
Analytical Approach to Statistical Logic
Cell Delay Analysis and its Extension to a

Timing Graph
Dmytro Mishagli∗, Elena Blokhina† and Tom Brazil‡

School of Electrical and Electronic Engineering,
University College Dublin, Ireland

∗Email: dmytro.mishagli@ucdconnect.ie
†Email: elena.blokhina@ucd.ie
‡Email: tom.brazil@ucd.ie

Steve Hollands
Synopsys

Dublin, Ireland
Email: steve.hollands@synopsys.com

Abstract—In this paper we propose a new method-
ology to determine the delay of combinational circuits
within the framework of statistical static timing anal-
ysis (SSTA). The methodology is based on exact ana-
lytical solutions for the probability density functions
of logic gate delays. Assuming initial delays of the
input arrival times and operation time of gates to be
normally distributed, the non-Gaussian distribution
of the resulting delay of a gate is obtained, as well
as its first two moments. This allowed us to propose
a novel closed-loop algorithm for the calculation of
delay propagation in combinational circuits. Possible
extensions and future steps are discussed.

I. INTRODUCTION

The continuous reduction of feature size is creat-
ing new challenges for the timing analysis of digital
integrated circuits (ICs) as process-related uncer-
tainties begin to dominate behavior. A digital IC de-
sign must operate safely at the specified frequency
of the clocks without any timing violations, which
is typically checked by timing analysis tools [1]–
[5].

In general, there are two methods for performing
the timing analysis of an IC, dynamic and static.
Dynamic timing analysis, or dynamic timing ver-
ification, requires the creation of a vector of all
possible input transitions and input arrival times for
each gate. The number of such input vectors grows
exponentially with the number of possible gate pins,

which makes dynamic timing analysis ineffective
for modern ICs with millions of multi-input gates.

Another method which has less computation cost
is a static timing analysis that approximates the
maximum and minimum delays of an IC [4]. Static
timing analysis (STA) does not depend on the data
values being applied at the input pins. Traditionally,
STA is deterministic, so that the circuit delay is
computed for specific process conditions: i.e., pro-
cess parameters, supply voltage and temperature are
all assumed to be fixed and uniformly applied to all
devices. Then, a so-called corner file is created to
determine the delay of the gates.

As technology continues to scale down, the im-
pact of process variations (such as process-voltage-
temperature variations) on timing grows (see eg. [6],
[7]). Also variations arise from the manufacturing
process (e.g. transistor length is difficult to control
exactly). Moreover, with decreasing size of tran-
sistors and interconnect width, the variations of
electrical characteristics can be of the same order
as nominal values. Therefore, the use of approaches
known as statistical static timing analysis (SSTA) is
increasing [8], [9].

Within the SSTA all delays are treated as random
variables with corresponding probability density
functions (PDFs) [10]–[20]. Three main challenges
of SSTA that have been addressed with different



degrees of success: (i) impact of spatial correlations,
(ii) non-analytical operations such as max, and
(iii) non-Gaussian distributions of variations. The
correlations for both Gaussian and non-Gaussian
cases were considered in [10], [11], [21]. A block-
based incremental timing analysis framework was
proposed and analysed in [12], [17], [18]. The
approximation for the maximum operation applied
to random variables was considered, e.g. in [18],
[22]–[26]. We address the interested reader to the
review articles [27]–[30].

Recent papers show an increasing interest in
SSTA [31]–[36], and the need for fast algorithms for
stochastic analysis has increased [37]. For this rea-
son, the aim of this study is to initiate a new statisti-
cal approach that relies on an analytical treatment of
one gate. We propose a closed form expression for
the “maximum” operation (max) with consequent
convolution with a delay representing a gate and/or
interconnect delay. In this study, for the purposes
of simplicity we approximate obtained exact non-
Gaussian distribution of gate delay then by a Gaus-
sian in a manner described in [38] by matching
two first moments. This allows us to investigate the
degree of deviation of the exact distribution from
Gaussian one. While the approach appears to be
standard, it allows one to see the ‘mechanism’ of
the skewness and kurtosis formation. In principle,
the proposed algorithm can be extended to a number
of practically important cases such as correlated
variables and non-Gaussian model distributions. As
is expected, working with an analytical approach
would not be time and resource demanding and
would allow a faster analysis of a very large circuit.

