
Any-k: Anytime Top-k Tree Pattern Retrieval in Labeled Graphs
Xiaofeng Yang

Northeastern University

Boston, MA

xiaofeng@ccs.neu.edu

Deepak Ajwani

Nokia Bell Labs

Dublin, Ireland

deepak.ajwani@nokia-bell-labs.com

Wolfgang Gatterbauer

Northeastern University

Boston, MA

wolfgang@ccs.neu.edu

Patrick K. Nicholson

Nokia Bell Labs

Dublin, Ireland

pat.nicholson@nokia-bell-labs.com

Mirek Riedewald

Northeastern University

Boston, MA

mirek@ccs.neu.edu

Alessandra Sala

Nokia Bell Labs

Dublin, Ireland

alessandra.sala@nokia-bell-labs.com

ABSTRACT
Many problems in areas as diverse as recommendation systems,

social network analysis, semantic search, and distributed root cause

analysis can be modeled as pattern search on labeled graphs (also

called “heterogeneous information networks” or HINs). Given a

large graph and a query pattern with node and edge label con-

straints, a fundamental challenge is to find the top-k matches ac-

cording to a ranking function over edge and node weights. For

users, it is difficult to select value k . We therefore propose the novel

notion of an any-k ranking algorithm: for a given time budget, re-

turn as many of the top-ranked results as possible. Then, given

additional time, produce the next lower-ranked results quickly as

well. It can be stopped anytime, but may have to continue until all

results are returned. This paper focuses on acyclic patterns over

arbitrary labeled graphs. We are interested in practical algorithms

that effectively exploit (1) properties of heterogeneous networks, in

particular selective constraints on labels, and (2) that the users of-

ten explore only a fraction of the top-ranked results. Our solution,

KARPET, carefully integrates aggressive pruning that leverages

the acyclic nature of the query, and incremental guided search. It

enables us to prove strong non-trivial time and space guarantees,

which is generally considered very hard for this type of graph

search problem. Through experimental studies we show that KAR-

PET achieves running times in the order of milliseconds for tree

patterns on large networks with millions of nodes and edges.

ACM Reference Format:
Xiaofeng Yang, Deepak Ajwani, Wolfgang Gatterbauer, Patrick K. Nicholson,

Mirek Riedewald, and Alessandra Sala. 2018. Any-k: Anytime Top-k Tree

Pattern Retrieval in Labeled Graphs. InWWW2018: The 2018Web Conference,
April 23–27, 2018, Lyon, France. ACM, New York, NY, USA, 10 pages. https:

//doi.org/https://doi.org/10.1145/3178876.3186115

1 INTRODUCTION
Heterogeneous information networks (HIN) [16], i.e., graphs with

node and/or edge labels, have recently attracted a lot of attention

for their ability to model many complex real-world relationships,

This paper is published under the Creative Commons Attribution 4.0 International

(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC BY 4.0 License.

ACM ISBN 978-1-4503-5639-8/18/04.

https://doi.org/https://doi.org/10.1145/3178876.3186115

user3

photo1

group1 group2

user1 user2

Figure 1: Example query on a photo-sharing network: find themost
important nodes of types (user3, group1, group2) for a given triple
of specified nodes of types (photo1, user1, user2).

thereby enabling rich queries. Often labels are used to represent

types of nodes and their relationships:

Example 1.1 (Photo-sharing network). Consider a photo-sharing
social network with three vertex type labels: user, photo, and group.

Users are connected to the photos they upload, and photos are

connected to groups when they are posted there. Finally, users can

connect to groups by joining them. To maintain a vibrant com-

munity and alert users about potentially interesting photos, the

social network might run queries of the type shown in Figure 1:

given photo1 and two users, user1 and user2, find alternative groups
(matching nodes for group2) to post the photo in order to reach

user2 without spamming her directly. This is achieved by identify-

ing a user belonging to both groups (user3), who can post the photo

in the other group. There might be hundreds of matching triples

(group1, user3, group2), and there would be many more if user2 was
not given in advance. Under these circumstances, the goal often is

not to find all results, but only themost important ones. Importance

can be determined based on node and edge weights, e.g., weights

representing distances (or similarities). Then the query should re-

turn the lightest (or heaviest) pattern instances. For example, the

weight of a group may be based on its number of members, the

weight of a user on how active s/he is, and the weight of a link

on the timestamp when it was established (to give preference to

long-term relationships or more recent photo posts), or the sum of

the PageRanks of its endpoints.

