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Abstract—In this paper we consider a network of phase oscil-
lators. We develop the equations that model the time evolution
of the phase of each oscillator in the network. The oscillator
represents a modified Kuramoto oscillator and in this study we
discuss how these modifications are obtained. In the context of
this study, we use this network to model a network of PLLs
for distributed clock applications. We analyse analytically and
numerically the synchronisation modes of this system for different
types of the coupling function. We show that depending on
the properties of the coupling function, the network displays
either multiple coexisting synchronisation modes or only a single
synchronisation mode. While in the context of clock generation,
multiple synchronisation modes coexisting in the system at the
same parameters are a parasitic phenomenon. However in the
context of other application such as associative memory models,
mode-locking can be seen a useful phenomenon. The results
provide a deeper understanding of globally synchronised clock
networks with applications in microprocessor design.

I. INTRODUCTION

A network of coupled oscillators is a very common model
that allows one to describe complex phenomena in nature.
Collective behaviour and synchronisation are observed and
reported in engineering, physical, chemical and biological
systems [1]–[17] including power networks, laser networks,
superconductive Josephson junctions, circadian rhythm, as-
sociative memory, flashing of fireflies, periodical chemical
reactions and many more.

In microprocessor engineering, a phase oscillator appears in
clock generators. For example, a clock generating oscillator is
one of the main components of all microprocessors. Typically
a microprocessor contains one crystal oscillator that governs
all elements and sub-systems through a clock distribution
network. However, due to the complexity of microprocessor
architectures and the increasing number of elements in them,
it becomes more and more difficult to supply internal com-
ponents with a clock signal. The clock distribution network
required for modern microprocessors demands more energy
and complicates design. The inability of a single oscillator
to provide clocking for modern complex microsystems is
the main motivation for the development of distributed clock
networks.

One of the possible approaches to address this issue is to use
so-called globally asynchronous locally synchronous (GALS)
models [18]. Under this approach, a microprocessor or a
complex microsystem consists of several synchronised areas or
domains. All elements that belong to the same area are driven
by their own clock and communicate to each other by means
of a synchronous algorithm. The frequencies of the clocks in
different areas are supposed to be different. GALS systems

have a number of disadvantages such as a low communication
rate between synchronised areas or communications errors that
cannot be eliminated.

Since the studies of Pratt, Nguyen, Chandrakasan and
Gutnik [19], [20], globally synchronous locally synchronous
(GSLS) clock networks have been developed and studied
intensively [18], [21]–[23]. In this approach, each clock that
drives its designated area is represented by a phase locked
loop (PLL) and can interact with its neighbours (fig. 1).
As a result, the phase difference between two neighbour
oscillators changes. A typical PLL consists of a voltage control
oscillator (VCO), a phase detector (PD), a loop filter (LF) and
a frequency divider (FD).

PLLs that are implemented using only digital components
are called in this case all-digital phase locked loops (ADPLLs).
Digital components allow one to easily integrate a clock
network in the microprocessor architecture. In addition, the
reference clock made of a crystal oscillator is more stable in
comparison with the VCO in a PLL. It is known that GSLS
systems achieve global synchronisation over a certain range
of parameters, while in other cases these systems may display
undesired synchronisation regimes called mode-locking.

In this paper we address the issue of synchronisation
and mode-locking (undesired synchronised modes) and their
stability in a clock network. We present a theoretical model
for a network consisting of phase oscillators that model the
behaviour of PLLs. We study a simple network of four
oscillators to obtain analytical results and present numerical
simulations for a larger network. As we shall show later in
this paper, synchronisation modes and mode-locking strongly
depend on the form of the transfer function that determines
the nature of coupling between two neighbour oscillators.

The paper is organised as follows. in Section II we introduce
the model of a single phase oscillator. We show that phase and
frequency synchronisation occurs when a proportional-integral

Fig. 1. Schematic clock network on Cartesian grid.



loop filter (PI) is implemented within a single oscillator. In
Section III we extend our model to a four oscillator network.
We show that depending on the transfer function and control
parameters the system displays different types of stable co-
existing synchronous modes. We discuss the extension of our
model to a 3× 3 Cartesian network by performing numerical
simulation. Finally, Section IV summarises the results we have
achieved.

