putative biomarkers exist for the intake of a range of foods including but not limited to red
meat, coffee, nuts, wine, vegetables, legumes, citrus fruit, tea, sugar sweetened beverages
D While some confusion exists in the literature over classification of biomarkers into
recovery or concentration biomarkers we prefer to use the newly defined flexible
classification scheme for biomarkers related to food intake 2. Food intake biomarkers are
single metabolites, or a combination of metabolites, reflecting the consumption of either a
specific food or food group, displaying a clear time- and dose-response after intake 2. With
this in mind, we present here an overview of the techniques used in food intake biomarker
discovery, the experimental approaches used for biomarker discovery and challenges faced in

the field.

Metabolomics: role in biomarker discovery

Metabolomics is the study of endogenous or exogenous metabolites in an organism.
Metabolites are found in tissues and bio-fluids and are influenced by a number of factors
including genetics ™, the microbiome ¥ and environmental exposures such as food,
exercise and pollutants ®>*®. Metabolomics has emerged as a key tool in biomarker studies
and in particular for biomarkers related to food intake. The sensitivity of modern
instrumentation used in metabolomics can detect metabolite concentrations as low as
0.1 ng/ml in plasma ®”. Metabolites by their nature, have a prodigious range of structures
which can inhibit identification as they can be transitory intermediates or end products of
biological processes. Identification of the vast array of possible metabolites is currently the
limiting factor in biomarker discovery. To aid the identification of metabolites a number of

databases have emerged. The human metabolite database (HMDB - http://www.hmdb.ca/) *®
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includes 114,100 empirical and in-silico compounds and is readily searchable. Other
databases include MyCompoundID, a library of 8,021 endogenous human metabolites with
10, 583,901 predicted products of these metabolites
(http://www.mycompoundid.org/mycompoundid_IsoMS/; @, the METLIN database
(http://metlin.scripps.edu;  ©®®  and MassBank of North  America (MoNA)

(http://mona.fiehnlab.ucdavis.edu/).

Measurement of the metabolites

Metabolites in biofluid samples represent a wide range of molecules with diverse chemical
nature and dynamic range. As a result, a number of platforms have emerged as key players in
terms of measuring metabolites for biomarker discovery. A complete detailed review of all
the techniques is beyond the scope of this review but an overview is given below and the
readers are referred to the following review for technical details on each approach V. In the
initial years of emergence of metabolomics, the literature was dominated with Nuclear
Magnetic resonance (NMR) based applications. NMR spectroscopy is a technique which has
comparatively low sensitivity compared with other techniques 2. However, it is useful as it
IS non-destructive, reproducible, quantitative and furnishes structural information. Little
sample preparation is required, and results are consistent between different laboratories 2.
The mass spectrometry based approaches are extremely sensitive and are often coupled with
a chromatography step to help with separation of the metabolites. Gas chromatography mass
spectrometry (GC-MS) is a technique particularly suited to compounds of low polarity such
as fatty acids, amino acids and sterols. Preparation of samples is somewhat complicated as
samples must undergo chemical derivatisation prior to analysis to ensure that they are
volatile. Compounds are separated on a column by their chemical properties causing them to
elute at specific times (retention time). The eluted compounds are ionised and their mass -to-
charge ratio (m/z) is determined ©®*. This technique is particularly suited to lipids and all non-
polar compounds .

Liquid chromatography mass spectrometry (LC-MS) is suitable for analysis of a broad range
of metabolites. Its advantages over GC-MS include simple sample preparation and ability to
analyse highly polar compounds (28) Metabolites are separated on a column and the eluted
compounds are ionized, and their m/z and retention time is detected as output. For analysis of
large batches (greater than 100 samples) one must include the necessary controls to account
for instrument instability over time and batch to batch variation V. Capillary electrophoresis
(CE) separates compounds by their mobility in an electric field, based on their charge,

viscosity and size. It is well suited to highly charged polar metabolites such as organics acids,
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nucleotides, peptides and their conjugates. It is coupled to MS instruments using electrospray
ionisation (ESI) ”. For high through-put techniques where it is desirable to have low run
time per sample direct infusion mass spectrometry (DIMS) is often employed. In this
approach metabolites are analysed by nano-electrospray ion source after infusion directly into
the ion source without prior separation. A high-resolution, high accuracy instrument such as a
Q-Exactive Orbitrap can identify individual metabolites based on their m/z ratios ©®.