These types of rich query semantics also appears in other con-

texts, e.g., root-cause analysis in distributed systems. The Vitrage

service for OpenStack [4] makes use of path and tree patterns to

specify rules for automatic root cause deduction of alarms raised

https://doi.org/https://doi.org/10.1145/3178876.3186115
https://doi.org/https://doi.org/10.1145/3178876.3186115
https://doi.org/https://doi.org/10.1145/3178876.3186115

by virtual machines and hardware. Large OpenStack deployments—

involving thousands of hosts and tens of thousands of virtual ma-

chines and hardware components—necessitate pattern matching

algorithms to deduce the root cause of such patterns in near real-

time.

We focus on efficient solutions for acyclic pattern queries on

general labeled graphs. To this end, we propose the notion of any-k
algorithms, a novel variant of top-k algorithms. A top-k algorithm

exploits knowledge about the given k to produce the top-k lightest

patterns faster than the “full enumeration” algorithm (which first

produces all results and then ranks them by weight). In practice, it

is difficult for users to know the value of k upfront (“when will I

have seen enough?”). An any-k algorithm addresses this issue by

not requiring a pre-set value for k . Instead, an any-k algorithm

(1) returns the top-ranked result as quickly as possible,

(2) then returns the second-ranked result next, followed by the

third-ranked, and so on,

(3) until the user is satisfied and terminates the process.

In other words, the ranked enumeration can be stopped anytime
and should then return as many top results as possible.

The queries we are interested in correspond to subgraph isomor-
phism, which is known to be hard in general. In particular, subgraph

isomorphism on homogeneous graphs is already NP-complete in

the size of the query (even for the path case as Hamiltonian path

is a special case). And labeled graphs contain unlabeled graphs as

a special case. On the other hand, labels provide more opportu-

nities for achieving better performance in practice by exploiting

heterogeneity where present. Note that a key reason for hardness

of isomorphism lies in the “non-repetition constraint,” i.e., the same

graph node cannot occur more than once in an answer. Without this

constraint, pattern search would correspond to the easier subgraph
homomorphism problem which can be solved in PTIME.

Our approach is based on three key insights: (1) Constraints on

node or edge labels can dramatically reduce the number of match-

ing results; (2) Mutually exclusive type labels “narrow the gap” in

cardinality between the set of isomorphic subgraphs and the set

of homomorphic subgraphs (which includes all isomorphic ones).

The reason is that query pattern nodes of different types cannot

be mapped to the same graph node, even when the algorithm is

only searching for homomorphism. In the example photo-sharing

network, users and photos cannot stand in for a group node. In the

extreme, if all nodes in the query pattern have different types, then

any solution for subgraph homomorphism also satisfies isomor-

phism. This suggests an approach that aggressively prunes for the

homomorphism case and then filters based on node repetitions in

the result patterns; and (3) In many real-world cases, output size is

small relative to the combinatorial size of the pattern search space.

Hence algorithm complexity bounds based on output size promise

to deliver practically meaningful performance guarantees.

Overview of the Solution. Our approach combines three con-

ceptually separate steps into a two-phase algorithm.

1) The search space of possible homomorphic patterns is pruned

to the provably smallest representation of the original graph. We

use insights from the well-known Yannakakis algorithm [39] for

evaluating answers to acyclic conjunctive queries to create this

representation in just one bottom-up and a subsequent top-down

sweep through the query tree.

2) We devise a novel any-k algorithm for enumerating homo-

morphic tree patterns. It uses dynamic programming to perform a

bottom-up cost calculation, followed by a top-down guided search.

3) A final pruning step removes those homomorphic patterns

that do not satisfy the isomorphism requirement.

We show how to combine the first two steps into just one bottom-

up and one top-down phase. We then integrate the third step into

the combined top-down phase. Our experiments show that even on

graphs with millions of nodes and tens of millions of edges, we can

return the top-ranked results in just a few milliseconds, whereas

alternative approaches would take orders of magnitude longer. Our

implementation can be downloaded from [2].

Main contributions. We devise KARPET (Kernelization
1
And

Rapid Pruning-based Exploration for Tree patterns), a novel and

highly performant any-k algorithm that can quickly identify top-

ranked tree patterns in large graphs, then return the next lower-

ranked ones when given extra time.

1) KARPET is designed as an anytime ranking algorithm that enu-

merates homomorphic subtrees in order of total edge weight with

strong theoretic guarantees: We show that our worst-case time com-

plexity for returning all homomorphism results is identical to full

enumeration. In addition, KARPET provides strong upper bound

guarantees for the time to return the top-ranked homomorphism re-

sult, as well as the time between returning a homomorphism result

and the next. For cases with “small gap” between homomorphism

and isomorphism, i.e., when “sufficiently many” homomorphic pat-

terns are also isomorphic patterns, these guarantees carry over to

subgraph isomorphism.

