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Abstract
Conversation partners have a tendency to adapt their vocal in-
tensity to each other and to other social and environmental fac-
tors. A socially adequate vocal intensity level by a speech syn-
thesiser that goes beyond mere volume adjustment is highly de-
sirable for a rewarding and successful human-machine or ma-
chine mediated human-human interaction. This paper examines
the interaction of the Lombard effect and speaker entrainment
in a controlled experiment conducted with a confederate inter-
locutor. The interlocutor was asked to maintain either a soft,
a modal or a loud voice level during the dialogues. Through
half of the trials, subjects were exposed to a cocktail party noise
through headphones. The analytical results suggest that both the
background noise and the interlocutor’s voice level affect the
dynamics of speaker entrainment. Speakers appear to still en-
train to the voice level of their interlocutor in noisy conditions,
though to a lesser extent, as strategies of ensuring intelligibility
affect voice levels as well. These findings could be leveraged in
spoken dialogue systems and speech generating devices to help
choose a vocal effort level for the synthetic voice that is both
intelligible and socially suited to a specific interaction.
Index Terms: entrainment, vocal intensity, Lombard effect,
adaptive interaction

1. Introduction
Speakers continuously adjust their speech delivery in response
to context, using a variety of strategies to aid the conversation
flow and to ensure that their speech is intelligible. This as-
pect of inter-personal communication poses extra challenges for
people who use Augmentative and Alternative Communication
(AAC). Besides flexibility and variety of expression, context
awareness is needed in Speech Generating Devices (SGDs) to
respond to the physical and social environment [1]. To support
conversational interaction for people who rely on communica-
tion devices, the automatic adjustment of vocal intensity levels
as well as the active involvement of the communication partner
to suit differing communicator roles and relationships is desir-
able [2]. Spoken dialogue systems and virtual conversational
agents would greatly benefit from such context dependent flex-
ibility and the ability to take into account both environmental
and social aspects of conversation [3, 4, 5].

One of the ways people adapt their speech to the environ-
ment is by increasing their vocal intensity if there is background
noise. This is referred to as the Lombard effect [6, 7]. While
the Lombard effect has originally been viewed as an automatic
regulation of voice intensity based on auditory feedback, it has
been shown that a greater level of communicative involvement,

such as being immersed in a live conversation with an inter-
locutor (as opposed to reading out loud to a recording device),
increases the Lombard effect. In experiments conducted by [8],
the presence of a conversation partner increased the vocal inten-
sity modification in subjects’ speech, and it also elicited other
speaker dependent communicative strategies.

Apart from increased vocal intensity, speech produced in
noise also shows characteristics of decreased speech rate, a
spectral shift of energy towards the medium frequencies, in-
creased tension of the vocal folds, more pronounced articula-
tion and phoneme modification [9]. The distinctive features
of Lombard speech and of differing levels of vocal effort have
been widely studied [9, 10], and integrated into synthetic speech
[11, 12]. We have therefore now the prospect of integrating
context sensitivity and flexibility in vocal intensity levels into
a system much more proficiently than merely automatising the
volume adjustment of the Text-to-Speech engine.

Another phenomenon characterising the way speakers
adapt to context is the tendency of conversation partners to
behave similarly by adapting to each others’ speech. This phe-
nomenon is called entrainment (also referred to as alignment,
accommodation or adaptation) [13], and takes place in many
acoustic, phonetic, prosodic, syntactic and lexical dimensions
[14, 15, 16]. Entrainment has been shown to contribute to the
naturalness and success of a conversation and the speakers’ de-
gree of involvement in a conversation [4, 17].

Entrainment also occurs in human-machine dialogues [18,
3]. Vocal intensity, in particular, has proven to be a feature that
elicits adaptation in response to synthetic speech [19]. There-
fore, for a machine to be able to choose a suitable vocal intensity
level for a conversation, strategies of active listening are desir-
able, that go beyond responding to the level of the background
noise. It is also not sufficient however, to simply mimic the hu-
man conversation partner’s vocal behaviour because differing
levels of background noise can influence intelligibility and sub-
sequently may also affect the dynamics of speaker entrainment
during the course of an interaction.