As mentioned above, a key bottleneck in employing any of these techniques is the
identification of the compounds. Tandem MS or MS/MS is a powerful technique which
enables identification of compounds. Using this approach initial ionised analytes are
fragmented to produce smaller product ions from a parent ion. The ions can undergo several
rounds of fragmentation, depending on the instrument. The first round (MS) is known as MS1
and the subsequent fragmentation is MS2, MS3,....MS". As modern instruments have high
mass accuracy, m/z of the fragments are used to build up a profile of a compound enabling
identification which can then be confirmed with original standards ®**%. Finally, it is worth
noting that all these techniques can be run in either a targeted or un-targeted mode. In the
targeted mode a predefined list of metabolites are measured, whereas, in an un-targeted mode
as many features as possible are measured. Depending on the research question, one can

decide to operate in either mode or use a combination of both.

Food Intake Biomarkers

There are multiple study designs in which metabolomics can be applied to identify food
intake biomarkers. Previous research study designs have employed one of two approaches
either conducting an intervention study or using samples from a cross sectional or

e L% Human

epidemiology study to identify metabolites associated with food intak
intervention study designs involve requesting participants to consume specific food(s) over a
defined period of time and biofluids, such as blood and urine, are collected at specific time-
points depending on research interests. Once biofluids are collected a range of metabolomic
techniques as described above can be used to identify metabolites associated with the food
intake. The time period involved in intervention studies varies depending on the research
aims and can range from acute (single day food challenge), to short- (days) or medium-
(weeks) term interventions. Within the umbrella term of intervention studies, there are
multiple designs and considerations. When implementing a cross-over design participants are
asked to follow specific dietary instructions, i.e. consuming a specific amount of a food of

interest for a set time and changing to a diet with different amounts of, or completely lacking,
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the food of interest, thereby acting as their own control. Cross et al (2011) employed this
approach when examining 24h urine samples for biomarkers of meat consumption.
Participants were asked to consume 4 different diets for 14 days each containing a low
(60g/d), medium (120g/d)-, high-portion of red meat (420g/d) or a protein equivalent
vegetarian diet 2. Targeted metabolic analyses were performed for four known meat-
specific urinary metabolites, creatine, taurine, 1-methylhistidine and 3-methylhistidine. All
four metabolites increased in concentration with increased meat consumption but only 1- and
3-methylhistidine concentrations were statistically different for each meat dose. In these
cross-over studies it is often necessary to consider a ‘washout period’: in this period certain
dietary restrictions are in place, for example avoiding specific foods/food groups for a time
prior to consuming a high “food of interest” diet. In a study related to cruciferous vegetables
(CV) participants avoided CV and alliums for 12 days either side of a high CV diet

intervention, containing broccoli and Brussel sprouts ©%,

Clear urinary metabolic
differentiation was seen between high and low CV diets, as signified in NMR spectra by four
singlet peaks which were exclusive to high CV consumption and remained elevated above
baseline at 48h post consumption. The peaks were identified as S-methyl cysteine sulfoxide,
a sulfur containing amino acid ubiquitous in CV, and its metabolites.

Parallel group intervention studies have also been successful in food intake biomarker
discovery. Hanhineva and colleagues randomised participants to follow one of three diets
over a twelve week period including a healthy diet (wholegrain enriched diet, fatty fish and
bilberries), a wholegrain-enriched diet or a control diet (avoiding whole grain cereals and
bilberries, consuming low-fibre products, limiting fatty fish intake to one portion per
week)®¥. Plasma metabolomics revealed that CMPF (3-carboxy-4-methyl-5-propyl-2-
furanpropionic acid) was associated with fatty fish intake and alkylresorcinol metabolites
were associated with wholegrain intake.