2) We propose fast and effective local pruning operations that

exploit the heterogeneity of labeled graphs, proving that they also

guarantee strong global pruning properties. Intuitively, for sub-

graph homomorphism, we show that inexpensive pruning based

on 1-node neighborhoods efficiently removes all candidate nodes

that are not part of any result pattern.

3) In contrast to a lot of theoretical work on subgraph isomor-

phism algorithms, our algorithm is output-sensitive—its worst case

complexity depends on the output size, which is smaller when the

graph and the query are more heterogeneous, rather than being

exponential in the size of the query pattern.

4) We show how to speed up the search for top-ranked isomor-

phic answers by pushing the pruning for non-repeating nodes into

the incremental result enumeration algorithm.

2 PROBLEM DEFINITION AND HARDNESS
Our goal is to find the lightest subgraphs of a labeled graphG that are
isomorphic to a given tree pattern Q . Instead of returning all results

at once after a long wait time, we set out to devise an anytime algo-
rithm, which returns the top-ranked match as quickly as possible

and then incrementally returns the remaining results over time.

Definition 2.1 (Any-k algorithm). An any-k algorithm is a variant

of a top-k algorithm in which k is not known at the start of the

algorithm. The algorithm can be interrupted anytime, returning the
top-k results with k being as large as possible.

1Kernelization is a pre-processing technique that replaces the original input by a

(usually) smaller representation called “kernel” in order to reduce the computation

cost. Our approach enumerates solutions over a smaller pruned candidate graph.

Table 1: Notation used in this paper

Symbol Definition

G(V , E) A labeled graph with node set V and edge set E
L Set of node labels

φ() Function mapping nodes to labels

w() Function mapping edges to weights

Q(VQ , EQ) Tree pattern with node set VQ and edge set EQ
ψ () Required labels for a graph node matched to a query node

�(Q) Set of leaf nodes (or terminals) in Q
⊺(Q) Chosen root node in Q
N (v, ℓ) Set of neighbors of v in G with label ℓ

λ() Function mapping query nodes VQ to graph nodes V

We define the weight of a pattern as the sum of edge weights.

This also supports search for the “most reliable” pattern based

on probabilities assigned to edges. Finding the pattern with the

greatest probability of being connected, assuming independence,

is equivalent to maximizing the sum of the logarithms of the edge

probabilities. For our problem with a fixed query pattern, lightest

and heaviest pattern search can be easily converted into each other.

It is also straightforward to modify our approach to support pattern

weight defined as minimum or maximum of edge weights. We

present the formal definitions next. Table 1 summarizes important

notation.

Definition 2.2 (HIN, labeled graph). A Weighted Heterogeneous
Information Network (HIN) is a labeled undirected graph G =
(V ,E,φ,w), where V is a set of vertices, E is a set of edges, φ is a

node labeling function φ ∶ V → L, andw is an edge weight function

w ∶ E → R.
In many HINs, a node has at least two different kinds of labels:

a unique node ID and a type (or class). In the photo-sharing net-

work example (see Example 1.1), the labeling function assigns types

such as “user” or “photo” to each node. Our approach can be easily

extended to include multiple labels per node, as well as (multi-

ple) edge labels, node weights, and directed edges. We omit these

straightforward generalizations in order to simplify the exposition.

Given a vertex v ∈ V and label ℓ ∈ L, we use N (v, ℓ) to denote

the set of all neighbors ofv with label ℓ, i.e., N (v, ℓ) B {u ∶ (v,u) ∈
E ∧ φ(u) = ℓ}.

Definition 2.3 (Tree pattern or query Q). Given a labeled graph

G = (V ,E,φ,w), a tree pattern is a rooted tree Q = (VQ ,EQ ,ψ) in
which each node v ∈ VQ has a label constraintψ ∶ VQ → L. We use

⊺(Q) ∈ VQ to denote the root of the tree and �(Q) to denote the

set of its leaves (or terminals, i.e. nodes of degree one).

The labeling constraint can encode the selection of specific nodes

or node types. For example, in the photo-sharing network scenario,

setting ψ for user1 to be the ID of a specific user node limits the

candidate set for user1 to just this one graph node. Similarly, setting

ψ to the label encoding the type “group” will enforce that only

graph nodes representing groups, but not users or photos, will be

considered.