II. SINGLE OSCILLATOR AND SYNCHRONISATION WITH A

REFERENCE SIGNAL

In this section we introduce the equation that describes the
phase of a single oscillator driven by a harmonic reference
signal. We start with a brief study of the single oscillator and
we show that it is capable of synchronising with the reference
signal both in terms of the phase, and frequency, when an
integral path is included in the loop filter. This system is shown
schematically in figure 2 and we use it to model a PLL. Later
we will use this oscillator as a node for our network, however
we will omit the index j for now.

A single phase oscillator has a central frequency ω and
a reference input frequency Ω. These two signals serve as
the input of the phase detector that calculates the transfer
function h(∆ϕ) whose argument is the phase difference
∆ϕ = ϕref (t)− ϕ(t) between the reference phase ϕref and
the VCO phase ϕ. The output of the phase detector (the
transfer function) is then passed to the proportional-integral
controller (PI) denoted in the figure as the loop filter. The
output of the PI, the signal v, controls then the frequency of
the VCO. We can summarise this in the following equations

v = Kψ̇(t) +Mψ(t), (1)

ψ(t) =

t
∫

0

h (ϕref (t
′)− ϕ(t′)) dt′, (2)

ϕ̇(t) = ω + v∆ω, (3)

where K,M–gain factors for proportional and integral path in
PI filter, ψ–accumulated phase error.

The loop filter output signal adjusts the local oscillator
frequency in a linear way. All of this leads to a governing
equation for a local clock of the form (3), where ∆ω is
the adjustment slope. For the remainder of this work we
assume that ∆ω > 0 to simplify our analysis. Considering the

Fig. 2. Single phase-locked loop for local j-th oscillator.

particular case where the integral path is absent and M = 0,
we can find a simple governing equation from (1)-(3):

ϕ̇(t) = ω +∆ωKh (Ωt− ϕ(t)) , (4)

where ϕref (t) = Ωt. One may notice when h(x) = sin(x),
equation (4) transforms into the well known Kuramoto equa-
tion that can be found in a broad number of applications
including high-power VCO design [13].

In order to analyze the asymptotic behavior of (4) we
assume that the phase approaches a steady regime where
the oscillator has a constant frequency and constant phase
difference relative to the reference signal:

t → ∞ : ϕ(t) = ω̃t− ϕ̃, (5)

where ω̃, ϕ̃ are some constants. After substitution into (4)
we will get definitions for ω̃, ϕ̃ that corresponds to a stable
asymptotic solution:

h(ϕ̃) =
Ω− ω

∆ωK
, (6)

ω̃ = Ω, (7)

∆ωKh′(ϕ̃) > 0. (8)

It can be seen that oscillator might be synchronized with
external frequency Ω. The stable phase difference can be
found from (6) under the condition (8). This phase difference
is generally non-zero and depends upon system parameters
ω,Ω,K .

In order to perform further analysis, we eliminate the
integral in (1)–(3) by taking the derivative with respect to time:

ϕ̈(t) = ∆ωKh′ (ϕref (t)− ϕ(t)) (ϕ̇ref (t)− ϕ̇(t)) +

+∆ωMh (ϕref (t)− ϕ(t)) . (9)

We want to note that the resulting equation is not the Kuramoto
oscillator in its conventional form. So we refer to this equation
as a Kuramoto-like oscillator since it contains some similar
features. However, the transfer function h can be an arbitrary
function and the equation contains an additional term. Now, let
us substitute (5) into (9) in order to get corresponding stable
asymptotic conditions for both proportional and integral path.
After calculation one can obtain:

h(ϕ̃) = 0, (10)

ω̃ = Ω, (11)

h′(ϕ̃) > 0,K > 0,M > 0 or

h′(ϕ̃) < 0,K < 0,M < 0. (12)