The article is organized as follows. Section II in-
troduced a general statement of the problem where
we relate a combination logic circuit to its graph
and explain the statement of the problem as a
mathematical problem of delay propagation through
that graph. Section III describes the steps that are in-
volved in the analysis of delay propagation through
one node (gate): taking the max operation and per-
forming convolution with gate and/or interconnect
delay. Section IV presents the results of simulations
and comparison with a reference method (Monte-
Carlo). Finally, Section V presents discussions on

further development of the method and conclusions.

II. STATEMENT OF THE PROBLEM

A combinational logic circuit traditionally is rep-
resented by its timing graph [2], [5]. Edges of the
graph represent gates and vertex set is for inputs and
outputs of the logic gates (see Fig. 1). The vertices
are either representing inputs of gates or gate’s
output. Sometimes timing graphs are presented in
more detail for gates: each gate is presented by a
set of vertices, one of which is output and the rest
is input. But we will keep the simple structure as
presented in the figure.

Since the gates have internal structure presented
by corresponding combination of transistors, this
results in a characteristic time needed for gates to
operate. This is one of the sources of delays in
a circuit. Due to delays, input signals can have
different arrival times and, therefore, the delay of a
gate is determined by the maximum of input delays.

So, the main problem of timing analysis for
such circuits can be formulated as the mathematical
problem of calculating the max function of arrival
times. In other words, this is a problem for the graph
optimization.

On the other hand, operation time of a gate
can have a significant impact on circuit delay, in
addition to the arrival times. In such a case the delay
of a gate itself should be added to the result of the
max function.

The situation is straightforward in the case of
deterministic timing analysis, but it is not the case
when uncertainty arises. When it is necessary to
include variations of parameters, the SSTA is re-
quired. In such a case arrival and gate operation
times are described by random variables (RVs)
given by corresponding distributions.

The situation becomes even more dramatic in a
lower scale, when variations are of the order of the
nominal values of parameters. Here, the problem
of calculating of the max of two or more RVs
discussed in the Introduction occurs.

At the same time, it is impossible to ignore
interconnect delays [39]. However, the latter can
be added to the gate delay. Thus, the procedure of
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Fig. 1. An example combinational circuit and its timing graph.

the delay computation in one gate with two inputs
can be written as

. . .+ max(D1, D2) +Dgate +Dint + . . . , (1)

where D1, D2 are input signal delays, Dgate is a gate
delay and Dint is an interconnect delay. In the case
of Gaussian distributions, the convolution for the
latter two terms can be easily performed, resulting
to another Gaussian distribution.

In the next section we look in a detail at the delay
propagation inside logic gates.

III. LOGIC GATE DELAY

Let us consider a simple logic gate with two
inputs, and let us suppose we have two arrival
signals with known delays, A and B, and these
delays are distributed normally. We shall describe
these delays as Gaussian variables, X1 and X2, with
given mean values, µ1 and µ2, and variances, σ2

1

and σ2
2 . Note, the correlations are not discussed in

this consideration, but all obtained results can be
easily generalized to the correlated case.

A. Handling the max Operation

The computing of a maximum is not a straightfor-
ward task since the operation is non-linear (see [18],
[26]). The situation is even more complicated when
applied to randomly distributed variables. For the
RVs X1 and X2 with probability density functions
(PDF) f1(x) and f2(x) and cumulative distribution
functions (CDF) Φ1(x) and Φ2(x) the task is to
determine the PDF of another RV, max(X1, X2).
For the case of non-overlapping distributions the

max is simply the PDF with a biggest mean value.
In other words, the initial Gaussian shape holds
after the application of the max operation.

The situation is different if RVs are distributed
closely to each other and their PDFs overlap. The
PDF of max(X1, X2) in this case is clearly non-
Gaussian. If X1 and X2 are distributed normally
(as we are assuming here), the maximum can be
obtained analytically. A well-known result is the
PDF fmax(x) of a maximum of two independent
Gaussian RVs,X1 and X2, equals to

fmax(x) = f1(x)Φ2(x) + f2(x)Φ1(x). (2)
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Fig. 2. Illustration for the delay propagation in a logic gate. At
the stage (a) two inputs, A and B, with some distributions arrive
to a gate. The delay of arrival is determined as max(A,B) at
the stage (b) and leads to a new non-Gaussian distribution. At
the same time, a gate has its own operation time which is given
by a distribution (c). Thus, the distribution of the gate delay
(d) requires the convolution of the obtained distribution (b) and
given (c).



