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Abstract—This work is aimed at the development of a path-
based approach to Statistical Static Timing Analysis. Timing
Analysis is an absolutely essential step in the verification of
Very Large Scale Integration (VLSI) designs. We propose a
novel analytical methodology for the fast calculations of VLSI
delay. The problem is stated in such a way that becomes
equivalent to finding the maximum of a large set of correlated
random variables (RVs). For this purpose, a corresponding
extension of extreme value theory of weakly-correlated RVs is
developed. Results of simulations showing a comparison of our
approach with Monte Carlo simulations are presented. Possible
applications, extensions of our methodology and future steps are
discussed.

Index Terms—Timing Graph, Statistical Timing Analysis
(SSTA), Delay, Very Large Scale Integration (VLSI), Extreme
Value Distribution

I. INTRODUCTION

The timing verification of digital integrated circuits (ICs)
is an absolutely essential step: scaling down analogue and
digital ICs poses very strict restrictions on their operation, in
particular, in terms of timing and delay. Thus, timing analysis
(TA) tools are used in order to verify and optimise digital
design before fabrication [1]–[5]. However, with the reduction
of feature size, the loss of fabricated ICs only increases,
since the effect of uncertainties on the performance of circuits
increases dramatically.

The impact of uncertainties, such as process, voltage or
temperature variations, has risen significantly [6], since the
nominal values of physical parameters (transistor channel
length, etc.) are of the same order of magnitude as their
deviations from these values. Additionally, the development
of low-power applications [7], [8], such as Internet of Things
and cloud technologies, brings only new challenges to IC
design. An approach to handle these challenges is to treat
circuit variations from the very beginning within statistical
frameworks. Thus, statistical static timing analysis (SSTA) has
been developing as a promising tool to replace deterministic
TA [9].

Within SSTA, all delays are treated as random vari-
ables (RVs) with corresponding probability density functions
(p.d.f.). There are three main challenges of SSTA that have
been studied with different degrees of success: (i) impact of
correlations, (ii) non-analytical operations such as max, and
(iii) non-Gaussian distributions of variations. We address the

interested reader to the review articles [10]–[13] for further
details.

Recently, an approach within the block-based framework
was proposed in [14]. The authors considered delay prop-
agation through a single gate and developed an algorithm
for representing skewed distributions via Gaussian kernel
functions. Being accurate, the proposed algorithm may still be
computationally expensive since it requires evaluation of every
gate or block of gates in an IC. In this study, we propose an
alternative to [14] within the path-based framework. The path-
based approach operates with sets of paths within one circuit.
This allows one to describe topological correlations (due to
shared paths) in a simple manner.

The paper is organised as follows. In Section II, we outline
the basics of path-based SSTA, make necessary statistical
preliminaries and present a general statement of the problem.
In Sections III and IV, we develop an asymptotic theory for
extreme value statistics, assuming that correlations are weak.
This theory yields the distribution of the maximal delay of an
IC with topological correlations taken into account. Sections V
and VI present a comparison of our approach with numerical
simulations and discussion of the obtained results.

II. STATEMENT OF THE PROBLEM

A. Some Definitions

For clarity, let us first make the following definitions of the
functions that are widely used in this paper.

The p.d.f. ω0(r) of n uncorrelated normal variables with
means µk and variances σk:

ω0(r)
def
=

1

(2π)n/2

n∏
k=1

1

σk
ϕ

(
xk − µk
σk

)
, (1)

where ϕ(x) reads

ϕ(x)
def
= e−

x2

2 . (2)

In the case of only one RV, ω0(x) = ϕ
(
x−µ
σ

)
/
√

2πσ.
The cumulative distribution function (c.d.f.) Φ(x) of the

standard normal distribution:

Φ0(x)
def
=

1√
2π

x∫
−∞

ϕ(x′)dx′ =
1√
2π

x∫
−∞

e−
x′2
2 dx′. (3)



B. Static Timing Analysis

In timing analysis, an IC is considered as a timing graph
G(E, V ) with a set of edges E (gates) and vertices V (inter-
connects), and the problem of TA then is to find the maximum
delay for such a graph, or the longest path (see Fig. 1).