It can be seen that the fixed points are determined by (10) and
depend only on the transfer function. Their stability depends
on the slope of the transfer function and the gain factors of the
loop filter. When h(0) = 0, h′(0) > 0,K > 0,M > 0 then the
local oscillator synchronizes with the reference clock in both
frequency and phase. For example, we can pick two different
transfer functions such as:

h(x) = [(π + x) mod 2π]− π, (13)

h(x) = sin(x). (14)



Both of them lead to synchronisation, no matter what the initial
conditions are. However, oscillator network modeled by such
PD transfer functions demonstrate different behavior. They
may exist in either a globally synchronised regime or a mode-
locking regime. We will demonstrate this in the next section
using an example of a four oscillator network connected in a
chain.

III. FOUR COUPLED OSCILLATORS IN A CHAIN

In this section we analyze the phase synchronisation of
an oscillator network with a periodic reference signal. We
determine the conditions when a globally synchronized mode
and a mode-locking regime can be observed.

A. Statement of the problem

For simplicity, let us consider a clock network which
consists of four oscillators (fig. 3), where the first one is
connected to stable reference clock. The first oscillator has
three neighbours while all of the others have just two. In this
case, each PLL consist of a VCO, a PI loop filter and N phase
detectors connected in parallel. The number of phase detectors
is equal to the number of neighbors in the vicinity of each
VCO. The first oscillator has three neighbors where one of
them is the reference clock, whereas the rest of the oscillators
have only two neighbors. Each phase detector on fig. 4 is able
to compare only one pair of phases. That’s why two or more
PD is needed for implementation in the network.

Each phase detector in figure 4 calculates the phase dif-
ference between neighbor and local clocks and maps it in
accordance to transfer function h(∆ϕij). Then, the signals
from each local phase detector are summed together into one
signal that goes to the PI filter which includes proportional
and integral paths with gain factors Kj ,Mj . Depending on
an oscillator’s position in the network, these factors may
be different. However, here we use simple averaging Kj =
K/nj,Mj = M/nj , where K,M are the same for all oscil-
lators in the network, nj – number of neighbors. Afterwards,
the PI output signal v controls the frequency of the VCO in a
linear way. Realistically, a control signal has its own minimum
and maximum limits below or above which saturation takes
place. In this research we assume that saturation does not
occur.

Similar to (1)–(3) we write phase equations for our network,

Fig. 3. Four oscillator chain network. The first oscillator connected to
reference clock signal.

Fig. 4. PLL scheme for each node in clock network. Dashed phase detector
corresponds to reference clock and embedded only in the first PLL.

where K denotes ∆ωK and M denotes ∆ωM:

ϕ̇i = ωi +
K

ni
ψi +

M

ni

t
∫

0

ψi(t
′) dt′, (15)

ψi =
∑

j∈N

h(ϕj − ϕi), (16)

ni = {3, 2, 2, 2}. (17)

Here i = {1, 2, 3, 4} denotes the number of an oscillator.
Summation is performed over the number of topologically
connected neighbors N. For example, if i = 1 then:
∑

j∈N

h(ϕj −ϕ1) = h(ϕref −ϕ1)+ h(ϕ2 −ϕ1) + h(ϕ3 −ϕ1),

where φref = Ωt.
Lets eliminate the integral by differentiating, as we did

previously:

ϕ̈i =
1

ni

∑

j∈N

(

Kh′(ϕj − ϕi)(ϕ̇j − ϕ̇i) +Mh(ϕj − ϕi)
)

. (18)

Now, we assume asymptotic solution t → ∞,
ϕi(t) = ω̃it− ϕ̃i. After substitution into (18) we get:

∑

j∈N

h(ϕ̃j − ϕ̃i) = 0, (19)

ω̃i = Ω. (20)

Equation (19) determines set of fixed points, where ϕ̃j − ϕ̃i

represents phase shift between j-th and i-th oscillators while
their frequency is constant. In this case all oscillators fre-
quency will be Ω. Notice that ϕ̃ref = 0. We will discuss
the issue of stability further using particular examples.

