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Abstract. The k-shortest path problem is a generalization of the fundamental
shortest path problem, where the goal is to compute k simple paths from a given
source to a target node, in non-decreasing order of their weight. With numerous
applications modeling various optimization problems and as a feature in some
learning systems, there is a need for efficient algorithms for this problem. Unfor-
tunately, despite many decades of research, the best directed graph algorithm still
has a worst-case asymptotic complexity of Õ(k n(n+m)). In contrast to the worst-
case complexity, many algorithms have been shown to perform well on small di-
ameter directed graphs in practice. In this paper, we prove that the average-case
complexity of the popular Yen’s algorithm on directed random graphs with edge
probability p = Ω(logn)/n in the unweighted and uniformly distributed weight
setting is O(k m logn), thus explaining the gap between the worst-case complex-
ity and observed empirical performance. While we also provide a weaker bound
of O(k m log4 n) for sparser graphs with p ≥ 4/n, we show empirical evidence
that the stronger bound should also hold in the sparser setting. We then prove
that Feng’s directed k-shortest path algorithm computes the second shortest path
in expected O(m) time on random graphs with edge probability p = Ω(logn)/n.
Empirical evidence suggests that the average-case result for the Feng’s algorithm
holds even for k > 2 and sparser graphs.

Keywords: k-Shortest Path Algorithms, Average Case Analysis, Yen’s Algo-
rithm, Feng’s Algorithm

1 Introduction

An important problem in the analysis of complex networks is to find structural rela-
tionships between the nodes. In many applications, one is interested in finding many
short simple paths between two nodes to reveal deeper semantic insights into the re-
lationship between the nodes. For instance, in areas such as financial fraud analysis,
law-enforcement and journalistic investigations, a query such as “What are the dif-
ferent ways in which the person A and person B have indirectly communicated/dealt
with/transacted with?” can reveal important connections between individuals that can
then be further investigated. For the problem of recommending people to connect in
a social network (a problem crucial for the growth of a social network), statistics from
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short simple paths can be used as a feature in prediction systems as well as in presenting
a visual evidence for convincing a user that he/she should connect to the recommended
person.

The problem of finding many short paths has applications well beyond finding struc-
tural relationship between nodes. For instance, Shih and Parthasarathy [31] used an ap-
proach for finding many short simple paths to identify the potential regulatory pathways
in a Yeast gene network.

A natural way to find many short paths is to model it as the k-shortest simple path
problem [9]. This is a generalization of the fundamental shortest path problem, where
the goal is to compute not just one, but k loop-less paths between a given source and
target node, in non-decreasing order of their weight. In this variant of k-shortest path,
all shortest paths (and not just the first) are constrained to be cycle-free (simple). This
is because cycles rarely add any insight when studying structural relationships between
nodes, particularly in applications such as semantic search and recommending people
to connect to. Note that in this variant, the resultant paths need not be node or edge-
disjoint.

The best asymptotic complexity of algorithms for the loop-less variant of the k-
shortest path on the weighted directed graphs is O(k n(m+ n log logn)) [17]. There is
considerable evidence [2, 32] that the asymptotic worst-case bound can’t be improved
significantly. This poor asymptotic complexity in the directed graph setting is in stark
contrast with the significantly better asymptotic complexity of O(k(m+ n logn)) [21]
in the undirected setting. This difference in asymptotics discourages the use of exact
k-shortest path algorithms in applications where structural relationship between nodes
in directed graphs needs to be computed efficiently.

A recent empirical study [3] has found that despite the difference in asymptotics
between algorithms for directed and undirected graphs, they are fairly competitive in
average on random graphs and that some of the directed graph k-shortest path algo-
rithms scale well on random graphs. We hypothesize that two of the popular directed
graph k-shortest simple path algorithms with poor worst-case asymptotic complexity,
by Yen [33] and Feng [13], have near-linear average-case asymptotic complexity (ex-
plaining their scalability in practice). In this paper, we provide considerable theoretical
and empirical evidence to support this hypothesis. Thus, our work bridges this impor-
tant gap between the worst-case complexity and the empirical performance of these
algorithms and motivates the usage of these algorithms in many network analytics ap-
plications that have strong efficiency requirements.