Notice that Q being rooted is not a restriction: any node in a

tree can be chosen to be the root. We merely make use of the fact

that the tree pattern is rooted in order to more easily describe our

algorithms.

user3

d1

e2

1

4

2

2

a b f

user1 photo1 user2

group2

d2

11 2

c1 c2 c3

1
1

group1

2
1

e1

1
1

(user3,group2)

(d1,e1) ↦ 1
(d2,e1) ↦ 1
(d2,e2) ↦ 2

(user3,group1)

(d1,c1) ↦ 1
(d2,c2) ↦ 2
(d2,c3) ↦ 4

(group2,user2)

(e2,f) ↦ 1

(group1,user1)

(c1,a) ↦ 1
(c2,a) ↦ 2
(c3,a) ↦ 2

(group1,photo1)

(c1,b) ↦ 1
(c2,b) ↦ 1
(c3,b) ↦ 1

Figure 2: Candidate instances for matching the example query in
Figure 1. Edge sets are named based on the corresponding pairs of
adjacent nodes in the query pattern.

Definition 2.4 (homomorphic match or result pattern). A homo-
morphic result pattern (or homomorphic match) of queryQ is a graph

(V ′ ⊆ V ,E′ ⊆ E) such that there exists a function λ ∶ VQ → V ′ with
the following properties: (1) ∀u ∈ VQ ∶ ψ(u) = φ(λ(u)), and (2)

∀(u,v) ∈ EQ ∶ (λ(u),λ(v)) ∈ E′. The weight of a result pattern is

defined as ∑(u,v)∈E′ w(u,v).

Definition 2.5 (match or result pattern). An (isomorphic) result
pattern (or match) of query Q is a homomorphic result pattern

(V ′ ⊆ V ,E′ ⊆ E) with a bijective mapping function λ ∶ VQ
1:1Ð→ V ′.

The above definitions make it clear that the set of isomorphic

matches is a subset of the homomorphic matches; and can be ob-

tained by removing all those homomorphic matches where multiple

query nodes are mapped to the same graph node.

In the discussion below we will also refer to partial patterns
(or partial matches) for intermediate results of the computation.

These are incomplete instances where some of the query nodes

are mapped to NIL by λ. The direct successor of a partial match is

one where exactly one of the NIL targets is replaced by a graph

node, growing the pattern by one additional node. With successor
we refer to any partial or complete match in the transitive closure

of direct successor.

For fast access to N (v, ℓ), we rely on GraphEdge, a two-level
hash index constructed offline for G. It maps a given node ID v to

another hash table, which in turn maps a given label ℓ to the set

N (v, ℓ) of neighbors of v with label ℓ. If no label is specified, all

nodes and corresponding edge weights in the secondary hash table

for v are returned. This index can be bulk-created from scratch in

time linear in the graph size, and updated in time linear in the size

of the changes.

Hardness. In general, even the decision version of sub-graph

isomorphism, i.e., to determine if a given query graph is isomor-

phic to a sub-graph of G, is NP-complete. When the sub-graph is

connected acyclic (i.e., a tree), the best worst-case time bound for

the decision problem is a parameterized algorithm of Koutis and

Williams [24] that requires O(2⋃︀VQ ⋃︀poly(⋃︀V ⋃︀)) time. Their algo-

rithm also has matching conditional lower bounds [25]: achieving

a bound of O(2(1−ε)⋃︀VQ ⋃︀poly(⋃︀V ⋃︀)) time, for any constant ε > 0,

would falsify a longstanding conjecture. Note that, since the deci-

sion problem is hard, the any-k problem discussed here is at least

as hard.

In practice we often know specific node instances such as a
for user1 in the photo-sharing network example, and can dramati-

cally reduce the pattern search space by exploring G starting from

these nodes. Still, as Figure 2 illustrates, one cannot tell from the

immediate neighborhood of node a, if edge (a,c1) will belong to

top-ranked results, or any results at all. Worse yet, not even the

3-hop neighborhood of a will answer this question. Hence a pattern
search algorithm might suffer from expensive backtracking or the

inability to determine, without extensive graph traversal, when the

top-k lowest-weight patterns have been found.

To the best of our knowledge, KARPET is the first algorithm

for ranked retrieval of graph query patterns that performs prun-

ing and exploration based on “local” information, while provably
guaranteeing to make the right decisions “globally.”

3 ANY-K ALGORITHM
We next present an approach for sub-graph homomorphism; this is a

relaxation of sub-graph isomorphism in that we do not require the

mapping λ from query nodes to tree-pattern nodes to be bijective (in

other words, a node can be repeated in the result pattern). Section 5

extends the approach for isomorphism.

