
Statistical Simulations of Delay Propagation in
Large Scale Circuits Using Graph Traversal and

Kernel Function Decomposition
Jennifer Freeley, Dmytro Mishagli, Tom Brazil and Elena Blokhina

School of Electrical and Electronic Engineering, University College Dublin, Ireland

Abstract—In this paper we propose a new methodology to
determine the delay of combinational logic circuits within the
framework of statistical static timing analysis (SSTA). A new
algorithm for the traversing of the timing graph is created and
combined with a new technique of kernel function decomposition
to find delay propagation through such a circuit. Assuming initial
delays of the input signals and operation time of gates to be
normally distributed, the exact analytical solution for a non-
Gaussian probability density functions (PDF) of the resulting
delay is obtained. Then, the approximation of a non-Gaussian
PDF by a linear combination of kernel functions is proposed,
and the initial Gaussian assumption is relaxed. This allowed us
to build a novel closed-loop algorithm for the calculation of delay
propagation in combinational circuits. Possible extensions and
future steps are discussed.

I. INTRODUCTION

The continuous reduction of feature size is creating new
challenges for the timing analysis of digital integrated circuits
(ICs) as process-related uncertainties begin to dominate behav-
ior. A digital IC design must operate safely at the specified
frequency of the clocks without any timing violations, which
is typically checked by timing analysis tools [1], [2].

As technology continues to scale down, the impact of
process variations (such as process-voltage-temperature vari-
ations) on timing grows (see e.g. [3], [4]). Also variations
arise from the manufacturing process (e.g. transistor length is
difficult to control exactly). Moreover, with decreasing size of
transistors and interconnect width, the variations of electrical
characteristics can be of the same order as nominal values.
This has created a new wave of interest in timing verification
and introduced the need for an update to traditional algorithms,
which has led to the use of Monte Carlo (MC) simulations.
MC analysis becomes computationally expensive for large ICs.
As a result, the use of approaches that are a counterpart of
Monte Carlo known as statistical static timing analysis (SSTA)
is increasing, with Monte Carlo analysis acting as a ‘golden’
reference.

Within the SSTA [5], all delays are treated as random vari-
ables with corresponding probability density functions (PDFs).
As we will show in the next section of this paper, three main
challenges of SSTA have been addressed with different degrees
of success: (i) impact of spatial correlations, (ii) non-analytical
operations such as max, and (iii) non-Gaussian distributions
of variations.

The max operation significantly distorts the distribution
of the delay. Even though the actual gate and interconnect
delays are considered to be Gaussian, when delay propagates it

quickly becomes non-Gaussian. Certain combinations of gate
distributions can result in the accumulation of a considerable
error. The effect may not be critical for some parameters but
can lead to significant errors in others.

Recent papers show an increasing interest in SSTA [6]–[9],
and the need for fast algorithms for stochastic analysis has
increased. For this reason, we first propose to initiate a new
statistical approach that relies on an analytical treatment of one
gate. We develop a closed form expression for the probability
density function of the “maximum” operation (max) with
a delay representing a gate and/or interconnect delay. The
proposed algorithm can be extended to a number of practically
important cases such as correlated variables and multiple
inputs. As is expected, working with an analytical approach
would not be time and resource demanding and would allow
a faster analysis of a very large circuit.

Before completing timing analysis, it is necessary to traverse
the timing graph (see section II). Hence we propose an algo-
rithm that involves the unique analysis of a matrix containing
all circuit paths, which reveals an optimal sequence of sum
and maximum operations to be performed on gate delays so
that the delay of all nodes in all graph paths can be computed
without the need for backtracking.

The aim of this paper is to provide updated algorithms
for traversing the timing graph as part of SSTA and for
the statistical simulations performed to compute the circuit
delay. The paper is divided as follows: Section II presents
a general statement of the problem as the delay propagation
through a graph of a combinational logic circuit. Section III
details the algorithm for traversing the graph and obtaining the
optimal sequence of maximum and sum operations to perform.
Section IV describes the steps involved in the analysis of delay
propagation through one graph node and provides a novel
technique to calculate gate delays. Section IV presents the
performance of the algorithm proposed as well as discussions
on further development of the method and conclusions.

