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Abstract—In this paper, we derive a mathematical model of
an All-Digital Phase-Locked Loop (ADPLL) employing a time-
to-digital phase detector. The model we suggest represents a
nonlinear discrete-time map and provides significant benefits for
the simulation of a single PLL, a network of PLLs or their design.
In particular, the model allows us to take into account the jitter of
the reference and local clocks and other noises. The mathematical
model (the map) is then compared with a behavioural model
implemented in MATLAB Simulink and displays identical results.
The simulation of the mathematical and behavioural models are
further compared with experimental measurements of a 65nm
CMOS ADPLL and show a good agreement.

I. INTRODUCTION

All-Digital Phase-Lock Loops are widely used for frequency
synthesis in modern low-power electronics [1], [2]. They
can be found in microprocessors, radio receivers, mobile
telephones, GPS systems, etc. In the last two decades, the
application of PLLs has expanded beyond the use of a single
PLL and now includes PLL based networks. These networks
serve for generating a distributed clock signal in microproces-
sors or in systems-on-a-chip (SoCs) where, due to complexity,
it becomes impossible to supply a subsystem by a clock signal
from a single crystal oscillator. Starting from [3], researchers
have been exploring the idea of PLL networks as a clock
generating system [4]. In particular, ADPLL based networks
are suggested in [5].

A PLL/ADPLL network is a complex system that exhibits
synchronisation, mode locking and emerging behaviour. The
main tool for the analysis and design of PLL networks
is still behavioural modelling based on MATLAB Simulink
or hardware/mixed-signal description languages. While the
questions related to the stability of a PLL node (or a net-
work as a whole) and its synchronisation error are of major
importance, there are only a few analytical methods that
have been suggested so far to answer these questions [5]–[7].
This is because certain features of ADPLLs are very difficult
to incorporate into mathematical models. For instance, self-
sampling is one of the most challenging nonlinear features
of mixed analog/digital systems, and, to our knowledge, no
standard general tool for its analysis exists. Self-sampling is
a property that makes the system time variant and a few
studies have addressed it. Without a correct and reliable
theoretical model of an ADPLL, it would be impossible to
build on, and study a network. In addition, the simulation
time of a behavioural model is significantly longer than that
of a discrete-time iterative model and does not allow a full
exploration of the design parameter space.

Fig. 1. Schematic view of an ADPLL including its principal blocks:
phase-frequency detector (PFD), loop filter (proportional-integral), digitally
controlled oscillator (DCO) and frequency divider (/N).

In a common theoretical ADPLL model (presented, for
instance, in Ref. [6]), the detector’s error is represented as
a signum function of the time intervals between signals —
rising edges of the reference and divided clock. Analytically,
it is represented as: εk = sgn(∆tk), ∆tk = tr,k − td,k, where
k is the sampling instant that corresponds to the kth divided
clock signal, td,k is the time of the kth divided signal (D), and
tr,k is the time of the kth reference signal (R). By definition,
each sampling instant k generates a basic pair of signals: either
divided signal is followed by the reference signal or vice versa
(RD or DR). These pairs of signals are merged together for
k = 0, 1, 2 . . . and form the general sequence of the process.
As a result of this, any triple or higher sequence of the same
signal such as RRR or DDD can not be expressed within
this model. The common model works well for a PLL in a
synchronised mode, but any clock sequence that violates that
rule makes the model inconsistent. In reality, such sequences
can occur in a variety of cases. For example, during the
frequency acquisition phase, the frequency of the divided clock
signal is far from the reference signal and we will observe
many sub-sequences of the following type: RRR or DDD.
Similar sequences can appear when the system losses stability.

In this paper, we present a novel approach for modeling such
a system using a combined signal sequence, which serves as
the basis for our discrete-time model. The model we suggest
is general enough to capture RMS jitter as well as digital
jitter, frequency acquisition and dynamical instabilities. Based
on the model, we investigate the dynamics of the ADPLL
by varying the parameters of the system. The validation of
the mathematical model is carried out through a behavioural
model implemented in MATLAB Simulink and through a
series of experiments. The discrete-time model we derive
shows an absolute agreement with our behavioural model and
excellent agreement with the experimental results.