B. Coupling through a linear function

Assume that a phase detector can be described using a trans-
fer function of the form (13). Such a PD includes information
about both the sign and the absolute value of phase error and
can be made from just a few XOR logic gates. First, we will
find possible modes that can occur in our network and then
we will check their stability.

In order to determine possible modes we substitute (13) into
(19) and get a system of four nonlinear algebraic equations,



where ϕ̃ref = 0:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

h(−ϕ̃1) + h(ϕ̃2 − ϕ̃1) + h(ϕ̃3 − ϕ̃1) = 0,

h(ϕ̃1 − ϕ̃2) + h(ϕ̃4 − ϕ̃2) = 0,

h(ϕ̃1 − ϕ̃3) + h(ϕ̃4 − ϕ̃3) = 0,

h(ϕ̃3 − ϕ̃4) + h(ϕ̃2 − ϕ̃4) = 0.

(21)

Equations (21) are easy to solve with respect to ϕ̃1. By taking
into account the basic properties of h(x) i.e. its oddness, 2π–
periodicity and monotonicity we get

h(y) = h(x) ⇒ y = x+ 2πn, n ∈ Z.

Thus (21) becomes a system of linear algebraic equations:
⎧

⎪

⎨

⎪

⎩

2ϕ̃2 − ϕ̃4 = ϕ̃1 + 2πn,

2ϕ̃3 − ϕ̃4 = ϕ̃1 + 2πm,

−ϕ̃2 − ϕ̃3 + 2ϕ̃4 = 2πk.

(22)

The solution of (22) is:
⎧

⎪

⎨

⎪

⎩

ϕ̃2 − ϕ̃1 = π
2

(

3n+m+ 2k
)

,

ϕ̃3 − ϕ̃1 = π
2

(

n+ 3m+ 2k
)

,

ϕ̃4 − ϕ̃1 = π
2

(

2n+ 2m+ 4k
)

,

(23)

where n,m, k ∈ Z. Now we substitute (23) into (21.1) and
find n,m, k such that ϕ̃1, ϕ̃2, ϕ̃3, ϕ̃4 ∈ [0; 2π). Finally, we
find three solutions which are possible under these constrains:

TABLE I
FIXED POINTS FOR LINEAR COUPLING FUNCTION ON TOPOLOGY GIVEN

BY FIGURE 3

# n m k ϕ̃1 ϕ̃2 ϕ̃3 ϕ̃4

1 0 0 0 0 0 0 0

2 0 1 0 0 π
2

3π
2 π

3 1 0 0 0 3π
2

π
2 π

Let us check the stability of the modes in table I by
applying a perturbation method: ϕi(t) = Ωt − ϕ̃i + δi(t).
After substitution in (18) and taking account that h′(x) = 1 if
x ̸= πn, n ∈ Z, we get system of equations that it is the same
for all modes:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

δ̈1 = K
3

(

− 3δ̇1 + δ̇2 + δ̇3
)

+ M
3

(

− 3δ1 + δ2 + δ3
)

,

δ̈2 = K
2

(

δ̇1 − 2δ̇2 + δ̇4
)

+ M
2

(

δ1 − 2δ2 + δ4
)

,

δ̈3 = K
2

(

δ̇1 − 2δ̇3 + δ̇4
)

+ M
2

(

δ1 − 2δ3 + δ4
)

,

δ̈4 = K
2

(

δ̇2 + δ̇3 − 2δ̇4
)

+ M
2

(

δ2 + δ3 − 2δ4
)

.