We first show that the average-case asymptotic complexity of Yen’s algorithm is
O(k m logn) on random directed graphs with uniform random weights, in the setting
where k = O(n) and m = Ω(n · logn). This setting is motivated by the facts that (i)
choosing k = ω(n) would result in running times of ω(n2) which are infeasible for
huge values of n, (ii) the average-case computational savings on random graphs over
general graphs are more significant when m� n, and (iii) we can rely on certain struc-
tural properties (lacking in very sparse random graphs) which significantly simplify
our proofs. While we also provide a weaker bound of O(k m log4 n) for sparse random
graphs, we show empirical evidence indicating that the stronger bound for the denser
case even holds for very sparse random graphs.
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Next, we show that the average-case complexity of computing the second shortest
path with Feng’s algorithm [13] is even better, namely O(n+m) on unweighted random
undirected graphs. Our experimental results suggest that similar bounds hold for k > 2
as well, even with uniform and exponential edge weights.

Remark: Note that in this paper, the average-case complexity refers to the expected
complexity of computing k-shortest paths from a randomly chosen source node to a
randomly chosen target node on a directed random graph from the class D(n, p, [0,1]).
The class D(n, p, [0,1]) comprises directed graphs on n nodes, where each edge exists
with probability p independent of the presence of all other edges, and the edge weights
are uniformly distributed between 0 and 1.

2 Related Work

In this paper, our focus is on the average-case complexity of exact algorithms for the
loop-less k-shortest path problem. From a worst-case asymptotic complexity perspec-
tive, the best algorithm for this problem in the weighted case is by Gotthilf and Lewen-
stein [17], that achieves a bound of O(kn(n log logn+m)). For directed unweighted
graphs, Roditty and Zwick [29] have improved the bound to O(km

√
n log2 n).

Due to fine-grained conditional complexity results by Williams and Williams [32]
and Agarwal and Ramachandran [2], it is unlikely that the asymptotic worst-case com-
plexity of k-shortest path on directed weighted graphs can be improved to O(n3−δ ) for
some δ > 0 or o(nm), respectively.

In this paper, we focus on a very popular k-shortest simple path algorithm, originally
proposed by Yen [33]. Yen’s algorithm considers all possible O(n) deviations from
each of the previously computed paths. This takes O(kn(n logn+m)) time when using
Dijkstra’s SSSP algorithm [11] with Fibonacci heaps [14] as a kernel.

There has also been considerable work on practical improvements of the directed
k-shortest simple path algorithm (e.g., [23, 27, 25, 24, 30, 31, 19, 13, 22]). In particular,
Feng’s algorithm [13] claims to be the empirically fastest approach on many graph
classes, while still matching the worst-case time complexity of Yen’s algorithm. In this
paper, we present theoretical and empirical evidence to explain the performance of this
algorithm in an average-case setting.

The best k-shortest path algorithm for undirected graphs [21] has a significantly
better asymptotic worst-case complexity of O(k(m + n logn)), compared to directed
graph algorithms. Despite the big gap between the worst-case asymptotic complexity
of directed and undirected graph algorithms, a recent experimental paper [3] showed
comparable performance of these algorithms on the random graphs, motivating this
theoretical study.

Our current study on average-case complexity of exact k-shortest simple path algo-
rithms excludes the work done on approximating k-shortest simple paths [5, 15], all-pair
k-shortest simple paths [1], loopy k-shortest path algorithms [12, 4] as well as distance
oracles for computing replacement paths [10, 6].
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3 Algorithms

3.1 Yen’s Algorithm

Given a graph G(V,E), a source node s and a target node t, Yen’s algorithm [33] starts
by computing the shortest path from s to t, namely P0 = (s, . . . , t). The algorithm then
maintains a priority queue C of candidates for the next shortest paths. Initially, the queue
C consists of only P0 with the priority weight(P0).