There are also many other aspects of context that influence
the vocal intensity level conversation partners choose during an
interaction. The physical distance between the speakers [20],
the social setting [21], the speaker’s affect cueing [22], attitude
[23], personality [24] and the relationship between the conver-
sation partners [9], and inevitably, the topic of the dialogue can
greatly impact how loudly a conversation takes place. As an
example, when sharing about a confidential subject, or if there
are other persons in the room, a speaker may limit the mea-
sure with which they increase their vocal intensity in response
to background noise. At the same time, a speaker may raise
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their voice level in silence to account for a greater physical dis-
tance between them and their interlocutor, or to express their
dominant position in the social situation.

It would be very difficult for a system to take all of these
factors into account, but it is safe to assume, that the human
partner in the human-machine (or machine mediated human-
human) dialogue does take them into consideration. If this is
true, then as long as the machine is capable of computing a so-
cially appropriate response to a particular vocal intensity level
in a particular noise level, the flow of the conversation may re-
semble a more natural interaction. In this paper, we designed
a controlled experiment that aimed to make socially appropri-
ate estimations for system responses to a human conversation
partner.

2. The Experiment
The experiment aimed to simulate a human-machine interac-
tion situation, where a confederate interlocutor, henceforth re-
ferred to as the interlocutor, speaking with different levels of
vocal effort, played the role of the human speaker. Subjects
were recruited to play the role of the machine interlocutor, so
that a machine’s desired behaviour could be derived from the
subjects’ vocal behaviour in the experiment. Using a human
interlocutor here was necessary to display a natural array of
vocal intensity levels, as the mere amplitude modification of
pre-recorded utterances does not appear to elicit speaker adap-
tation when speakers are exposed to background noise [25]. The
subjects were asked to play an interactive card matching game
with the interlocutor which required a high level of cooperation
since the matches were not exact but based on topical similarity.
This resulted in task oriented dialogues, on average 3.5 minutes
in length. The experiment consisted of a 2 x 4 within-subject
design that crossed Background Noise (Silence or Noisy) and
Voice Levels (Reference, Soft, Modal or Loud). The main ma-
nipulation of the Voice Level variable was implemented by the
interlocutor maintaining a soft, modal or loud voice. In addi-
tion, the Reference Condition was used as a check, in which the
interlocutor was asked not to be specifically conscious of his
voice and focus on the game instead. The voice levels realised
by the interlocutor can be described along the vocal effort con-
tinuum, where Soft Voice is decreased vocal effort with voicing
(so not whispering) and Loud Voice is increased vocal effort
level that can be placed between Modal Voice and shouting.

The experimental conditions are summarised in Table 1:

Interlocutor’s voice Silence Noise
Reference CO1 CO2
Soft CO3 CO6
Modal CO4 CO7
Loud CO5 CO8

Table 1: Experimental Conditions

The noise that the subjects heard (cocktail party noise at
90db) was played through closed headphones, which was nec-
essary to avoid interfering with the interlocutor’s effort to main-
tain a specific voice level in each condition. The subject’s own
voice was played back into the headphones to provide addi-
tional self-monitoring feedback. This has been shown to have
a slight compensating effect aiding the Lombard effect taking
place similar to when the noise is played through loudspeakers
[8]. A short break was held between the sessions, to limit the
interlocutor’s vocal fatigue, and a screen was placed in between

the participants to ensure that all communication remained ver-
bal.

Twelve volunteer subjects, 10 males and 2 females aged
between 18 and 54 (averaging 27) participated in the exper-
iments. The role of the confederate interlocutor was played
by a 28 year old male native English speaker. The record-
ings were conducted using Behringer Super Cardioid XM1800S
microphones. The headphones used were Sony Stereo MDR
XD100’s. All audio was recorded on a 16 gigabyte SD Card us-
ing a Zoom H4n Handy Mobile Recorder. The recordings were
sampled at 44.1 kHz (16 bits, mono), to eliminate the effect of
clipping; then downsampled to 16 kHz.