Using samples from epidemiology studies one examines correlations between self-reported
food intake and biomarkers measured in urine or blood samples. Guertin et al (2014), applied
an UPLC (ultra high pressure liquid chromatography)- and GC-MS metabolomics approach

when examining serum samples from a subset of the Prostate, Lung, Colorectal, and
Ovarian (PLCO) Cancer Screening Trial to identify biomarkers related to intake of 36 food

groups ®. The data revealed that 39 biomarkers were significantly associated with intake of
food groups such as citrus, green vegetables, red meat, fish, shellfish, butter, peanuts, rice,
coffee, beer, liquor, total alcohol, and multivitamins. Other approaches have compared
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consumer and non-consumers of certain foods to identify biomarkers increased in the
consumers. Using this approach Rothwell et al. identified discriminating biomarkers in the
urinary metabolome of 20 high coffee consumers and 19 non-consumers in a subset of the
SU.VI.MAX2 cohort ®®. Many other examples using this approach have emerged in recent
years and the readers are referred to Guasch-Ferré et al. (2018), for an overview of such
studies®®).

Once identified it is critical that the biomarkers are assessed for validity as biomarkers of
food intake. Recently a validation procedure was put forward as part of the FoodBall
consortium which included plausibility, dose-response, time-response, robustness, reliability,
stability, analytical performance, and inter-laboratory reproducibility as the eight criteria for
assessment of validation ®”. While assessment of all these criteria may not be possible in a
single study — it is important that they are considered and that at least the plausibility and
dose response are assessed. Using the above study designs a number of putative biomarkers
have emerged in the literature- a full review of such markers is beyond the scope of this
review and the readers are referred to work by the FoodBall consortium which has performed
a series of systematic reviews for commonly consumed foods. The foods covered to date in
the systematic reviews include (1) apples, pears and stone fruit, (2) legumes, (3) dairy and
egg products and (4) non-alcoholic beverages ©®*Y Other reviews which cover the
commonly consumed foods in Europe are underway. From the presently published reviews it
is obvious that a number of putative markers exist, however, there are no fully validated
makers of these foods. This highlight the urgency in developing strategies to ensure that we

have fully validated biomarkers.

Use of food intake biomarkers in guantifying intake

The ultimate goal of a food intake biomarker is to quantify intake of the specific food.
Despite the proliferation in the number of putative biomarkers of food intake there is paucity
of data demonstrating the quantitative ability of food intake biomarkers. Notwithstanding
this, there are two examples in the literature that demonstrate the potential.

Examining the potential of the well-established marker of citrus intake our previous work
demonstrated that proline betaine could be used to determine citrus intake. Using a controlled
dietary intervention approach participants consumed standardized breakfasts for three
consecutive days over three weeks where orange juice intake was decreased over the three
week period “?. Using the urinary proline betaine concentrations calibration curves were

established. Using these calibration curves the citrus intake was determined in an independent
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cross sectional study of 560 individuals. There was excellent agreement between the self-
report intake (estimated from a 4 day semi-weighed food diary) and the estimated intake from
the biomarker with a low mean bias of 4.3g between the methods. This study clearly
demonstrates the potential of well validated food intake biomarkers. In a separate study
Garcia-Perez and colleagues examined the ability of tartaric acid to determine grape intake
“3) A dose response relationship was established between grape intake and urinary tartaric
acid levels. The agreement between estimated intake and actual intake was good and a
correlation coefficient of R?=0.9 was reported. Overall, these two examples provide strong
evidence of the potential of food intake biomarkers and demonstrate the importance of
assessing dose response relationships on identified biomarkers. However, it is also worth
noting that not all biomarkers will be fully quantitative but will still yield useful information
for examining relationships with health outcomes (Figure 1).