We then iteratively compute the shortest paths Pi for i = 1, . . . ,k− 1 and update C
with candidate paths for the next iteration. The path Pi is obtained by simply extracting
the minimum weight path from C. Let Pi = (vi

1 = s,vi
2, . . . ,v

i
d , . . . ,v

i
l = t) and let Pj be

the path with maximum common prefix (v j
1 = vi

1,v
j
2 = vi

2, . . . ,v
j
d = vi

d) among all paths
{P1, . . . ,Pi−1}. Further, let dev(Pi) = vi

d be the node at which Pi deviated from Pj (we
define v1

d = s for P1). Then, the new candidate paths to be inserted into C are the shortest
paths deviating from Pi at nodes {vi

d , . . . ,v
i
l−1}. To compute the deviation path from a

node vi
f , we first compute the shortest path P f from vi

f to t in the graph G′ obtained
by removing nodes {vi

1, . . . ,v
i
f−1}, incident edges and all edges in E f from G, where

E f = {(vh
f ,v

h
f+1) : 1≤ h≤ i and vh

1 = vi
1, . . . ,v

h
f = vi

f }. The shortest deviation path from
Pi at a node vi

f is simply the path {vi
1,v

i
2, . . . ,v

i
f−1} appended by P f . We insert it into C

with its weight as priority. See Algorithm 1 for a pseudo-code of the algorithm.

3.2 Feng’s Algorithm

Feng’s algorithm [13] optimizes the computation of deviations in Yen’s algorithm by
significantly pruning the subgraph for deviation computation. We refer to the pruned
subgraph, involved in the computation of the deviation from vi

f from path Pi, as the

yellow graph Y i
f (V

i, f
y ,E i, f

y ). We next describe the set of nodes and edges in this graph
and then modify the description for efficient computation of yellow graphs.

Let T be the reverse shortest path tree rooted in t. When computing the deviation
from path Pi at node vi

f , we conceptually colour the nodes into three colours: Nodes
vi

1, . . . ,v
i
f are coloured red, all nodes whose shortest path to t in T goes through a red

node are yellow and the remaining nodes are green. The node set V i, f
y of the yellow

graph Y i
f consists of all yellow nodes, only one red node vi

f and only one green node
t. The set Ey consists of all edges between the yellow nodes and only outgoing edges
of vi

f . All edges (u,v) ∈ E where u is a yellow node and v is a green node are replaced
by edges (u, t) in Ey. The weight of the edge (u, t) in Ey equals the sum of the weight
w(u,v) of edge (u,v) in E and the weight of the path d(v) from v to t in T .

We modify the original description of Feng’s algorithm [13] to compute the yellow
graphs efficiently. The reverse shortest path tree T from t is computed only once, before
the deviation computation commences. As part of the shortest path tree computation,
we also store the distance d(v) of a node v from t in T in addition to all the in-edges to
v. To compute V i, f

y , we traverse T from each of the red nodes r to identify the subtree of
yellow nodes rooted at r in T . A simple BFS traversal from r in T that skips the other
red nodes (and the subtrees rooted at them) suffices for this purpose. The union of nodes



Average-case behavior of k-shortest path algorithms 5

Algorithm 1 Yen’s Algorithm
Require: G(V,E), s, t, K . source, target, # paths
1: Kpaths = /0
2: P0 = sssp(G,s), α0 = 0, j0 = 0
3: C = /0
4: k = 1
5: while k < K and C 6= /0 do
6: Proot = (vk−1

0 , ...,vk−1
αk−1−1)

7: G′(V ′,E ′) = G[V \Proot ] . Proot as a set.
8: for i = 0, ...,k−2 do
9: if ji == jk−1 or i == jk−1 then

10: E ′ = E ′ \{(vi
αi
,vi

αi+1)}
11: end if
12: end for
13: for n = αk−1, ...,qk−1−1 do
14: E ′ = E ′ \{(vk−1

n ,vk−1
n+1)}

15: P = sssp(G′,n)
16: P = Proot _ P, j = k−1, α = n
17: C =C∪{(P, j,α)}
18: G′(V ′,E ′) = G[V \{vk−1

n }]
19: end for
20: (Pk, jk,αk) = shortest path in C
21: C =C \{(Pk, jk,αk)}
22: Kpaths = Kpaths∪{Pk}
23: k = k+1
24: end while
Ensure: Kpaths

in all these subtrees, together with vi
f and t, constitutes V i, f

y . Since the yellow nodes are
disjointly partitioned among the different subtrees and each red node is skipped in ex-
actly one traversal, these traversals touch O(ni

y( f )+ni
r( f )) nodes and edges altogether,

where ni
y( f ) = |V i, f

y | and ni
r( f ) is the number of red nodes. Skipping can be performed

efficiently by storing the red nodes in a hash table, resulting in the overall complexity
of O(ni

y( f )+ni
r( f )) for computing V i, f

y .