II. STATEMENT OF THE PROBLEM

A combinational logic circuit traditionally is represented
by its timing graph. Edges of the graph represent gates
and vertex set is for inputs and outputs of the logic gates
(see Fig. 1). Since the gates have internal structure presented
by corresponding combination of transistors, this results in a
characteristic time needed for gates to operate. This is one of
the sources of delays in a circuit. Due to delays, input signals
can have different arrival times and, therefore, the delay of a
gate is determined by the maximum of input delays.978–1–5386–5153–7/18/$31.00 c© 2018 European Union

sinksource

1

2

3

4

5

6

7

8

9

10

11

12
13

14

Fig. 1. An example combinational circuit and its timing graph.

Thus, the main problem of timing analysis for such circuits
can be formulated as the mathematical problem of calculating
the max function of arrival times. In other words, this is a
problem for the graph optimisation.

In addition to the arrival times, the operation time of a gate
can have a significant impact on circuit delay. In such a case
the delay of a gate itself should be added to the result of
the max function. The situation is straightforward in the case
of deterministic timing analysis, but it is not the case when
uncertainty arises. When it is necessary to include variations
of parameters, SSTA is required. In such a case arrival and
gate operation times are described by random variables (RVs)
given by corresponding distributions.

The situation becomes even more dramatic in a lower scale,
when variations are of the order of the nominal values of
parameters. Here, the problem of calculating of the max of
two or more RVs discussed in the Introduction occurs. At
the same time, it is impossible to ignore interconnect delays.
However, the latter can be added to the gate delay. Thus, the
procedure of the delay computation in one gate with two inputs
can be written as

. . .+ max(τi, τj) + τg + τint + . . . , (1)

where τi, τj are input signal delays, τg is a gate delay and τint is
an interconnect delay. In the case of Gaussian distributions, the
convolution for the latter two terms can be easily performed,
resulting to another Gaussian distribution. For simplicity, the
interconnect delay is not included in the traversal algorithm,
but can be easily introduced.

Here the problem of backtracking appears [10], since the
expressions like (1) depend on the previously obtained values
of arrival times. In the next section, we present our algorithm
that allows us to find the gate-to-gate sequence of graph
traversal, removing the need for backtracking.

III. IMPROVED GRAPH TRAVERSAL ALGORITHM

Graphs are typically described by corresponding adjacency
matrices. In order to build the algorithm for a graph traversing,
we assume that (i) all adjacency matrices to be analysed are

P =

1 0 0 0 0 6 0 0 9 10 0 12 13 14
1 0 0 0 5 0 0 0 9 10 0 12 13 14
1 0 0 0 0 6 0 0 9 0 11 0 13 14
1 0 0 0 5 0 0 0 9 0 11 0 13 14
1 0 0 4 0 0 0 0 0 10 0 12 13 14
1 0 3 0 0 0 0 8 0 0 0 12 13 14
1 2 0 0 0 0 0 8 0 0 0 12 13 14
1 0 0 0 0 0 7 0 0 0 11 0 13 14

Fig. 2. Path matrix for the graph in Fig. 1.

upper triangular, with zeros on the diagonal, and (ii) there are
no isolated paths. The initial step is to find all simple paths
(ones not containing two or more occurrences of the same
node [10]), arrange them in descending order of length, and
display in a matrix form. For the sake of example, the path
matrix P for the graph from Fig. 1 is shown in Fig. 2, but it
should be noted that the construction of the matrix is simple
so the approach is scalable to larger circuits.

Each node has several attributes: τg is the delay due to the
operation time of the gate that the node n represents, which
is given; τn represents the node delay, which we compute
according to Algorithm 1. The list of upstream nodes for each
node includes all of the nodes that appear to the left of n in
each row of the path matrix P that n appears in. For example,
nodes 1, 2 and 3 are the upstream nodes for node 8 in the
matrix in Fig. 2. The list of input nodes to each node is
found from the adjacency matrix and refers to nodes that are
adjacent to n and are the alternate endpoints of the edges that
are incident to it.