After the sessions were finished, the subjects completed a
questionnaire in which they were asked what they thought the
experiment was measuring. The questionnaire revealed that
only 2 out of the 12 participants suspected that the experiment
had anything to do with their speech, and none of the 12 par-
ticipants suspected that their conversation partner was a con-
federate, but rather another participant in the experiment. This
means that the experiment succeeded in creating a setting where
the semi-conscious phenomena of speaker accommodation and
Lombard effect could be studied in different conditions of a
task-oriented dialogue.

3. Measuring Entrainment
3.1. Speech Features

The focus of the experiment is to show how the interlocutor’s
different voice levels and the background noise together af-
fected the subjects’ vocal intensity. The following acoustic fea-
tures were selected to characterise vocal intensity:

perceived loudness To estimate the perceived vocal intensity
of the speakers, an approximate measure of perceived
loudness was used: normalised intensity raised to the
power of 0.3 simulate human sensitivity to loudness.
This feature was extracted using openSMILE [26].

fundamental frequency f0, as extracted with openSMILE
[26] via the Sub-Harmonic-Summation (SHS) method.

voice quality A wavelet-transform based voice quality feature,
characterising voice qualities on a breathy to tense di-
mension called Peak Slope [27] was extracted.

3.2. Significant Difference in Conditions

Before we can look at how subjects adapted to the interlocutor’s
speech in the different experimental conditions, we need to val-
idate that the interlocutor indeed maintained a different voice
level corresponding to Soft, Modal and Loud vocal intensity in
each of the three conditions. We do this by computing the dif-
ference between the mean loudness feature of the interlocutor’s
speech over whole sessions for the three conditions, looking for
significance, and for the f0 and Peak Slope features for further
characterisation of these voice levels.

3.3. Global Similarity

Entrainment on a global level occurs if a particular feature of
a speaker’s speech, is similar to that of her interlocutor over a
whole conversational segment. This can be measured by calcu-
lating feature means over an entire session and comparing the
difference between conversational partners with the differences
between non-partners in the same corpus, or by comparing a
speaker to herself, talking to a different interlocutor, or to the
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same interlocutor but among different conditions [3]. In this
experiment we have access to data where the speaker and the
communication setting is identical, with the confederate inter-
locutor’s voluntary voice regulation being the only factor defin-
ing a different condition. In this setting, entrainment of the sub-
ject to the controlled interlocutor voice can be evaluated based
on the distance between subjects’ speech and the interlocutor’s
speech in a session, versus the distance between the subject’s
speech in the same session and the interlocutor’s speech in the
two other sessions within the same environmental condition, as
shown in equations 1 and 2 below.

ENT (s, c) = − | fc
s − fc

i | (1)

ENTX(s, c) = −
∑

x<>c | f
c
s − fx

i |
nc − 1

(2)

where s : subject, c : condition, f : speech feature mea-
sured, i : interlocutor, nc : number of conditions

3.4. Local Entrainment

Local entrainment encompasses different ways in which dy-
namic alignment occurs between interlocutors within a con-
versation. Global and local entrainment operate independently
within a dialogue. Local entrainment is therefore to be cal-
culated at the turn level rather than at the session level. [14]
defines turn as a maximal sequence of inter-pausal units from
a single speaker. Inter-pausal units (IPUs) refer to pause-free
speech sequences from one speaker, separated from one another
by at least 50ms. In our calculations, following the method pre-
sented in [14] the last IPU of each turn was compared with the
first IPU of the subsequent turn.