For computing the set E i, f
y , we consider all outgoing edges of yellow nodes. For an

outgoing edge (y,u) of a yellow node y, if u is a yellow node, we insert (y,u) in E i, f
y .

If instead u is a green node, we insert (y, t) in E i, f
y with weight equal to d(u)+w(u,v).

Otherwise, we ignore it. Clearly, this requires touching O(mi
y( f )+mi

r( f )) edges, where
mi

y( f ) = |E i, f
y | and mi

r( f ) is the number of edges from yellow nodes to red nodes. This
is because each outgoing edge from a yellow node either results in an edge in E i, f

y or
leads to a red node.

In addition, we add all edges from vi
f to yellow nodes in E i, f

y . In the computation
of the ith shortest path, each node in the graph can appear at most once as vi

f for some
deviation. Thus, summing over all k shortest paths, this requires touching O(k m) edges
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in total. Therefore, the total complexity of creating the yellow graphs over all deviations
(excluding the initial SSSP computation) is O(k m+∑

k−1
i=1 ∑

l
f=1Y

i( f )) for

Yi( f ) := ni
y( f )+mi

y( f )+ni
r( f )+mi

r( f ) (1)

where the inner summation is taken over all deviations in the computation of ith shortest
path.

4 Average-Case Analysis of Yen’s Algorithm

Theorem 1. For random directed graphs from D(n, p, [0,1]) with p = Ω( lnn
n ), the

average-case complexity of Yen’s k-SP algorithm with k = O(n) is O(k m logn) w.h.p.

Proof. Let us consider the work done by Yen’s algorithm when going from the ith short-
est path Pi to the (i+1)th shortest path: It computes deviation paths from nodes dev(Pi)
in path Pi to t. Each deviating path finding boils down to removing O(m) edges, which
can be done in O(n+m) complexity, and subsequently running a SSSP computation.
Using Dijkstra’s algorithm [11] with Fibonacci heaps [14], the shortest-path computa-
tion itself takes O(n logn+m) time. By Chernoff bounds and the lower bound on the
edge probability p we have m = Ω(n logn) w.h.p., thus implying that each shortest-path
computation will take at most O(n+m) time w.h.p. It remains to show that for k =O(n),
the overall number of deviations required by Yen’s k-SP algorithm is O(k logn) w.h.p.
In order to see this note in Yen’s algorithm, at most one deviation is computed from
each node in the ith shortest path when computing the (i+ 1)th shortest path. Thus, it
suffices to prove that the number of hops in the ith shortest path is O(logn) w.h.p. for
i < k. To this end we will leverage the following properties proved by Priebe [28]:
(P1) If p = Ω( lnn

n ) for sufficiently large constants then the diameter (i.e., the maxi-
mum shortest path weight among all n2 pairs of vertices) of generated random graphs
in D(n, p, [0,1]) is bounded by O( logn

n·p ) w.h.p. (P2) If p = Ω( logn
n ) for sufficiently large

constants then shortest paths in D(n, p, [0,1]) consist of O(logn) edges w.h.p.5

The proof for (P2) in [28] is based on the observation that with high probability
random weighted graphs from D(n, p, [0,1]) do not contain simple paths of total weight
at most δ := C · (logn)/(n · p) < 1 that at the same time consist of more than D · logn
edges for appropriately chosen constants C and D. Since the threshold δ from [28]
is just an upper bound on the diameter given in (P1), (P2) is also applicable for the
ith shortest path, i < k = O(n), as long as its path weight stays below δ . Thus, in the
remainder we only need to argue that D(n, p, [0,1]) contains Ω(n) edge-disjoint s− t
paths of weight less than δ with high probability:

Prior to actually generating the input graph G according to D(n, p, [0,1]) let us arbi-
trarily partition its nodes into two equally sized sets while ensuring that s and t belong to