Algorithm 1: SEQUENCEALGORITHM returns an expres-
sion for the delay of all nodes in the path matrix P, given
the node structure with float numbers τn, τg, and lists
inputs and upstreams
Function checkMax(n):

for node ∈ n.upstreams do
if node /∈ n.inputs then

remove node from n.upstreams

if n.inputs ∈ n.upstreams then
n.τn ← n.τg + max(n.inputs.τn)

Function checkSum(n):
if n.inputs ∈ n.upstreams then

if length(n.inputs) = 1 then
n.τn ← n.τg + n.inputs.τn

foreach n ∈ P do
1 n.upstreams ← getUpstreamNodes(n,P)
2 checkSum(n)
3 if n /∈ sumNodes then

checkMax(n)

4 return n.τn for n ∈ P

All nodes that appear in the path matrix P excluding the
source node are added to a list that is subsequently ordered in
terms of node number. For each node n, the first step is to find
all of its upstream nodes. The method of finding these nodes

is not explained in detail here, as it is straightforward, but is
shown by the function call getUpstreamNodes(n,P) that
takes the path matrix and node to be processed as arguments.
The list of upstream nodes is then passed to the checkSum
procedure.

If the node n has only one input node, the sum operation
is required. For this reason, the checkSum function confirms
that the list of upstream nodes contains the input node to node
n and that the list of input nodes has length 1. If this is the
case, the delay of node n (i.e. n.τn) will be equal to the sum of
the delay of the gate that node n represents and the delay of its
input node. In the path matrix presented here, the delay of node
2 is computed using the sum operation from τ2 = τ1 + τg,2.

If there is more than one input to a gate, the total input delay
is equal to the maximum of the arrival times of its inputs.
In terms of the timing graph, these arrival times are given
by the delays of the input nodes to node n. The checkMax
procedure first removes nodes from the list of upstream nodes
that are not input nodes to node n. It then checks that the
remaining list contains all of the input nodes to node n. If
this is the case, n.τg is added to the maximum of the delays
of the input nodes to n to give n.τn. Node 9 offers an example
of the max operation where τ9 = max(τ5, τ6) + τg,9.

As a result, we obtain an explicit sequence of operations
required to obtain analytically the expression of total delay
between any two nodes. The graph traversal algorithm allows
us to see the structure of the graph and its underlying cor-
relations, which is a significant advantages in the analysis of
circuit correlations. In the next section we consider the delay
propagation inside logic gates.

IV. LOGIC GATE DELAY

As soon as the sequence of operations required to find
the delay between two nodes is found from the Algorithm
presented in Section III, one must use the gate delays τg,i
involved in this sequence to calculate the actual delay. Here
we present a new technique of delay calculation through a gate
whose main advantage is the ability to handle non-Gaussian
distributions resulting from the max operation.

Let us consider a simple logic gate with two inputs, and let
us suppose we have two arrival signals with known delays,
A and B, and these delays are distributed normally. We shall
describe these delays as Gaussian variables, X1 and X2, with
given mean values, µ1 and µ2, and variances, σ2

1 and σ2
2 .

The computing of a maximum is not a straightforward
task since the operation is non-linear (see e.g. [11]). The
situation is even more complicated when applied to randomly
distributed variables. For the independent RVs X1 and X2

with probability density functions (PDF) f1(x) and f2(x) and
cumulative distribution functions (CDF) Φ1(x) and Φ2(x) the
PDF of another RV, max(X1, X2) is given by a well-known
formula [12], which is valid for any type of distribution:
fmax(x) = f1(x)Φ2(x) + f2(x)Φ1(x).

We are not considering correlations between variations in
this study (this will be reported elsewhere). However, we
would like to point out that introducing correlations at this
stage will not make any substantial difficulties, and all ob-
tained results can be easily generalized to the correlated case
(see e.g. [13]).