KARPET consists of two phases: 1) a bottom-up sweep from

leaves to the root of Q , and 2) a top-down depth-first traversal

from root to leaves. The first phase prunes some of the spurious

candidates and creates a “candidate graph” (discussed below) with

“minimum subtree weights”. The second phase prunes the remaining

spurious candidates and performs a search guided by the subtree

weights. Here the term spurious candidate refers to a node or edge

of the input graph that does not appear in any of the query results.

3.1 Bottom-Up Phase

Algorithm 1 Bottom-up Subtree Weight Computation

Input: query Q , node neighborhood index N (v, ℓ)
Output: CandNode ∶ u ↦ (︀c ↦ (︀u ′ ↦ wmin⌋︀⌋︀

CandEdge ∶ (u, u ′) ↦ (︀c ↦ c ′⌋︀
1: // For each leaf node in the query tree, find graph nodes with required

label, add them to the candidates, and set their weights to 0

2: for u ∈ �(Q) do
3: ∀c ∈ V .φ(c) = ψ (u) ∶ CandNode(u).Insert(c ↦ (NIL↦ 0))
4: // Traverse remaining query nodes in any bottom-up order

5: for u ∈ Traversal(VQ) do
6: //(i) Find candidate edges adjacent to candidates in all children u ′

7: for children u ′ of u in Q , and candidates c ′ ∈ CandNode(u ′) do
8: for neighbors c ∈ N (c ′, ψ (u)) do
9: CandEdge(u, u ′).Insert(c ↦ c ′)
10: //(ii) Keep only candidates with edges to each of the children of u
11: C = ⋂u′ child nodes of u CandEdge(u, u ′).Keys
12: //(iii) Find min subtree weights for reachable candidates to children

13: for c ∈ C and all children ui of u do
14: C ′ = CandEdge(u, u ′).Get(c)
15: wi ← minc ′∈C ′ (︀w((c, c ′)) +Weight(c ′)⌋︀
16: CandNode(u).Insert(c ↦ (ui ↦ wi))

The bottom-up phase traverses the query tree in any bottom-up

order and constructs a “candidate graph” consisting of two index

structures: (1) CandNode(u) returns for query node u a hash index

that maps a node candidate c to a list of minimum subtree weights,

with oneweight for each of c’s children. (2) CandEdge(u,u′) returns
for each query edge between a node u and its child u′ a hash index

that maps a candidate node c of u to all adjacent candidates c′ of u′.
We illustrate Algorithm 1 with Figures 3a, 3b, and 3c. It first

inserts candidate nodes for each query leaf node u into the corre-

sponding candidates CandNode(u), setting their weights to zero

(line 2). Note that leaves do not have children, hence the NIL value

in the expression. In Figure 3a there is a single candidate per leaf,

but in practice it can be a larger subset of V for each query leaf,

depending on the node constraints. Then, for each query node u,
the algorithm (i) finds possible candidate nodes, (ii) prunes them,

and (iii) calculates the minimum subtree weights

In more detail: (i) for each query edge leading to a child (u,u′),
it first finds all candidate edges (c,c′), storing the map CandEdge ∶
(u,u′) ↦ (︀c ↦ c′⌋︀ (line 8). (ii) Then, the algorithm only keeps the

list of candidates for each query node that are reachable from candi-
date instances in all leaves of the query node (line 11): In Figure 3c, the
list of candidates for query node group1 is {c1,c2,c3}. Notice how
spurious candidates not reachable from the leaves, e.g., e1 in group2,
are not even accessed (compare with Figure 2). Similarly, while d1
in user3 is reachable from the left, it is not reachable from the right

subtree and is thus automatically pruned as well. (iii) Then, the
algorithm finds for each reachable node, the min weight along each

query edge (u,u′) starting at c (line 16). For example, in Figure 3c,

the left weight 5 for c2 is computed as the minimum of weights

for following (d2,c2), which is 5 as the sum of the weight of edge

(d2,c2) (= 2) plus the weight of c2 (= 2+1), or for following (d2,c3),
which is 7 as the sum of the weight of edge (d2,c2) (= 4) plus the

weight of c3 (= 2+1). Notice we use here Weight(c) as short form
for the sum of weights at a node c . which we get from CandNode.
The two new created indices speed up finding adjacent edges in a

subtree of the query pattern during top-down traversal.

3.2 Top-Down Phase
The second part of our algorithm performs top-down search, start-

ing at the root node and proceeding downward to the leaves. This is

essential for two reasons: First, the pre-computed subtree weights

provide information to guide the search to the lightest patterns

before exploring the heavier ones. Second, the top-down traversal

implicitly prunes all remaining spurious candidates for sub-graph

homomorphism, as we will prove in Section 4. Again pruning ac-

tually happens implicitly by not reaching those candidates. To see

the latter, consider group1 candidate c1 in Figure 3c. It is spurious,

but could not be removed by the bottom-up sweep. However, it will

never be accessed during top-down traversal, because d1 was never
recorded in CandNode by Algorithm 1.