5In fact, Priebe showed (P1) in the form of his Lemma 3.4 and (P2) in the form of his Lemma
3.10, for any edge weight distribution function F that satisfies the following requirements: F is
concentrated on [0,∞), F(0) = 0 and that F ′(0) exists and is strictly positive. Since the uniform
edge weight distribution between 0 and 1 is compatible with these requirements, (P1) and (P2)
hold for D(n, p, [0,1]), too.
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different sets. Let the graphs induced by the two partitions be Gs and Gt , respectively.
By construction Gs and Gt can be considered to stem from D(n/2, p, [0,1]). Hence,
w.h.p., for p = Ω( lnn

n ) both subgraphs are strongly connected [18] and (P1) & (P2) also
hold for them. For each node x in Gs let Ix denote the random binary indicator vari-
able for the event that there is at least one edge from x with a target node y in Gt and
edge weight at most 1

np . There are n/2 potential edges from x into Gv each indepen-
dently showing up with probability p. Hence, the probability for Iv being 1 is at least
1−(1− p · 1

np )
n/2 = 1−(1− 1

n )
n/2 ≥ 1−e−1/2 > 1/4. Thus, E[Iv] is a constant between

0 and 1 and therefore we can use Chernoff bounds to show that ∑x∈Gu Iv is Θ(n) w.h.p.
This implies that there are Θ(n) alternative paths from s to t via edges (xi,yi). Due to
(P1) each of these paths consists of at most 2 ·D · log(n/2)+1 = O(logn) edges w.h.p.
and due to (P2) their respective paths lengths are at most O(2 · log(n/2)

(n/2)·p + 1
n·p ) = O( logn

n·p )

w.h.p., which is below the threshold δ for sufficiently large p. �

Theorem 2. For sparse random directed graphs from D(n, p, [0,1]) with 4
n ≤ p≤ Θ(lnn)

n ,
the average-case complexity of Yen’s k-SP algorithm with k = O(n) and both s and t
being part of the giant strong component6 is bounded by O(k m log4 n) w.h.p.

Proof. This rather crude upper bound can be shown with a similar proof like the one
we used for Theorem 1. One extra log factor results from the now dominating priority
queue operation costs within Dijkstra’s algorithm7. Furthermore, the underlying proof
technique for (P2) does not seem to be fully transferable to the sparse setting where
the expected weights for shortest s-t paths are higher: by subdividing these paths into
logarithmically many subpaths with smaller weights, we can reuse the old analysis but
this incurs an extra multiplicative log factor in our upper bound for the time. Similarly,
for sparse random graphs the relative node degree fluctuation is likely to be larger than
on their dense counterparts, which accounts for at most another logarithmic factor in
case one wants to stick to the old analysis structure. �

Theorems 1 and 2 carry over to the respective unweighted cases. The proofs can
be streamlined since shortest path distances now coincide with the number of edges on
these paths. As a positive consequence, with high probability, we now find even more
equally suited alternative shortest paths between the two graph partitions, which is why
the results also hold for higher values of k up to Θ(n2 · p) =Θ(m).

4.1 Empirical Results on Average-Case Behavior of Yen’s Algorithm

The bound of O(k m logn) in Theorem 1 was proved under the assumption of p >
2lnn/n (and k = O(n)). Next, we provide empirical evidence that similar bound is
likely to hold for the setting of even sparser graphs, even though the bound proven in
Theorem 2 is off by a poly-logarithmic factor. For this, we consider n = 2 j · 106 for

6For p≥ 4/n the size of the giant strong component is Ω(n) w.h.p. [20].
7We are aware that there exist improved SSSP algorithms with linear average-case time (e.g.,

[16, 26]) for initially uniformly distributed edge weights. Unfortunately, for the particular sub-
graphs on which we would like to apply these better SSSP algorithms it seems difficult to prove
that their overall edge weight distribution remains sufficiently uniform



8 Schickedanz et al.

j = 0, . . . ,7, m = 4n and generate directed random graphs with n nodes, m edges fol-
lowing the G(n,m) model [7] without self-loops8. For the edge weights, we consider
two settings, (i) unweighted and (ii) uniform random edge-weight distribution in [0,1].
After generating a graph for a fixed n, we draw the source and target nodes uniformly
at random and average the results over 10 different source-target pairs.
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Fig. 1. The number of hops (1st row) of the kth shortest path and the number of deviations (2nd

row) to compute the (k+1)th shortest path from the kth with respect to log(nk) for G(n,4n) with
uniform random edge weights (left) and unweighted (right).

Figure 1 show that the number of hops in the kth shortest path and the number of
deviations required to compute the (k+1)th shortest path is quite well approximated by
log(nk), indicating that even in this sparse setting, the average-case complexity bound
of O(k m log(nk)) (O(k m logn) for k = O(n)) is likely to hold. Figure 2 shows the same
for larger values of k.