(24)

This system of equation can be rewritten in the following
vector form:

ẋ = Ax, (25)

x = (δ̇1, δ̇2, δ̇3, δ̇4, δ1, δ2, δ3, δ4)
T, (26)

A =

⎛

⎜

⎜

⎜

⎜

⎝

−K K
3

K
3

0 −M M
3

M
3

0
K
2

−K 0 K
2

M
2

−M 0 M
2

K
2

0 −K K
2

M
2

0 −M M
2

0 K
2

K
2

−K 0 M
2

M
2

−M
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

(27)

The stability of (25) is determined by eigenvalues of matrix A.
If the real parts of these eigenvalues are negative then (25) is
stable. Eigenvalues are as follows:

λ1,2 = −K +
√

K2 − 4M, (28)

λ3,4 = −K −
√

K2 − 4M, (29)

λ4 + 2Kλ3 +

(

K2

6
+ 2M

)

λ2 +
KM

3
λ+

M2

6
. (30)

It is straightforward to show that for (28), (29)
Re(λ1,2,3,4) < 0 only if K > 0,M > 0. By applying Routh
stability method to (30) we get condition for Re(λ5,6,7,8) < 0:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(2K > 0) ∧
(

K2

6 + 2M > 0
)

,
(

KM
3 > 0

)

∧
(

M2

6 > 0
)

,

2K
(

K2

6 + 2M
)

> KM
3 ,

2K
(

K2

6 + 2M
)

KM
3 > (2K)2M2

6 +
(

KM
3

)2
.

(31)

The solution of (31) is the same as in the previous case.
Therefore, all modes table (I) are stable only if K > 0,M > 0.
The attracting mode depends on initial conditions.

For global clock synchronisation only one mode is ac-
ceptable where ϕ̃1,2,3,4 = 0. The other two modes cause
undesirable mode-locking regimes.

C. Coupling through a sin-function

In this subsection we will show that mode-locking can be
eliminated by an appropriate choice of the transfer function.
This concept was studied in the Pratt and Nguyen paper [19]
where they used a Hessian approach to prove the stability of
fixed points. In our case, the oscillator network is determined
by a system of differential equations. We study its stability by
a reduction to the linear problem.

Let us use a phase detector describes by the transfer
function (14). Such a phase detector can be found in analog
phase detectors and power networks [9], [10], [13] . Due to
sin-function coupling, governing equations (15) for such a
case correspond to a modified Kuramoto model. But unlike
an ordinary Kuramoto model, the integral path dramatically
boosts synchronisation properties.

As we did previously, we will solve the system of alge-
braic equations (21.2)-(21.4) with respect to ϕ̃1. Due to non-
monotonicity of h(x) = sin(x) we will get:

h(y) = h(x) ⇒

{

y = x+ 2πn

y = −x+ π + 2πn,
n ∈ Z (32)

This can be generalized in the form:

y = sx+ (1 − s)
π

2
+ 2πn, n ∈ Z, s = ±1. (33)



Fig. 5. Fixed points graph as the solution of problem (19), when h(x) = sinx
and topology determined on figure 3. Thick lines represent stable modes.
Solid thick lines correspond to domain K > 0,M > 0, dashed thick lines to
K < 0,M < 0.

TABLE II
THE SOLUTION OF EQUATIONS (34)

# sn sm sk 2
π
(ϕ̃2−ϕ̃1) 2

π
(ϕ̃3−ϕ̃1) 1

π
(ϕ̃4−ϕ̃1)

1 -1 1 -1 −3−4k−2m−2n −1−2m−2n −1−2n

2 -1 1 1 −3+4k+2m−6n −1−2m−2n −1−2n

3 1 -1 -1 −1−2m−2n 1+4k−2m−2n −1−2m

4 1 -1 1 −1−2m−2n −3+4k−6m+2n −1−2m

5 1 1 1 −2k−m−3n −2k−3m−n −2k−m−n

Equations for fixed points determined from (19.2)-(19.4):
⎧

⎪

⎨

⎪

⎩

−(1 + sn)ϕ̃2 + snϕ̃4 = γn − ϕ̃1,

−(1 + sm)ϕ̃3 + smϕ̃4 = γm − ϕ̃1,

skϕ̃2 + ϕ̃3 − (1 + sk)ϕ̃4 = γk,

(34)

γn = 2πn+
π

2
(1 − sn).

The solution of this with respect to ϕ̃1, when determinant
is nonzero present in table II.