Algorithm 2 shows the pseudo-code for top-down guided search.

Initially, all candidates c in the query root r are inserted into pri-

ority queue pq (line 3), with their priorities set to the sum of the

candidate’s weights. In Figure 3c, there is a single candidate, d2, of
weight 5+3 = 8. Then the algorithm repeatedly pops the top element

from pq and expands the partial pattern using pre-order traversal.

Function NextPreorder returns the edge, as the pair of parent

and child node, along which the partial pattern will be expanded

next (line 12). The priority value of each expanded partial match is

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

(0) (0) (0)
a b f

user1 photo1 user2

group2group1

(a)

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1,0)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

user3

e2

12

(1,0)

(0) (0) (0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(b)

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1,0)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(5,3)

user3

d1

e2

1

4

2

2

(1,0)

(0) (0) (0)
a b f

user1 photo1 user2

group2

d2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

2
1

(c)

Figure 3: Minimal subtree weight computations: (a) after traversing all leaves, (b) after traversing middle level, (c) after finishing at the root.
Numbers above node candidates indicate minimum sub-tree weights stored in CandNode; numbers on edges indicate edge weights stored in
CandEdge.

Algorithm 2 Prioritized Search

Input: Tree pattern Q , CandNode, CandEdge
Output: All matches of Q , one-by-one in increasing order of weight

1: //Initialize pq with all candidates of the query root node

2: pq← PriorityQueue()
3: for c ∈ CandNode(⊺(Q)) do
4: Z ← partial tree (c) consisting of just one node
5: pq.Insert(Weight(c), Z)
6: //Expand pq until all results returned

7: while pq.Size > 0 do
8: (oldkey, Z) ← pq.Pop-Minimum

9: if Z is a complete match then
10: return Z
11: else
12: (u, u ′) ← NextPreorder(Q, Z) ▷ Edge to expand pattern

13: for c ∈ CandNode(u) do
14: for c ′ returned by CandEdge(u, u ′).Get(c) do
15: Z ′ = Z .Append(c ′)
16: newkey ← oldkey − CandNode(u).Get(c, u ′) +

w((c, c ′)) +Weight(c ′)
17: pq.Push(newkey, Z ′)

defined as the sum of the pattern’s edge weights plus the sum of the

weights of the unexplored subtrees. In the example, partial match

(d2,c2) is inserted into pq with priority 8 = 2 (edge weight) + (2+1)

(weights of c2) + 3 (weight of right subtree of d2). Similarly, partial

match (d2,c3) is inserted with priority 4+(2+1)+3 = 10. Note that

those values are computed incrementally during traversal (line 16).

Consider expansion of (d2) to (d2,c3). Priority of d2 was 8, with
weight 5 for the newly expanded subtree rooted at group1. After
retrieving c3 from CandEdge, priority of (d2,c3) is computed as 8

(old) - 5 (newly expanded subtree) + 4 (weight of edge (d2,c3)) +
3 (priority of c3) = 10 (line 16 in Alg. 2). Then (d2,c2) is popped
next, and expanded to partial match (d2,c2,a) with priority 8 = 8

- 2 + 2 + (0+0). This pattern is then expanded next to (d2,c2,a,b),
(d2,c2,a,b,e2), and finally (d2,c2,a,b,e2, f)—all with the same pri-

ority of 8. The latter is output as the minimal-weight solution. Only

then will partial match (d2,c3) with the higher priority value 10

be expanded analogously. Each expansion operation requires a pop

operation from priority queue, visiting potential edges once.

4 ALGORITHM ANALYSIS
All results in this section are for the relaxed version of the problem,

based on sub-graph homomorphism instead of isomorphism. We

discuss in Section 5 how to extend them to the isomorphism case.

Proofs were omitted due to space constraints, but can be found in

the extended version [38].

4.1 Minimality of Candidate Graph
We show that during top-down search (Alg. 2), no spurious can-

didate node will ever be accessed. A candidate node c for a query
node q is “spurious” if there does not exist any homomorphic result

pattern where c is matched to q. Ensuring that no spurious nodes

are accessed is crucial for proving strong upper bounds on the

algorithm cost.

Theorem 4.1. If node candidate c ∈ CandNode(q) for query node
q ∈ VQ is accessed by Alg. 2, then there exists a homomorphic result
pattern where λ(q) = c .