In path-based timing analysis, the maximal delay D of a
circuit is equal to the maximum of delays along all paths:

D = max(τ1, τ2, . . . , τn), (4)

where τi =
∑mi

j=1 τ
(j)
i is an accumulated delay along a path

i and mi is a number of delays in that path.

C. Extreme Values Statistics

In SSTA, the delay D (as well as individual path delays τi)
is a random variable. Therefore, the problem of delay deter-
mination is equivalent to the following well–posed problem
in statistics: for a sequence of n RVs X1, X2, . . . , Xn with a
p.d.f. ω(r), where r is the radius-vector in the n-dimensional
space of RVs, find the distribution of the RV ζ such that

ζ = max(X1, X2, . . . , Xn). (5)

In the general case, for arbitrary distributed n correlated
variables X1, . . . , Xn, the solution to problem (5) is unknown
and finding it remains challenging. However, there are two
known results that can simplify the problem:
(i) Sum of m independent RVs, each with a finite expected

value µi and variance σ2
i , converges to a normal distri-

bution if m→∞ (Central Limit Theorem, CLT) [15].
(ii) RV (5), if n→∞ and the RVs Xi are independent and

identically distributed, is distributed according to one of
three asymptotic limit laws: Fréchet, Weibull and Gumbel
distributions. The latter is of our interest to the present
discussion, since it satisfies a desired asymptotics [16].

Since in modern VLSI the number of nodes in a graph are
typically of order of 109 and greater, one can conclude that
the number of delays mi in a given path i is sufficiently large
in order to satisfy the requirements of the CLT. Thus, without
any loss of generality, we assume that all of the RVs Xi that
describe the accumulated delay along the ith path in a graph
G, are Gaussian ones.

Also, the number n of paths can be extremely large,
providing the asymptotic behaviour required in (ii). Thus, for
the case of the independent RVs Xi, the solution to problem
(5) is

Ψn(x) = exp
(
−e−

x−an
bn

)
, (6)

which is the c.d.f. of the Gumbel distribution, where

an = Φ−10

(
1− 1

n

)
, bn =

1

n · ω0(an)
. (7)

The mean µ̃n and variance σ̃2
n of the Gumbel distribution are

also represented via the parameters an and bn:

µ̃n = an + γbn, σ̃2
n =

π2

6
b2n, (8)

where γ ≈ 0.5772 is the Euler–Mascheroni constant.
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Fig. 1. An example combinational circuit with 5 inputs Ii and 4 gates gj and
its timing graph. There are n = 5 paths from source to sink in this example.

The illustration of the asymptotic solution (6) for the case of
independent standard Gaussian RVs, Xi ∼ N (0, 1), is shown
in Fig. 2 for various n. One can observe how the distribution
of ζ approaches to the Gumbel distribution (6), as the number
n of terms increases.

D. Problem Formulation

In this study, we propose an approximate solution to prob-
lem (4) within the framework of path-based SSTA. Our aim is
to take into account topological correlations in a graph. For this
purpose, we consider the corresponding statistical problem (5).

We make the following assumptions: (i) all paths have a
large number mi of delays so that CLT holds, and the accu-
mulated delay along the ith path is described by a Gaussian RV;
(ii) the number n of paths is large enough so that the maximum
delay is given by the Gumbel law for the uncorrelated case.

The aim of this work is to find the distribution of the RV
(5) in the case of the correlated RVs Xi assuming correlations
are weak.
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Fig. 2. The p.d.f. Ψ′
n(x) and c.d.f. Ψn(x) of the Gumbel distribution (black

solid lines) versus numerical simulations of the RV (5) for different values of
n. The samples are scaled so that an = 0 and bn = 1.