By substitution in (19.1) we get an equation for ϕ̃1. But, it
is easy to see that h(ϕ̃2,3 − ϕ̃1) ∈ {0,±1}. This means that
h(ϕ̃1) = 0,±1,±2, where ±2 does not provide a real solution
because h(x) ∈ [−1; 1]. Due to h(x) = sin(x), we can denote:
ϕ̃1 = π

2 l, where l = l(k,m, n). Assuming ϕ̃1−4 ∈ [0; 2π) we
get a solution that consists of 20 modes. Such a set of modes
takes a lot of space to place in a table, so we picture it in
directed graph form in figure 5.

Each path in the graph represents the solution for a possible
mode. By performing the same stability analysis as we did
in the linear case, we found modes that are stable in some
region of M,K . Thick solid line on the graph depicts stable
solution when K > 0,M > 0 while thick dashed line –
stable solution when K < 0,M < 0. All the rest modes
are unstable for any K,M . Therefore, we showed that only
one globally synchronized regime for our network exists when
K > 0,M > 0.

D. Discussions

According to the results we have obtained in the previous
section, we hypothesise that a PD based on monotonic func-

Fig. 6. The simulation results for 3 × 3 network and different transfer
functions. Cases (c,d) correspond to global synchronisation mode.

tions on interval x ∈ [−π;π) provide several possible modes
in the network, while a PD based on non-monotonic functions
realise only one mode. This mode corresponds to a globally
synchronised network mode (GSM).

In order to test our hypothesis we chose different trans-
fer functions and extended our network to nine oscillators
arranged into 3 × 3 Cartesian grid. Figure 6a represents
the transfer function studied in Section III-B and figure 6c
represents the one in Section III-C. Figures 6(b, d) represent
additional transfer functions where figure 6b – monotonic
function and figure 6d – non-monotonic.

To study synchronisation of the network, we used a complex
order parameter that is inherent for the Kuramoto model [24]

reiψ =
〈

eiϕj
〉

,

where ⟨⟩ denotes averaging over all oscillators in the network,
r ∈ [0; 1] – scalar order parameter measures the phase
coherence, ψ – is the average phase. If the network is globally
synchronised then when t → ∞, r(t) = 1, whereas if it is fully
out of sync then r(t) = 0. When the network stays in a mode-
locking regime then r(t) is constant and has a value between
one and zero.

In the figure 6(a-d) we have presented a statistical distri-
bution for the asymptotic value of order parameter r that
was calculated under different initial conditions. They were
chosen to cover all real initial phases that can be observed
in reality. All initial phases in the network were unifor-



mally distributed within the interval [0; 2π), but the initial
frequency was kept constant for all oscillators. To simu-
late each distribution we used the same set of parameters:
ϕ̇j(0) = 2,Ω = 1,K = 10,M = 10, N = 1000, where N –
number of trials.

Distributions of order parameter show that the transfer
functions in figure 6(c, d) realise only one value for order
parameter r = 1 under the initial conditions introduced above.
This means that the network always approaches to GSM. In
contrast, the distributions in figure 6(a, b) reveal the wide
range of order parameters. It shows that mode locking regime
in the network may occur with respect to initial conditions.
Moreover, the slope of the transfer function is responsible for
the probability of GSM. In particular, the transfer function
(a) leads to GSM with probability P = 22%, while transfer
function (b) leads to GSM with probability P = 12%.

IV. CONCLUSION

In this paper, we proposed the continuous model for coupled
clock network in application to microprocessor design. Each
node of the network represented through voltage controlled
oscillator and connected with its neighbors on Cartesian
grid. The interaction between oscillators was performed via
their phase differences with a help of phase detector and
proportional-integral filter. We showed that depending on
phase detector’s transfer function and filter parameters the os-
cillator network made of six or nine oscillators may approach
to synchronised regime.

We analised conditions when the desired globally synchro-
nised regime occur and found that our results are consistent
with the Pratt and Nguyen paper [19]. However, due to
description in terms of differential equation, our model implies
an extension for noise implementation for jitter.
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