Let us now assume that the operation time of a gate leads
to a delay that can be described as a Gaussian RV X3 with
known mean µ3 and variance σ2

3 , and the PDF f3(x). Then, the
total delay of a gate is X = max(X1, X2) +X3. In terms of
distributions, the convolution of max(X1, X2) and X3 should
be performed:

(fmax ∗ f3)(x) =

∞∫
−∞

fmax(x′)f3(x− x′)dx′. (2)

For the case of Gaussian functions f1(x), f2(x) and f3(x), the
latter integral can be computed analytically. Therefore, after
the corresponding algebra one obtains the PDF of the total
gate delay ftot(. . .) as a function of all initial delays in the
following form:

ftot(x;µ1, σ1, µ2, σ2, µ3, σ3) =
1

2
√

2π
[I12(x) + I21(x)], (3)

here Iij(x) (i 6= j = 1, 2) are

Iij(x) =
1√

σ2
3 + σ2

i

exp(−αix2 + βix+ γi)

×

{
1 + erf

[
bij(x)

(
1

1 + a2ij

) 1
2
]}

, (4)

where

αi =
1

2

1

σ2
3 + σ2

i

, βi = 2(µ3 + µi)αi,

γi = −(µ3 + µi)
2αi = −1

2
(µ3 + µi)βi

aij =
σ3σi

σj
√
σ2
3 + σ2

i

,

bij(x) =
σ2
i x+ σ2

3µi − σ2
i µ3 − (σ2

3 + σ2
i)µj√

2(σ2
3 + σ2

i)σj
.

(5)

It is clearly seen that the resulting delay has non-Gaussian
form. For the purpose of a closed-loop algorithm, the simplest
solution would be to approximate at each step the distribu-
tion (2) with a Gaussian by matching two first moments [14].
However, as it was also indicated in the Introduction, this leads
to huge deviations of the result from actual distributions. In
order to keep both non-Gaussian form of delays and analyticity
of the solution presented above, we propose to approximate
non-Gaussian PDFs with the following linear combination of
kernel functions:

fapprox(x) =

n∑
i=1

ai exp

(
− (x− bi)2

2c2i

)
, (6)

where we determine the unknown coefficients ai, bi and ci
by solving a corresponding optimisation problem subject to
constraints

∑
i aici = 1√

2π
and ai, bi, ci to be > 0 in order

the new function fapprox(x) has meaning of PDF.
This allows us to build the Algorithm 2.

Algorithm 2: GATEDELAY finds the PDF of a delay of
combinational circuits.

Input: µi, σi of gates’ delays, number of gates NG
Output: PDF, mean and variance of the delay of a circuit

1 for i← 1, NG do
2 Compute the PDF of a total gate delay (3)–(5)
3 Perform optimization and find all ai, bi, ci
4 Approximate actual PDF with (6)

5 return final PDF of a circuit

Gaussian

Algorithm 2

Monte Carlo

1 2 3 4

0.0

0.2

0.4

0.6

0.8

Time, 10 -10

P
D

F
 o

f
de

la
y

s

Gaussian

Algorithm 2

Monte Carlo

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Time, 10-10

C
D

F
 o

f
de

la
y

s

Fig. 3. Example of the Algorithm 2 performance versus MC. The sum
of three kernel functions (6) was used. Additionally, the standard Gaussian
approximation is shown for the sake of comparison.

V. VERIFICATION AND DISCUSSION

To test the performance of the Algorithm 2 a set of realistic
parameters of input signal delays for the circuit from Fig. 1
were chosen. All input delays, as well as the gate delay,
were chosen normally distributed. The gate delay was assumed
equally distributed for all gates. The algorithm and MC were
run for a combination of 6, 42 and 258 gates. An example of
the resulting PDF and CDF is presented in Fig. 3, in addition
the results for pure Gaussian approximation are shown. The
proposed Algorithm 2 was in average ∼ 102 times faster than
the MC simulation with 107 samples.

As it is seen from Fig. 3, the proposed approximation (6)
gives more accurate results compared to Gaussian approxima-
tion, since such an approach allows one to take into account
skewness of non-Gaussian distributions. At the same time,
deviations from MC can be explained by inaccuracy of the
optimisation performed (a high-level programming language
was used to perform the fit), and a separate study is required.