Biomarkers of Dietary patterns

In nutrition research, there has been an increased interest in examining the diet as a whole
instead of examining intake of single foods or nutrients. With this in mind the concept of
dietary patterns has emerged and the potential of using biomarkers to classify individuals into
different dietary patterns is of interest. For the present review we focus on the studies that
have used a metabolomics based approach to classify individuals into dietary patterns.
Andersen and colleagues used an untargeted metabolic phenotyping approach to distinguish
between two dietary patterns with the purpose of developing a compliance measure for
adherence to the New Nordic Diet (NND) or an Average Danish Diet (ADD) “¥ (see Table
1). Using the urinary metabolic profile a multivariate model was established that could
distinguish the two dietary patterns with a low misclassification error rate (19%) clearly
indicating that this approach could be used for examination of compliance to a certain dietary
pattern. A follow up paper also demonstrated that a classification model could be built using
plasma metabolites to assess compliance to the NND and ADD diets (11). Esko and
colleagues used a controlled feeding study to examine three different dietary patterns. These
dietary patterns differed in macronutrient composition: low fat (60% carbohydrate, 20% fat,
20% protein), low glycemic index (40% carbohydrate, 40% fat, 20% protein) and very-low
carbohydrate (10% carbohydrate, 60% fat, 30% protein ) “®. A classification model was built
that could distinguish the three dietary patterns using plasma metabolites. These results
support the concept that a metabolite based model could be used in checking for adherence to

specific diets and for the examination of relationship between dietary patterns and health
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outcomes in large epidemiological studies. Garcia-Perez and colleagues used a controlled
intervention to develop a urinary metabolomics model that could classify individuals into
dietary patterns “®. The four diets were based on the WHO healthy eating guidelines for the
prevention of non-communicable diseases (NCDs). Work from our laboratory, used a cross
sectional study to develop a model based on urinary metabolomic data which could classify
subjects into either a healthy or an unhealthy dietary pattern (16). The classification into the
dietary patterns was supported by significant differences in blood parameters such as higher
folate and 25(OH)-vitamin D in the healthy dietary pattern. The work presented by these
examples demonstrate the potential of metabolomics based approaches to identify dietary
patterns and study the relationships with health outcomes. However, further work is needed
to refine and develop these concepts further so that metabolomics based biomarkers can be
used for rapid and objective classification of individuals into dietary patterns.

While the above papers have developed the concept of examination of dietary patterns using
metabolite biomarkers there is also a large interest in examining the relationship between the
metabolomic profile and known predefined dietary patterns such as the Mediterranean Diet.
The potential of such approaches is that it will allow the examination of the impact of dietary
patterns on metabolic processes and pathways “”. Collectively, the studies presented above
provide compelling evidence for the potential of metabolite biomarkers as a method for
objectively assigning individuals into dietary patterns and for studying the effects of the
certain dietary patterns on metabolic pathways.

Future Challenges and outlook

While significant progress has been made in the last 5 years in the area of dietary biomarkers
there remain a number of challenges that need to be addressed. The validation of putative
biomarkers is often overlooked and confusion thus arises as to the validity of biomarkers. It is
essential in moving forward that all food intake biomarkers are validated and a suggested
validation scheme now exists. In many metabolomics studies the identification of metabolites
to a high degree of certainty is challenging and many of the current databases lack
metabolites that are related to food intake. International collaborative efforts are needed to try
optimise the identification process. To ensure that the food intake biomarkers are functional
in different ethnic groups it will be essential to develop quantitative methods for biomarker
measurement to ensure reliable cross-cohort comparison. Examples of other challenges
include the potential use of multiple biomarkers for single foods: optimal methods for their

use to estimate intake will need to be developed. Furthermore, many biomarkers will be
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indicators of short term intake and defining strategies to obtain measures of longterm intake
still remains a challenge. While multiple challenges exist for the field it is also worth noting
that considerable advances have been made in recent years and with global consolidated
efforts it remains a possibility that objective biomarkers will improve our methods for

assessing dietary intake.
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Figure Legend
Figure 1. An overview of the applications of Dietary biomarkers. Biomarkers can give

information on (1) food intake (2) dietary patterns and (3) relationships with health outcomes.
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Table 1. Overview of studies using biomarkers for determining dietary patterns.