4.2 Each Pop, One Result—In Order
Next, we show a powerful result that is crucial in establishing im-

portant algorithm properties: During the top-down guided search,

for each query result there is at most one push and at most one
pop operation on priority queue pq. For this, we need the following
lemmas.

Lemma 4.2. The priority value of a partial pattern P is always less
than or equal to the priority of all its successors.

Lemma 4.3. Assume that Alg. 2 popped partial pattern P =
(c1,c2, . . . ,c j), j < ⋃︀VQ ⋃︀, of priority w from pq. Then there exists
a direct successor (c1,c2, . . . ,c j ,c j+1) that has the same priorityw .

Lemmas 4.2 and 4.3 immediately imply:

Corollary 4.4. If the last pop operation on pq returned an in-
complete pattern P , then one of the direct successors of P will have
priority equal to the minimum priority over all elements in pq.

Example 4.5. Consider the changes of pq for the example in

Figure 3c. Initially it contains (︀(d2) ∶ 8⌋︀, the sole root node candidate
with priority 5+3=8. This element is popped and expanded along

edges (d2,c2) and (d2,c3). The priority of the former is 2 (weight of

edge (d2,c2)) plus (2+1) (subtree weights of c2) plus 3 (right subtree

weight of d2) = 8. It is identical to the initial priority of d2, because
edge (d2,c2) is the one that determined the minimum left subtree

weight of 5 in d2. For (d2,c3), priority is 10 due to the higher weight
of edge (d2,c3). After these two patterns are pushed, pq contains
(︀(d2,c2) ∶ 8, (d2,c3) ∶ 10⌋︀. The next pop delivers (d2,c2) ∶ 8, which
is expanded to (d2,c2,a) ∶ 8, followed by repeated pop and push

operations on this pattern, every time obtaining the same priority

of 8, until the top result (d2,c2,a,b,e2, f) of weight 8 is completed.

Only then will expansion of (d2,c3) ∶ 10 commence.

Front-element optimization. Based on Corollary 4.4, we next

introduce an important optimization to Alg. 2. Since the corollary

guarantees that one of the direct successors of the partial pattern

popped before will have a minimal priority value, we avoid the

push-pop cycle for it and keep expanding it directly, only pushing

the other direct successors. More precisely, assume the algorithm

just popped partial match P = (c1,c2, . . . ,ci) of priorityw from pq.
While expanding this pattern by one more node, it keeps in memory

the first direct successor P ′ = (c1,c2, . . . ,ci ,c′i+1) encountered that
also has priority valuew , pushing all other direct successors to pq.
This way the algorithm still works on a min-priority element, but

avoids the push-pop cycle for it. This seemingly minor optimization

has strong implications as formalized in the following theorems.

Theorem 4.6. Using front-element optimization, for any k , the
k-th pop operation from pq produces the k-th lightest homomorphic
result pattern, possibly requiring additional push operations, but no
more pop operations until this result pattern is returned.

Corollary 4.7. No matter how many results are retrieved, Alg. 2
never performs more than rH push operations on pq in total. Here rH
denotes the number of homomorphic subtrees in G.

This follows directly from Theorem 4.6 and the following ob-

servation. Assume the algorithm continues to run until all query

results are found. At that point it has removed all partial matches

from pq and the queue is empty. Theorem 4.6 implies that retrieving

all results requires exactly rH pop operations. If the total number of

push operations exceeded this, then the queue would not be empty.

(And obviously, any execution of Alg. 2 that stops before returning

all results will only have performed a subset of the push operations

executed by the time all results are returned.)

4.3 Algorithm Cost
To avoid notational clutter, we treat the size of the query pattern

as a small constant and omit it from most formulas. (Note that

pattern size is equal to the number of edges in EQ , e.g., 5 in the

photo-sharing network example.) It is straightforward to extend

the formulas by including ⋃︀EQ ⋃︀ as a variable.
Algorithm 1. Theoretical worst case cost is O(⋃︀E⋃︀), i.e., linear in

graph size: for each of the query pattern edges, in the worst case all

graph edges are accessed. The time for constructing CandEdge and

CandNode adds a constant overhead per edge processed. In practice,

only a small fraction of E will be accessed because of the label

constraints. In particular, by using GraphEdge in line 8 in Alg. 1,

all neighbors of matching types (labels) are accessed in time linear

in the number of these neighbors. Space cost is upper bounded by

the combined size of CandNode and CandEdge, i.e., ⋃︀EQ ⋃︀ times input

graph size.