Fig. 2. The number of hops of the kth shortest path and deviation computed from it for the (k+1)th

shortest path with respect to log(nk), computed for a directed random graph from class G(n =
32 ·106,4n) with uniform random edge weights (left) and unweighted (right).

5 Average-Case Analysis of Feng’s Algorithm

Theorem 3. On unweighted random undirected graphs with p = Ω( lnn
n ), the average-

case complexity of Feng’s algorithm for computing the second shortest path is O(m).
8We note that for convex properties, the G(n, p) and G(n,m) random graph models are equiv-

alent up to lower order terms, provided m ≈ p ·N (where N is the maximum number of edges
insertable in a graph, N = n(n−1) for directed graphs) [7]. Thus, the empirical results shown for
the G(n,m) model should also hold for the G(n, p) model.
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Proof. Consider the three main steps involved in Feng’s algorithm: (i) Computing SSSP
from t: This requires O(n+m) time using BFS for unweighted graphs. (ii) Computation
of yellow graphs: As argued in Section 3, this requires O(k m+∑

k−1
i=1 ∑

l
f=1Y

i( f )) oper-
ations, where the second summation is taken over all deviations in the computation of
ith shortest path. (iii) SSSP computations in the yellow graph: Every shortest path com-
putation can be performed in O(Yi( f )) time using BFS. Once again, the summation
over all deviations yields a total bound of O(∑k−1

i=1 ∑
l
f=1Y

i( f )).
Thus, the total complexity of Feng’s algorithm for computing the k shortest paths is

O(n+m+∑
k−1
i=1 ∑

l
f=1Y

i( f )), which is O(m+∑
l
f=1Y

1( f )) for the second shortest path.
Lemma 1 shows that E[∑l

f=1Y
1( f )] = O(n+m), making the average-case complexity

of this algorithm to be O(m).

Lemma 1. If p≥C lnn/n for some constant C > 2, E[∑l
f=1Y

1( f )] = O(n+m).

Proof. We first show that ∑
l
f=1 n1

y( f ) + n1
r ( f ) = O(n). Then we will argue that

∑
l
f=1 m1

y( f )+m1
r ( f ) = O(m).

Consider the ith node t(i) on the shortest path from s to t. We want to show that, in
expectation, the number of nodes u such that the shortest path from s to u goes through
t(i) decreases roughly exponentially in i. To this end, we analyse the structure of the
BFS tree rooted at s. Let Γi denote the set of nodes at distance i from s, thus for any
y ∈ Γi+1 there exists x ∈ Γi such that (x,y) is an edge. We assume that the parent of y in
the BFS tree is randomly chosen among all such x, if there is more than one possibility.

The depth of the BFS tree is O(logn) w.h.p. [28] and, by Lemma 8 from [8], for
each 1≤ i≤ i0 = 2/3logn/ log(np), with probability at least 1−o(1/n), we have |Γi|=
Ω((np)i). We would like to have a lower bound on |Γi| for i > i0 as well. We choose
the smallest i1 such that |⋃i1

i=0 Γi| > n− 2
√

n. We claim that now, for any i = i0 +
1, . . . , i1−1, |Γi| ≥

√
n with probability 1−1/n. Assume that |Γi|<

√
n, then we have a

partition of the nodes into three sets U,S and V with the following properties: |S|<√n,
|U |, |V | ≥ 2

√
n, and there are no edges between U and V . But the probability of such a

partition to exist can be bounded for |U |= x as follows:(
n√
n

)(
n
x

)
(1− p)x(n−√n−x) ≤ (

√
ne)
√

n(ne/x)xe−p·x(n−√n−x)

≤ e
√

n lnn−x lnx+x−x lnn+2c lnn ≤ e
√

n lnn−x lnx+(2c−x/2) lnn

which is at most 1/n2 for sufficiently large n and x ≥ 2
√

n. Summing over all possible
|U |, the probability is bounded by 1/n.