II. STATEMENT OF THE PROBLEM

An ADPLL (fig. 1) consists of a phase-frequency detector
(PFD), a loop filter (LF), a digitally controlled oscillator
(DCO) and a frequency divider (FD). All elements of the
system are implemented digitally. The role of the PFD is to
compare the phases between two input signals: the reference
signal (external) and the divided signal (from the DCO). It
then generates an error signal as a function of the phase (time)
difference. This error signal passes through the LF and controls
the frequency of the DCO. Finally, the signal from the DCO
is supplied back to the PFD through the FD and a feedback
loop minimises the phase error. This leads to both frequency
and phase synchronicity between the reference and divided
signals, whereas the DCO’s frequency appears to be multiplied
by the divider’s factor. This multiplication principle allows
one to generate a stable frequency required for a specific
application. For instance, the reference signal may come from
a piezoelectric oscillator that provides a relatively low but
stable frequency. A free running DCO generates a much higher
but unstable frequency. However, embedded into a PLL, it
provides a stable signal with a small frequency variance.

In this study, we consider an ADPLL model that employs a
digital phase detector as suggested in [5]. It detects the rising
edge of the reference and the local (DCO) signals, measures
the time difference between them and computes an error signal
in the form of a 3-bit digital signal. In order to exclude
incorrect measurements (for instance, the time between two
rising edges of the reference signal only), it is implemented
as a finite-state machine. The loop filter is realised as a
proportional-integral (PI) filter and it provides a control code
for the DCO. The DCO generates a rectangular clock signal
over a wide range of frequencies. The frequency changes
linearly with a constant frequency step from a minimum to
a maximum value with respect to a control code.

III. MATHEMATICAL DISCRETE-TIME MODEL

In this section, we suggest a new mathematical discrete-
time model of the ADPLL. In addition, this ADPLL has been
implemented in MATLAB Simulink and compared with our
mathematical model and experimental results. Here we study
the synchronisation between the reference and divided signals.
In this case, the local clock signal represents the time scaled
divided signal with the scaling factor 1/N .

A. Clock Signals Representation
We denote every rising edge of the reference clock (R) and

the divided clock (D) as clock signals. The period of each
clock is supposed to be constant. The sequence of the signals
(reference and the divided) are then merged into one sequence,

Fig. 2. The reference (R) and the divided (D) signals are presented as a
merged sequence of events. We distinguish the rising edge of R and D by
assigning the signature σ, where ‘+1’ corresponds to R and ‘-1’ corresponds
to D.

Σ where we distinguish R and D by assigning a signature σ:
‘+1’ corresponds to R and ‘−1’ corresponds to D. We denote
the time interval between two consecutive signals as τ . By
taking this into account we represent a sequence Σ as ordered
pairs of (τn, σn) (fig. 2). Further, we will show that Σ can be
represented as the result of a specific recursive procedure.

Let us consider tn, the time of a signal (either R or D),
where n is the signal’s number in the sequence. Obviously,
the time to the next closest signal regardless of its type is
τn = min(Dn, Rn), and its signature is σn = sgn(Dn −Rn).
Assuming that the next closest signal is the divided signal
(σn = −1), the following divided clock signal (Dn+1) comes
after one divided clock period: Dn+1 = TD, whereas the
time to the nearest reference clock signal decreases by Dn:
Rn+1 = Rn − Dn. Comparatively, when (σn = 1) we get:
Dn+1 = Dn −Rn, Rn+1 = TR.

We can generalise these conclusions in the form of a map:{
Dn+1 = TDθ−(Dn −Rn) + (Dn −Rn)θ

+(Dn −Rn)

Rn+1 = −(Dn −Rn)θ
−(Dn −Rn) + TRθ+(Dn −Rn)

(1)

where θ+(x) is the Heaviside step function and θ−(x) =
θ+(−x). We can simplify (1) by introducing the variable
transforms 2ηn = Dn −Rn and 2ξn = Dn +Rn:ηn+1 =

(
TD

2 + ηn

)
θ−(ηn) +

(
ηn − TR

2

)
θ+(ηn)

ξn+1 =
(

TD

2 − ηn

)
θ−(ηn) +

(
ηn + TR

2

)
θ+(ηn)

(2)

From the new variables ξn and ηn, the time τn to the next
closest signal and its signature σn transform as follows:

τn = ξn − |ηn|
σn = sign(ηn)

(3)

Equations (2) and (3) describe a free running system (no
feedback) with the reference and divided signals mapped
to a common time scale. It should be mentioned that it is
impossible to represent the process as a recursion between
(τn, σn) 7→ (τn+1, σn+1) due to the non bijective map
(ηn, ξn) → (τn, σn). That is why we shall refer to ηn and
ξn as primary state variables.

Our next step is to describe the PFD, the first block towards
a feedback control of the DCO.