III. WEAK CORRELATION APPROXIMATION

In this section, we derive an expansion for the p.d.f. ω(r) of
n weakly–correlated Gaussian RVs Xi. The p.d.f. ω(r) reads

ω(r) =
1

(2π)n

∫
En

χ(k)e−ikrdk (9)

with the characteristic function1

χ(k) = exp

(
iµiki −

1

2
Σijkikj

)
. (10)

Here Σij is the covariation matrix such that

Σij = δijσ
2
i + εij , εii = 0. (11)

The latter allows us to factorise the exponent in (10) as follows

χ(k) = χ0(k) · exp

(
−1

2
εijkikj

)
,

where χ0(k) = exp
(
iµiki − 1

2σ
2
i k

2
i

)
is the characteristic

function of n uncorrelated normal RVs.
Let us assume that the non-diagonal entries of the covari-

ation matrix are small by absolute value, and, therefore, εij
can be considered as perturbation:

χ(k)

∣∣∣∣
εij→0

= χ0(k) + εij ·
∂χ(k)

∂εij

∣∣∣∣
εij=0

+ . . . (12)

We can express now the p.d.f. ω(r) via the non-correlated
term ω0 with the following remarkable property of the multi-
variate normal distribution:

∂χ

∂εij

∣∣∣∣
εij=0

=
1

2

∂2χ0

∂µi∂µj
.

Indeed, limiting ourselves to the first order of smallness and
substituting (12) into (9), we obtain the expansion for the p.d.f.
of normal correlated random variables in the weak correlation
case:

ω(r) ' ω0(r) +
εij
2

∂2ω0(r)

∂µi∂µj
. (13a)

In principle, the second derivative can be written explicitly,
but this is not necessary for the present discussion. Instead,
we will proceed to differentiation by coordinates:

ω(r) ' ω0(r) +
εij
2

∂2ω0(r)

∂xi∂xj
. (13b)

It is easy to see that expressions (13a) and (13b) are identical.
At the same time, representation (13b) allows one to treat the
mean values, µi and µj , as parameters, which simplifies the
analysis below.

In the following Section, we shall consider the c.d.f. F(x)
for the RV (5), assuming the RVs Xi have the p.d.f. in the
form of (13b).

1In this work, ω(r) and χ(k) correspond to the p.d.f. and characteristic
function of correlated Gaussian RVs respectively; uncorrelated values are
denoted by ’0’ subscript. We believe, this won’t mislead the reader.

IV. STATISTICS OF WEAKLY CORRELATED EXTREME
VALUES

The probability P that all of the RVs X1, X2, . . . , Xn are
less than some given number z, P[ζ < z], is

P[ζ < z] ≡ F(z) =

z∫
−∞

. . .

z∫
−∞

ω(r)dr, (14)

where dr = dx1dx2 . . . dxn is the elementary volume in the
n-dimensional space of random variables Xi.

We have not imposed any restrictions on the mean values
and standard deviations, µi and σi, while deriving expansion
(13b). For the sake of simplicity, we assume that µi and σi
are the same for all Xi. In such a case, RVs can be rescaled
to be standard normal ones Xi ∼ N (0, 1). The general case
for arbitrary µi and σi will be reported elsewhere.

Substituting expansion (13b) into (14) and letting n→∞,
we get two terms. The first term leads to the c.d.f. of the
Gumbel distribution:

z∫
−∞

. . .

z∫
−∞

ω0(r)dr = Φ(z)n =
n→∞

Ψn(z),

while the second one involves the integral of the form

I =

z∫
−∞

. . .

z∫
−∞

∂2ω0(r)

∂xi∂xj
dr.

The latter gives

I =
1√
2π

z∫
−∞

∂

∂xi
e−

x2
i
2 dxi ·

1√
2π

z∫
−∞

∂

∂xj
e−

x2
j
2 dxj

× 1

(2π)(n−2)/2

z∫
−∞

. . .

z∫
−∞

exp

−1

2

∑
k 6=i,j

x2k

 dx1 . . . dxn︸ ︷︷ ︸
except dxidxj

=
n→∞

ϕ(z)2

2π
Ψn−2(z).

Finally, bringing all terms together and taking into account
that Ψn−2(x) ≈ Ψn(x), we can write down the asymptotic ex-
pression for the c.d.f. of the maximum of n weakly–correlated
Gaussian random variables in the first order approximation:

F(x) = Ψn(x)

1 +
ϕ(x)2

4π

∑
i,j
i 6=j

εij + . . .