Fig. 3. A cascade of combinational circuits from Fig. 1.

We are not considering correlations between varia-
tions in this study (this will be reported elsewhere).
However, we would like to point out that introduc-
ing correlations at this stage will not make any
substantial difficulties. The interested reader can
find the correlated case, for instance, in [25].

B. Making the convolution with a gate delay

Let us now assume that the operation time of
a gate leads to a delay that can be described as a
Gaussian RV X3 with known mean µ3 and variance
σ2
3 , and the PDF f3(x). Then, the total delay of

a gate is determined by two independent terms,
the maximum arrival delay considered above and
the delay due to operation time of a gate itself.
Since these quantities are RVs, the total delay is
also an RV X = max(X1, X2) + X3. In terms of
distributions, the convolution of max(X1, X2) and
X3 should be performed:

(fmax ∗ f3)(x) =

∞∫
−∞

fmax(x′)f3(x− x′)dx′. (3)

The latter expression (3) leads to the integrals of
a kind

I(b) =

∞∫
−∞

e−t
2

erf(at+ b)dt, (4)

where a and b stand for some parameters. Such
an integral can be taken by differentiation under
the sign of an integral over a parameter b (see

also [40], [41]). Doing that and integrating the
result,

∫ b

0
I ′b(x)dx, one obtains

I(b) =
√
π · erf

[
b

(
1

1 + a2

) 1
2

]
. (5)

Therefore, after the corresponding algebra one
obtains the PDF of the total gate delay ftot(. . .) as
a function of all initial delays in the following form

ftot(. . .) =
1

2
√

2π
[I12(x) + I21(x)], (6)

where Iij(x) (i 6= j = 1, 2) are

Iij(x) =
1√

σ2
3 + σ2

i

exp(−αix
2 + βix+ γi)

×

{
1 + erf

[
bij(x)

(
1

1 + a2ij

) 1
2
]}

, (7)

and

αi =
1

2

1

σ2
3 + σ2

i

, βi = 2(µ3 + µi)αi,

γi = −(µ3 + µi)
2αi = −1

2
(µ3 + µi)βi

aij =
σ3σi

σj
√
σ2
3 + σ2

i

,

bij(x) =
σ2
i x+ σ2

3µi − σ2
i µ3 − (σ2

3 + σ2
i )µj√

2(σ2
3 + σ2

i )σj
.

(8)
The exact form of a PDF allows one to determine

corresponding moments of a distribution. These
results are not presented here in view of their
excessive length.

C. Summarizing as an algorithm

We have obtained an exact expression for the
distribution of a delay through AND-gate assuming
that initial delays are normally distributed. Thus, it
is crucial for the input delays in a gate to be in a
Gaussian form. This allows us to build a closed-
loop algorithm as follows.
(i) At the very first step two delays are taken as

Gaussian RVs, X1 ∼ N(µ1, σ1) and X2 ∼
N(µ2, σ2). The mean values and variances are
given.



(ii) The delay at the input of a gate is calculated
as max(X1, X2) using (2).

(iii) If a gate itself has its own pre-assigned delay,
which is also assumed to be Gaussian RV
X3 ∼ N(µ3, σ3), then the convolution is
performed and the PDF of a resulting delay
should be calculated according to (6)–(8).

(iv) The mean µ and variance σ2 of the total
skewed non-Gaussian distribution can be cal-
culated now.

(v) The obtained distribution of a delay is approxi-
mated now by a Gaussian one with determined
µ and σ2 in (iv). Now this new Gaussian
distribution is considered as a distribution for
the gate’s delay and then translated to the next
gate.

Algorithm 1: GATEDELAY finds the PDF of a
delay of combinational circuits.

Input: µi, σi of gates’ operation times,
number of gates NG

Output: PDF, mean and variance of the delay
of a circuit

1 for i← 1, NG do
2 max ← (2)
3 convolution ← (6)–(8)
4 Determine µtot and σtot of a total gate delay
5 Approximate actual PDF with the Gaussian

6 return final PDF of a circuit

Below a simple realization of the algorithm as
well as the discussion of possible extensions.