B. Digital Phase-Frequency Detector
The digital PFD is implemented as a finite-state machine

whose diagram is shown in fig. 3(a). Its state is described by
two variables: the state of the detector – s and its mode –
m̂. Variable s reflects the leading clock. If the divided signal
leads, then s = 0, whereas if the reference clock leads, then
s = 1. The variable m̂ represents the operational mode of the

Fig. 3. Phase-frequency detector from [5] as a finite-state machine (a) and
its equivalent representation (b).



PFD. When it is in the measurement mode, m̂ = 1, whereas
when it is in the waiting mode, m̂ = 0. It can be shown,
that the PFD of fig. 3(a) can be equivalently represented as
in fig. 3(b) with the state variable m that can take three
values: m = {−1, 0, 1}. There is a correspondence between
the original description of the PFD in terms of (s, m̂) and the
modified description in terms of (m): (0, 0) → 0, (0, 1) → −1
and (1, 1) → 1. The advantage of this transform is that we
now describe the PFD using only one variable and use the
following analytical description:

mn+1 =
mn

2
+ σn

(
1− m2

n

2

)
(4)

where mn denotes the PFD state just before the nth signal.
The detector does not change its state in case of two or more
signals of the same type (with the same σ) occurring in the
merged sequence Σ. Thus, the merged sequence Σ is very
convenient here as it allows us to reproduce the memory-
dependent behaviour of the PFD in a simple manner.

C. Proportional and Integral Errors ε and ψ from the PFD
The digital PFD described in [5] provides an integer value

of the timing error εn = ±1,±2, . . . ,±ND. The timing error
εn has the sign ‘+’ when a reference signal triggers the
measurement mode and the sign ‘−’ when a divided signal
does so. ND is the maximum error that the PFD can provide.
The timing error is a function ε = H(τop, τTDC , ND) with

H = sgn(τop)min(⌈τop/τTDC⌉, ND) (5)

where τopn is the operating time of the PFD (the time between
two instants when m changes from 0 → 1 and from 1 → 0)
and τTDC is the time resolution step of the PFD. The sign of
τopn depends on the triggering signal.

Now we define the process that accumulates the operating
time τopn of the PFD in our model. If it is in the measurement
mode and the same type of signals occur in the sequence Σ,
the state of the PFD does not change. Thus, the operation
time increases. If the PFD is in the waiting mode, it holds the
last measured value, and any signal occurring next triggers the
measurement mode. This process is shown in fig. 4. Therefore,

τopn+1 = m2
nτ

op
n + τn+1mn+1 (6)

The detector provides an output timing error which is ready
fore use just after the next signal:

εn+1 = H(τopn , τTDC , ND) (7)

The accumulation of the errors in the integral path of the PI
filter occurs only at the divided clock signal. This gives the
equation for the integral error ψn:

ψn+1 = ψn + θ−(ηn)εn (8)

n

m
n

n
op

Fig. 4. The evolution of the variables σ, m and τop for a free running system.

D. The Frequency Control Procedure
Due to the self-sampled nature of the ADPLL, the frequency

of the divided signal fD changes only at the divided clock
signal, when σn = −1. The DCO suggested in [5] is designed
to generate a range of frequencies with a constant frequency
step, fDCO. The number of steps determines the DCO bit res-
olution. Beyond this range, frequency saturation takes place.
However, it is neglected here because all the experiments lie
within the control range. Therefore, the divided frequency can
be represented as: fDn = f0 + ∆fDCOvn, where f0 is the
initial divided frequency of the DCO, ∆fDCO is the divided
gain of the DCO and vn is the control signal we obtain after
the PI filter. The signal vn represents a linear combination of
the proportional (timing) and integral (cumulative) errors εn
and ψn: vn = Kpεn +Kiψn where Kp and Ki are the gains
of the proportional and integral paths of the PI filter.

It is straightforward to generalise the model with re-
spect to RMS jitter. For this, we add a random fluc-
tuation to the signal frequency just after the corre-
sponding signal occurred: fRn = fR exp[N(0, σR)θ

+(ηn)],
fDn = fD exp[N(0, σD)θ−(ηn)], where fR and fD are noise-
less frequencies, N(0, σ) is a random number obtained from a
Gaussian distribution with zero mean and standard deviation
σ. The quantity σD corresponds to the divided signal and σR
– to the reference signal.