We rephrase the random procedure used to create the graph. Instead of fixing every
edge, we work in phases corresponding to the layers of the BFS tree. Having chosen
Γi, we select (with appropriate probability) the nodes of Γi+1, but do not fix the edges
between x ∈Γi and y ∈Γi+1 yet. Also, we terminate after having obtained Γi1 , thus there
might be still up to 2

√
n unvisited nodes. To fully determine the relevant part of the BFS

tree we still need to choose, for every y ∈ Γi+1, for i = 0,1, . . . , i1−1, its parent x ∈ Γi.
We assume that u ∈ Γi1 .

We need to bound the probability that, for a randomly chosen node u, the shortest
path from s to u goes through t(i). By union bound, this is at most 1/|Γi|+ 1/|Γi+1|+
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. . .+ 1/|Γi1−1|, because for the shortest path from s to u and s to t to meet for the first
time in some node x ∈ Γj it must hold that two nodes y,y′ ∈ Γj+1 have chosen the same
parent, which holds with probability 1/|Γj|. Summing over all i we obtain that w.h.p.
the expected number of such nodes u is

i1−1

∑
i=0

n
i1−1

∑
j=i

1/|Γj| ≤ O(n log2 n/
√

n+
i0

∑
i=0

i0

∑
j=i

n/(np) j)

≤ O(n log2 n/
√

n+
i0

∑
i=0

n/(np)i) = O(n).

It remains to argue that ∑
l
f=1 m1

y( f ) +m1
r ( f ) = O(m). The expected degree of a

node is np≥ c lnn, so by standard Chernoff bounds with probability 1−1/n the degree
of every node is O(np). Thus, ∑

l
f=1 m1

y( f )+m1
r ( f ) = O(n2 p) with probability 1−1/n.

Finally, the expected value of m is n2 p/2, so by Chernoff bounds m is less than n2 p/4
with probability at most 1/n for sufficiently large n. Thus, with probability 1−O(1/n),
∑

l
f=1 m1

y( f )+m1
r ( f ) = O(n2 p) = O(m).

5.1 Empirical Results on Feng’s Average-Case Behavior

Theorem 3 proves that the average-case complexity of computing second shortest path
using Feng’s algorithm is O(n+m) for p ≥ c lnn/n. This is based on Theorem 1 that
shows that in this setting, Yi( f ) grows exponentially as a function of the relative dis-
tance of deviation node to target node and ∑

l
f=1Y

i( f ) = O(n+m). In this section, we
show experimental results which indicate that the results are likely to be true for the (i)
kth shortest path for k > 2 and (ii) for sparser graphs.

The experimental setting is similar to that of the empirical analysis of Yen’s algo-
rithm. Consider the computation of candidate deviation paths from the ith shortest path
with #hops hops. Let f be the deviation node as numbered from t ( f = 0 for s and
f = l−1 for the predecessor of t). Figure 3 shows that Yi( f ) grows exponentially the
closer the deviation node is to the target node (so while f/l gets closer to 1), even when
the results are averaged over 10 shortest paths (and not just for the second shortest path).
This is true both for unweighted and uniformly random edge weight setting.

Fig. 3. Yi( f ) averaged over the first k = 10 shortest paths for G(n,4n) with uniform random edge
weights (left) and unweighted (right). Since all of the k-shortest paths have a different number of
hops, the size of the yellow graph is plotted with respect to the number of hops.
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Finally, Figure 4 shows that ∑
l
f=1Y

i( f )/(n+m) is close to being a constant, even
for larger values of k (for both unweighted and uniformly random edge weights). Again,
this suggests that Theorem 1 is likely to hold for k > 2 as well.

Fig. 4. (∑l
f=1Y

i( f ))/(n+m), the total size of all yellow graphs with respect to n and m during
the computation of the (k+1)th shortest path for G(n,4n) with uniform random edge weights
(left) and unweighted (right).

6 Conclusion

We have shown that in the not-too-sparse setting, the average-case complexity of Yen’s
algorithm is O(k m logn) in contrast to its worst-case complexity of O(k mn). For Feng’s
algorithm, we found that the considerable pruning of the subgraphs for computing de-
viations is not only a fast heuristic in practice, but it also enables the proof of a better
average-case complexity bound of O(k m) for the second shortest path on unweighted
graphs. Proving that this bound still holds for k > 2 and in the sparser settings remains
an open combinatorial problem.

Acknowledgements. We are grateful to Erika Duriakova for providing us the code for
the implementation of Yen’s algorithm, the SSSP subroutines and her generous help
with debugging our usage of her code.
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