IV. SIMULATION RESULTS

To test the performance of the algorithm a set of
realistic parameters of input signal delays for the
circuit from Fig. 1 were chosen and are summarized
in the Table I. Here Ii (i = 1, . . . , 6) are corre-
sponding delays of input signals. The gate delay
G0 was assumed equally distributed for all gates,
and the results for the cases G0 ∼ N(80, 40) and
G0 ∼ N(40, 10) are presented correspondingly in
Fig. 4 and 5.

In the simulation, 107 samples were used for each
gate, and the algorithm was 960 times faster than an

Algorithm

Monte Carlo

0 200 400 600 800

0.000

0.001

0.002

0.003

0.004

0.005

Time, 10- 12 s

P
D
F
of
de
la
y

(a)

Algorithm

Monte Carlo

200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

Time, 10- 12 s

C
D
F
of
de
la
y

(b)

Fig. 4. Probability density function (a) and cumulative density
function (b) of the circuit delay (G0 ∼ N(80, 40)). The mean
is 438 ps from Monte Carlo and 449 ps from the Algorithm,
error in mean deviation is 39%.

MC simulation. One can see slight deviation in the
average value for both cases, but a more significant
error in the determination of σ.

Also the algorithm was applied to a cascade of
circuits (see. Fig. 3) with a total number of 46 gates
and to a series of randomly generated graphs with
a total number of 100 gates. The results are not
presented here.

V. DISCUSSIONS AND CONCLUSIONS

The complexity of modern circuits increases and
as a result it is impossible to apply Monte-Carlo
based methods to verify them. However verification
is more important than ever since the uncertainty
(parameter variation) is next-generation CMOS cir-
cuits will have even greater impact. Statistical static
timing analysis is considered to be helpful, but there
are certain issues associated with it.
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Fig. 5. Probability density function (a) and cumulative density
function (b) of the circuit delay (G0 ∼ N(40, 10)). The mean
is 291 ps from MC and 294 ps from the Algorithm, error in
mean deviation is 7.5%.

TABLE I
INPUT SIGNAL DELAY PARAMETERS FOR THE CIRCUIT FROM

FIG. 1

pin distribution
I1 N(100, 45)
I2 N(50, 30)
I3 N(140, 60)
I4 N(100, 30)
I5 N(50, 30)
I6 N(75, 35)

The major issue is that the commonly accepted
uncorrelated “Gaussian” assumption is not the case:
ongoing research indicates that either a gate de-
lay distribution is not Gaussian, or the result of
max operation is strongly non-Gaussian. This is
the weakest link in all current statistical methods
because this means that the simple expressions for
the delay distributions are not valid any more. To

address some of the resulting issues, see e.g. [26].

The max operation distorts significantly the dis-
tribution of the delay. Even though the actual gate
and interconnect delays are considered to be Gaus-
sian, when delay propagates it quickly becomes
non-Gaussian. The error accumulates and for cer-
tain combinations of gate distributions a consider-
able error results. The effect may not be critical for
some parameters but can lead to significant errors
in others.

In this work we propose semi-analytical algo-
rithm based on Gaussians distributions but which
goes beyond existing results and allows further
generalization. The key outcome is the fully ana-
lytical expression for the convolution of max of
two Gaussians with the gate and/or interconnect
delay. Then, at every iteration of the algorithm
the resulting non-Gaussian distribution is approx-
imated by a Gaussian one. Indeed, approximation
of non-Gaussian by matching two first moments is
a standard tool. Also the approximation can be done
in a more accurate way as the error minimization
problem [24]. We would like to reiterate that the
main aim of this research is to study the feasibility
of approximations by Gaussians and the trades-off
of these approximations.

We see several advantages and possible exten-
sions of this work as follows. Firstly, it is based on
analytical expressions which are fast to compute.
Secondly, the results can be expanded to correlated
variables: while the expression can be somewhat
complex but it will not bring any substantial diffi-
culty. Thirdly, the semi-analytical approach can be,
in principle, derived for other model distributions
that can accommodate skewness and kurtosis, which
are the major sources of the inaccurate prediction
of σ. At the moment one of the algorithm steps
that makes it semi-analytical is the replacements of
the gate output distribution with a Gaussian one.
This is, as was pointed out, the weakest link of
all statistical approaches which in principal may
result in wrong standard deviation. Working with
other model distributions will improve this. We are
seeking to address these issues in our on-going
research.
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