E. Final Equations Taking into Account Jitter
By collecting all the equations that describe each block of

the PFD, we manage to involve a feedback loop and obtain
the discrete-time model (map) of the ADPLL:

fRn = fR exp[N(0, σR)θ
+(ηn)]

fDn = [f0 +∆fDCO(Kpεn +Kiψn)] exp[N(0, σD)θ−(ηn)]

ηn+1 =
(

1
2fD

n
+ ηn

)
θ−(ηn) +

(
ηn − 1

2fR
n

)
θ+(ηn)

ξn+1 =
(

1
2fD

n
− ηn

)
θ−(ηn) +

(
ηn + 1

2fR
n

)
θ+(ηn)

mn+1 = mn

2 + sign(ηn)
(
1− m2

n

2

)
τopn+1 = m2

nτ
op
n +mn+1(ξn+1 − |ηn+1|)

εn+1 = H(τopn , τTDC , ND)

ψn+1 = ψn + θ−(ηn)εn

(9)

This discrete-time model describes the state of the ADPLL
from one clock signal in the merged sequence Σ to another
one, thus representing the time evolution of the ADPLL.
Note that we require initial conditions to start the iterative
process (9). Usually, they are: τ0 = 0, ε0 = 0, ψ0 = 0,
m0 = 0, with η0 and ξ0 depending on the initial phases of the
divided and reference signals.

IV. RESULTS AND DISCUSSION

A prototype of a single ADPLL circuit having the described
architecture has been designed and fabricated in 65nm CMOS
technology and shown in figure 5. The architecture has been
specifically intended as a building block of scalable networks
for ADPLLs as described in [8] and [9]. The parameters of
the implemented ADPLL are given in table I. The goal of the
experiment is to highlight the relationship between the nature
of the transient process and the parameters of the PI filter. To
achieve, the ADPLL is implemented with the programmable
coefficients Ki and Kp. The measurements have been taken
from a single ADPLL connected to a reference clock while
leaving all the others inactive.



TABLE I
PARAMETERS OF THE ASIC IMPLEMENTATION OF THE ADPLL

Parameter Value
V DD 1.0 V

Feedback division coef. N 4
∆fDCO 4×156 kHz

Fmin DCO 4×135 MHz
Fmax DCO 4×175 MHz

τTDC 20 ps∗

∗
Obtained by simulation

In order to observe a transient process on the oscilloscope,
the input (reference) signal frequency was modulated by a
rectangular wave. In this way, the reference signal frequency
switched between the values 143 MHz and 167 MHz every
7.5 µs. After each switching of the frequency value, the
frequency remained constant for enough time to observe the
frequency acquisition of the divided signal. The transient
process is finished before the next switching, so that such a
configuration generated a repeated sequence of identical tran-
sient process waveforms (see an example of the observed plots
in 6(a)). Such an experiment is repeated for different values
of the filter coefficient Ki and Kp. Figure 6(b) and fig. 6(c)
show a zoomed segment of the transient process obtained in
the experiment for two sets of the filter parameters (black
dots). The result is then compared with the proposed analytical
model parameterised by the same filter coefficient values used
in the experiment (red dots). Moreover, the Simulink results
perfectly coincidence with the analytical results in a jitterless
case (blue line). This means that the algorithms in the Simulink
model were mapped correctly.

The major advantage of the discrete-time model is that
the simulations are very fast. For instance, in order to do a
simulation in MATLAB Simulink, an appropriate calculation’s
time step has to be chosen. Normally, it is less than the smallest
time scale parameter of the system. In our case it is determined
by τTDC = 20 ps. The simulation time for a set of experiments
is 5 µs. Therefore, in order to get the results in Simulink,
∼ 106 simulation steps are needed, whereas the suggested
map model needs only ∼ 103 iterating steps. More precisely, in
order to simulate 5 µs for the map (9), 1600 iterations needed.
On a typical PC (processor: 2.6 GHz Intel Core i5, memory:
16 GB 1600 MHz DDR3) 3 · 10−4 s are needed. While for
the Simulink model (solver: ode45, max step size: 10−11 s),
it takes about 5 s of computational time which is ∼ 104 times

Fig. 5. Die microphotograph of 4× 4 coupled oscillators ADPLLs network.
The proof-of-concept chip generating 1.1 – 2.4 GHz clock is implemented in
65 nm CMOS technology developed by Dr Galayko’s group.
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Fig. 6. (a) Modulated input and the ADPLL transient in the experiment; (b)
and (c) is the comparison of the experimental results (black dots) and the
discrete-time map (9) (red dots). The blue line corresponds to a jitterless case
of both the MATLAB Simulink behavioural model and the discrete-time map.

slower.
Finally, the discrete-time map allows an analytical investi-

gation of a single ADPLL as well as a fast simulation of an
ADPLL network including stochastic effects.
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