Dietary Pattern Study Type | Dietary Biofluid | Analytic | Results Reference
(N) Assessment technique
tool
New Nordic Diet 6 month Weighed 24h urine | UPLC- Identified metabolite markers of individual foods | (44)
(NND) or parallel dietary samples | gTOF-MS | such as citrus, cocoa-containing products, & fish
Average Danish Diet | intervention | records as well as more general dietary traits such as high
(ADD) study (181) fruit & vegetable intake or high intake of heat-
treated foods. Misclassification rate for two
dietary patterns in a validation set with 139
samples was 19% based on 67 selected features in
urine.
New Nordic Diet 26 week N/A had Fasting UPLC- Demonstrated that supervised machine learning (11)
(NND) or parallel control of plasma qTOF-MS | with feature selection can separate NND and
Average Danish Diet | intervention | food samples ADD samples (average test set performance AUC
(ADD) study (146) | provided at 0,12 =0.88). NND plasma metabolome characterized
and 26 by diet-related metabolites, such as pipecolic acid
weeks betaine (whole grain), trimethylamine oxide, and
prolyl hydroxyproline (both fish intake),
theobromine (chocolate). Metabolites of amino
acid (i.e., indolelactic acid and hydroxy-3-
methylbutyrate) and fat metabolism (butyryl
carnitine) characterized ADD whereas NND was
associated with higher concentrations of
polyunsaturated phosphatidylcholines.
low fat (60% CHO, 3 test diets, | N/A observed | Fasting LC- Identified 152 metabolites whose concentrations | (45)
20% fat, 20% each for a 4- | consumption | Plasma MS/MS differed for >1 diet compared with the others,
protein), wk period samples including DAGs & TAGSs, BCAAs, & markers
low GI (40% CHO, crossover at reflecting metabolic status. A classifier model
40% fat, 20% design (21) baseline was constructed to identify each diet.
protein), & end of
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or very-low CHO each 4-
(10% CHO, 60% fat, wk
30% protein) period
4 dietary RCT N/A observed | 24 h IH-NMR | Developed urinary metabolite models for each (46)
interventions in crossover 4 | consumption | pooled diet & identified the associated metabolic
concordance with the | x 72 h study urine profiles. Validated the models using data &
WHO healthy eating | stays (19) samples samples from the cohort studies. Significant
guidelines Cohort stepwise differences in metabolite concentrations
studies: were seen between diets with the lowest &
INTERMA highest metabolic risks. Application of metabolite
P UK (225) models to the validation datasets confirmed the
Healthy association between urinary metabolic & dietary
eating profiles in the cohort studies: INTERMAP UK
Danish (66) (p<0-0001) & Danish (p<0-0001).
Healthy Eating Index | Alpha- 12 month fasting LC-MS, The HEI-2010, aMED, HDI, & BSD were (47)
(HEI) 2010, Tocopherol, | validated serum UHPLC- | associated with 23, 46, 23, & 33 metabolites,
Alternate Beta FFQ samples | MS/MS, respectively (17, 21, 11&10 metabolites,
Mediterranean Diet Carotene & GC-MS | respectively, were chemically identified; r-range:
Score (aMED), Cancer -0.30 t0 0.20; P = 6x10™* to 8x10™®). Food-based
WHO Healthy Diet Prevention diet indexes (HEI-2010, aMED, & BSD) were
Indicator (HDI), Study associated with metabolites correlated with most
& Baltic Sea Diet cohort components used to score adherence (e.g. fruit,
(BSD) (1336) vegetables, wholegrains, fish, & unsaturated fat).
HDI correlated with metabolites related to
polyunsaturated fat & fibre components, but not
other macro- or micronutrients (e.g., percentages
of protein & cholesterol). The lysolipid & food &
plant xenobiotic pathways were most strongly
associated with diet quality.
Healthy cluster National Four day 50 mL 'H-NMR | Two-step cluster analysis applied to the urinary (48)
Unhealthy cluster Adult semi-weighed | first void data to identify clusters. The subsequent model
Nutrition food diaries urine was used to classify an independent cohort into
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Survey sample dietary patterns. Classification was supported by

(NANS) significant differences in nutrient status (p<0.05).

(567) fasting Validation in an independent group revealed that
spot urine 94% of subjects were correctly classified
samples

Note: UPLC-qTOF-MS; ultra high performance liquid chromatography quadrupole time of flight mass spectrometry, AUC; area under the curve, CHO; carbohydrate, Gl;
glycaemic index, DAGs; diacylglycerols, TAGSs; triacylglycerols, BCAAs; branched chain amino acids, RCT; randomized control trial, *H-NMR; proton nuclear magnetic

resonance, FFQ; food frequency questionnaire, GC-MS; gas chromatography mass spectrometry.
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