3.4.1. Synchrony

Synchrony is a form of local entrainment, which is concerned
with the relationship between interlocutors’ relative values.
Positive synchrony can be observed when speakers simultane-
ously show similar behaviours on the turn level, meaning that
if one speaker raises their vocal intensity, their interlocutor will
also raise their vocal intensity in the next turn [28]. Synchrony
in the negative direction, referred to as complementary entrain-
ment or asynchrony [4], is realised when the speakers mimic
an aspect of each others’ vocal behaviour, but in the opposite
direction. For vocal intensity, this means that if one interlocu-
tor speaks more softly in a turn, that will be met by a louder
utterance by the other speaker in the next turn.

3.4.2. Convergent versus Divergent Entrainment

Convergence is an aspect of local entrainment where the sim-
ilarity between the two speakers increases over time; their
speech accommodating towards a common point [28]. If the
two speakers move apart in different directions during the
course of the conversation, this is referred to as divergence.

Convergence is measured by the slope of a linear regression
over time (x-axis) and the difference in vocal intensity between
the interlocutor and subject in the following utterance (y-axis).
As the similarity measure itself is always negative, a positive
slope over time indicates convergent entrainment. Under the
specific conditions of our experiment, the subject is expected
to exhibit the majority of the adaptation in vocal intensity, but
the direction and speed of the entrainment is still a marker of
common communicative adaptive behaviour.

4. Results
4.1. Difference between Conditions

For the mean of the loudness parameter over the interlocutor’s
utterances, we found that the intensity of his voice was signifi-
cantly different for each of the different voice level Conditions
in both the Silent and the Noisy Condition (p <0.001*).

Figure 1: Average loudness of the interlocutor’s speech in the
different conditions

As shown in Figure 1, the interlocutor’s voice was slightly
louder in all cases when the subjects heard a background noise
indicating a reverse direction entrainment in response to the el-
evated vocal intensity of his conversation partners caused by
the Lombard effect. In the Reference Condition, this effect is
very significant, with the interlocutor’s voice in the Noisy en-
vironment Reference Condition being 51.8% louder than in the
Silent environment Condition. However, this difference is not
significant in the conditions where he is voluntarily controlling
his voice to reflect soft, modal and loud levels.

soft modal loud p-value
loudness 0.058 0.073 0.091 <0.001*
mean f0 85.5 89.2 96.0 <0.001*
PeakSlope -0.318 -0.353 -0.379 <0.001*

Table 2: Feature levels of the interlocutor’s speech and outcome
of one-way repeated measures ANOVA for each feature

Table 2 summarises the average values for each voice level
of the interlocutor. His vocal intensity increase as shown by
the loudness parameter, appears to correlate to a significant f0
increase. The PeakSlope parameter shows a steeper decline as
vocal intensity increases, indicating the three voice levels’ place
on a lax-to-tense continuum. This is consistent with the findings
of [23] and [22] showing that decreased vocal intensity can be
associated with characteristics of breathy phonation while the
increased vocal effort in louder voice levels contributes to in-
creased tension of the vocal folds.

While there is variance within all sessions that causes some
overlap when looking at the mean features of individual utter-
ances, the distribution of these features are significantly differ-
ent for each voice level. Hence we conclude that the interlocutor
succeeded in maintaining three distinct voice levels that can be
categorised as Soft, Modal and Loud Voice throughout the trials,
defining the different controlled Voice Level conditions.

In examining the subject’s uncontrolled speech, the Lom-
bard effect was clearly measurable, with the subject’s average
loudness value being 0.077 in the Silent Condition, and 0.100 in
the Noisy Condition. For the remainder of this section we will
focus on showing the results of entrainment measures between
interlocutor and subjects in the loudness parameter.
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4.2. Global similarity

Entrainment on a global level is defined by a smaller distance
between the parameters of subject and interlocutor within the
same conversation than between a subject and interlocutor that
are not in the same conversation (and hence under different con-
ditions). These distances are defined as negatives, hence conver-
gent entrainment is found if ENT(s,c) - ENTX(s,c) >0 .