In this work we propose two algorithms: (i) the novel graph
traversing algorithm that allows to avoid backtracking and re-
veal the structure of the graph between any two nodes and (ii)
the semi-analytical algorithm based on representation of non-
Gaussians distributions by the linear combination of kernel
functions that goes beyond existing results and allows further
generalisation. The key outcome is: (i) the fully analytical
expression for the convolution of max of two Gaussians with
the gate and/or interconnect delay, and (ii) the methodology
of handling non-Gaussian distributions so that obtained result
(3)–(5) becomes applicable.

The new graph traversal algorithm combined with kernel
function decomposition allows one a straightforward extension
of the analysis to the key challenges of current SSTA: spatial
correlations, multiple inputs to one gate and all-non-Gaussian
distributions of gate delays. We are currently working to incor-
porate these modifications and this is our on-going research.

ACKNOWLEDGEMENT

This work has emanated from research supported in part by
Synopsys, Ireland, and a research grant from Science Foun-
dation Ireland (SFI) and is co-funded under the European Re-
gional Development Fund under Grant Number 13/RC/2077.
The authors would like to thank also Steve Hollands, Paul
Frain, Adrian Wrixon and Kelvin Le for stimulating discus-
sions.

REFERENCES

[1] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer
Designs. A Practical Approach. Springer, 2009.

[2] L. Lavagno, I. L. Markov, G. Martin, and L. K. Scheffer, Eds., Electronic
Design Automation for IC Implementation, Circuit Design, and Process
Technology. CRC Press, 2016.

[3] C. Y. Lee and N. K. Jha, “Fincanon: A pvt-aware integrated delay
and power modeling framework for finfet-based caches and on-chip
networks,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 5, pp. 1150–1163, May 2014.

[4] A. Tang and N. K. Jha, “Genfin: Genetic algorithm-based multiobjective
statistical logic circuit optimization using incremental statistical analy-
sis,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 3, pp. 1126–1139, Mar 2016.

[5] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing
anlaysis: From basic principles to state of the art,” IEEE Trans. Comput.–
Aided Des. Integr. Circuits Syst., vol. 4, no. 8, 2008.

[6] J. Chung and J. A. Abraham, “Concurrent path selection algorithm
in statistical timing analysis,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 21, no. 9, pp. 1715–1726, Sept 2013.

[7] A. Lange, C. Sohrmann, R. Jancke, J. Haase, B. Cheng, A. Asenov,
and U. Schlichtmann, “Multivariate modeling of variability supporting
non-gaussian and correlated parameters,” IEEE Trans. Comput.–Aided
Des. Integr. Circuits Syst., vol. 35, no. 2, pp. 197–210, Feb 2016.

[8] V. Rao, D. Sinha, N. Srimal, and P. K. Maurya, “Statistical path tracing
in timing graphs,” in Proc. DAC, Jun 2016, pp. 1–6.

[9] I. Kovacs, M. opa, A. Buzo, and G. Pelz, “An accurate yield estimation
approach for multivariate non-normal data in semiconductor quality
analysis,” in Proc. SMACD, Jun 2017, pp. 1–4.

[10] S. H. Gerez, Ed., Algorithms for VLSI Design Automation. Wiley, 1998.
[11] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan,

D. K. Beece, J. Piaget, N. Venkateswaran, and J. G. Hemmett, “First-
order incremental block-based statistical timing analysis,” IEEE Trans.
Comput.–Aided Des. Integr. Circuits Syst., vol. 25, no. 10, pp. 2170–
2180, Oct. 2006.

[12] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochas-
tic Processes, 4th ed. McGraw-Hill, 2002.

[13] S. Nadarajah and S. Kotz, “Exact distribution of the max/min of two
gaussian random variables,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 2, pp. 210–212, Feb 2008.

[14] C. E. Clark, “The greatest of a finite set of random variables,” Oper.
Res., vol. 9, no. 2, pp. 145–162, Apr. 1961.