 . (15)

Note that this formula is derived assuming the diagonal entries
εii = 0, and is valid for small correlations:

|εij | � δijσ
2
i . (16)

In the next Section, we perform a validation of the results
obtained by comparing with Monte Carlo (MC) simulations
and discuss possible applications as well as future steps.
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Fig. 3. The p.d.f. of the Gumbel distribution (dashed red) and given by (15)
(solid black) together with the results of numerical simulations (blue dots) for
different values of the correlation coefficient ρ.

V. VALIDATION AND DISCUSSION

The reference method to verify VLSI design is MC simu-
lations [2]. Standard way to generate correlated samples for
MC simulations involves the Cholesky decomposition of the
covariation matrix Σ. This method, being a general approach,
is applicable to any Σ; however, it is still computationally
expensive. For the sake of illustration of the results obtained,
we choose the correlation between RVs Xi as follows:

〈XiXj〉 = σ2ρ|i−j|, 〈YiYj〉 = δij , 〈XiYj〉 = 0, (17)

where Xi ∼ N (0, σ) and Yi ∼ N (0, 1). In this case, random
samples can be generated via the simple rule

Xi+1 = ρXi + σ
√

1− ρ2Yi, (18)

where ρ is the correlation coefficient. A set of n samples has
been generated according to rule (18) with the starting point
X0 chosen randomly from ∼ N (0, σ), then (5) was computed.
The procedure was repeated 104 times for each numerical
experiment.

For a large number of RVs (n & 102), the dependence of the
p.d.f. of the RV ζ on the correlation coefficient ρ is studied.
As one can see from Fig. 3, for a relatively small values of ρ,
the deviation of both the perturbed and uncorrelated Gumbel
distributions, (15) and (6) correspondingly, from simulations
is negligible (error in mean is less than 2%). This implies that
small correlations can be ignored without any loss of accuracy.

At the same time, the comparison in the strong–correlation
regime, ρ > 0.5, shows that approximation (15), even being
not applicable, is able to describe the correct trend.
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Fig. 4. The mean of RV (5) for n = 200 as a function of ρ. The black solid
curve is the mean obtained from p.d.f. (15). The red dashed line is due to (8).
Blue dots represent the results of the numerical simulation.

From the dependence of the mean of ζ on ρ shown in Fig. 4,
one can see that the uncorrelated Gumbel distribution (6) leads
to significant deviations from the numerical simulations for
ρ > 0.5. Thus, (8) can be interpreted as the worst case delay
of an IC. At the same time, weak–correlated formula (15) lies
between that and the simulation dots. The deviation of (15)
from simulations can be reduced by taking into account further
terms in the expansion (12).

It should be pointed out that the mean is decreasing with
the increase of the correlation coefficient, which is seen both
from the simulation and the theory in Fig. 4. Recalling the
meaning of the RV ζ in SSTA, we see that the total delay D
in an IC is inversely proportional to the value of the correlation
coefficient ρ, which can be used in the yield optimisation.

VI. CONCLUSION

In this paper, the problem of delay determination for VLSI is
studied within the path-based approach to SSTA. Based on the
CLT, RVs that describe the accumulated delays along paths are
considered to have Gaussian distributions, and the asymptotic
theory of the maximum of weakly–correlated Gaussian RVs
is developed.

It is shown that in the case of large number of variables,
the resulting delay distribution tends to the Gumbel law (6).
The corresponding modification of the latter is derived by
considering the non-diagonal entries of the covariation ma-
trix as perturbations. The particular result (15) is obtained
assuming all RVs Xi to be identically distributed. It should
be emphasised that within our method, the procedure of delay
determination is reduced to the computation of only one
expression (15), that makes the methodology extremely fast.

The qualitative agreement between numerical simulations
and equation (15) is taken by us as a strong evidence of
the validity of our approach. The quantitative analysis of the
problem, and the most general case of arbitrary distributed
RVs Xi, will be the subject of a separate study. At the same
time, the results obtained here are of interest on their own,
and can be applied, e.g., in the climate science to the problem
of investigation of extreme value time series [17].
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