Under the six conditions, entrainment is significant for the
Modal and Loud Voice Level in Silence, and for the Loud Voice
Level in Noise (see Table 3).

Silence Noise
t-value p-value t-value p-value

Soft -0.647 0.735 -4.315 0.999
Modal 3.597 0.002* 0.042 0.484
Loud 1.933 0.040* 4.781 <0.001*

Table 3: Global similarity: T-tests for global entrainment in dif-
ferent voice level and environment conditions

4.3. Local entrainment of subjects and interlocutor

4.3.1. Synchrony

Synchrony between interlocutor (x-axis) and subject (y-axis)
is measured by the slope of a linear regression on the paired
changes in vocal intensity, as the subject changes his vocal in-
tensity following a change by the interlocutor. Table 4 shows
the results of the synchrony measure.

Positive synchrony was found where the interlocutor spoke
with a Loud Voice in both Silent and Noisy Conditions and
Modal Voice in the Noisy Condition. Strong complementary
entrainment (synchronous change in the opposite direction) oc-
curred where the interlocutor applied a Soft Voice in a Noisy
Condition.

Reference Soft Modal Loud
Silence 0.13 -0.01 0.02 0.24
Noise 0.15 -0.86 0.24 0.41

Table 4: Synchrony: average similarity between speakers in
loudness change at turn exchanges

Figure 2 shows examples of negative synchrony in the Soft
Voice Level & Noisy Condition and positive synchrony in the
Loud Voice Level & Noisy Condition.

Figure 2: Time series of IPUs of subject 12 (red) and the inter-
locutor (blue) in the Soft Voice Level & Noisy Condition (CO6)
and in the Loud Voice Level & Noisy Condition (CO8).

4.3.2. Convergence

A positive convergence slope indicates a decreasing difference
in loudness between the speakers over the course of the conver-
sations. The interlocutor’s choice of controlled voice level did
not appear to have a significant effect on the convergence in the
dialogues. However, when looking at all conversations in the
Silent and the Noisy Condition, significant convergence is mea-
sured in the Silent Condition, while convergence in the Noisy
Condition approaches significance, as shown in Table 5.

Slope estimate t-value p-value
Silence 0.0056 2.369 0.018*
Noise 0.0068 1.937 0.053

Table 5: Convergence: T-tests for convergence over time in
loudness between subjects and interlocutor

5. Discussion
While the presence of background noise elicited a significantly
louder vocal intensity in the subjects’ speech in all conditions,
global entrainment was found to be most significant when the
interlocutor was speaking with a loud vocal intensity. When
talking to someone who speaks softly in a noisy environment,
speakers appear to adapt a strategy of raising their own vocal in-
tensity in response in the next turn, as demonstrated in the com-
plementary entrainment of the synchrony measure. This can be
interpreted as an active listening strategy to encourage the other
person to speak louder without having to explicitly prompt them
to do so. The presence of background noise attenuated, but did
not fully eliminate convergence in conversations.

The results of this work could be used in an adaptive di-
alogue system or SGD in at least two ways. In a purely
data-driven approach, vocal intensity response models could be
trained on the recordings for the system to classify the situation
based measuring the background noise together with the con-
versation partners voice and compute a suitable intensity value
for the next utterance. Additionally, these findings can be useful
in making design decisions, for example, on how many turns to
take into account for a decision, or in which situations to switch
to a different strategy of modelling entrainment.

6. Conclusion and Future Work
Both the environmental conditions and the interlocutor’s con-
trolled voice levels had a significant effect on what intensity
level subjects chose in a dialogue. This effect was observed
on the global level, in conversations as a whole as well as on
the turn level, influencing the dynamics of entrainment between
speakers. Based on these results we can conclude that if a sys-
tem is to be comprehensively context sensitive, it would have to
consider the level of background noise together with the con-
versation partner’s voice level to compute an appropriate vocal
intensity for an utterance. Future work involves studying fur-
ther dimensions of speaker entrainment on this data, such as
adaptation on the lexical and temporal domain.
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