Algorithm 2. The results from Section 4.2 lead to strong guar-

antees. Space complexity of Alg. 2 is equal to the maximum size of

the priority queue. Corollary 4.7 immediately implies:

Theorem 4.8. Space cost of Alg. 2 is upper bounded by rH , the
total result size for sub-graph homomorphism.

From a user’s point of view, the time it takes to produce the next

lower-ranked result is crucial:

Theorem 4.9. The initial latency for Alg. 2 to return the top-ranked
homomorphic match, and also the time between returning any two
consecutive homomorphic matches, is O(outDegree + log rH). Here
outDegree ≤ rH is the maximum cardinality of the set of adjacent
node candidates c′ in CandEdge ∶ (u,u′) ↦ (︀c ↦ {(c′,w(c,c′))}⌋︀
for any query graph edge (u,u′) and candidate c .

These strong results show that KARPET can effectively exploit

selective label constraints. For instance, if there are a thousand ho-

momorphic subgraphs in G, then Theorems 4.8 and 4.9 guarantee

that Alg. 2 will never store more than a thousand partial matches

in memory and will only perform a thousand (inexpensive) compu-

tation steps to deliver the next result to the user—no matter how

big or connected the given graph!

We show next that the anytime property of KARPET, i.e., that

it can deliver the top-ranked results quickly and then the next

ones on request, incurs no performance penalty for producing all
homomorphic matches:

Theorem 4.10. The lower bound for producing all homomorphic
result patterns is Ω(rH); sorting them costs O(rH log rH). Alg. 2 has
matching total time complexity O(rH log rH).

5 HOMOMORPHISM TO ISOMORPHISM
KARPET as introduced in Section 3 returns homomorphic matches.

To obtain the desired isomorphic matches, function λ mapping

query nodes to tree-pattern nodes has to be bijective. To guarantee

this, one simply has to filter out all results where different query

nodes are mapped to the same graph node. Instead of filtering on

the final result, KARPET can perform early pruning by checking

in line 15 in Alg. 2 if newly added node c′ already appears in par-

tial match Z—discarding Z ′ if it does. This modification has the

following implications for the cost analysis results in Section 4.3.

Since some of the items previously pushed to priority queue pq
will now be discarded early, space consumption as well as computa-

tion cost of KARPET are lower than for finding all subgraph homo-

morphism results. However, worst-case complexity as established

by Theorems 4.8 and 4.10 remains the same. And the guarantees for

the time between results (Theorem 4.9) is weaker: In the worst case,

e.g., when only the very first and the very last of the homomorphic

matches represent isomorphic results, then time between consec-

utive results grows from O(outDegree + log rH) to O(rH log rH).
Fortunately, as our experiments indicate, heterogeneity indeed re-

sults in a small gap between homomorphism and isomorphism, i.e.,

real-world performance is closer to O(outDegree + log rH).

6 EXPERIMENTS
Our experiments evaluate running time, memory consumption, and

size of the search space explored by KARPET on five tree queries

Dataset ⋃︀V ⋃︀ ⋃︀E⋃︀ ⋃︀L⋃︀
Flickr 2,007,369 18,147,504 3

DBLP 2,241,258 14,747,328 4

Enron 46,463 613,838 4

Yelp 4,301,900 7,059,472 6

Figure 4: Dataset statistics

and four data sets against two baseline algorithms. In order to allow

reproducible results, our code can be downloaded from our project

page [2].

Baseline algorithms. We chose two baselines that allow us to

evaluate the relative contribution of our two key steps (pruning the

search space, and guided search) to the performance of KARPET .
Unguided first calculates all results from the candidate graph

and only then ranks them. Since it uses our pruned search space,

but does not include any prioritizing of query results, it serves as a

baseline to evaluate the contribution of our guided search phase.

Backbone is intended to evaluate the effect of our aggressive tree-
based pruning strategy. It extends the state-of-art top-k algorithm

for path queries on HINs [27]. First, it identifies the longest terminal-

to-terminal path R in the tree pattern Q (called the “backbone” of
Q). It then incrementally retrieves the lightest backbone instances

in G one-by-one. Note that such an instance is a partial match

with smaller unmapped subtrees “hanging off” the backbone path.

Thus, we can execute Unguided on each such subpattern, yielding a

divide and conquer algorithm. Since each subpattern is independent,

we extract the lightest instance of each subpattern, and merge

these solutions with the backbone instance. This involves checking

for repeat node occurrences to enforce isomorphism. Then the

next heavier subtree matches are explored etc. Given a pre-defined

value of k , the algorithm can prune the set of remaining backbone

instances every time a new full match is found. In all our experiments,
we supply the ultimate value of k to Backbone, to explore the best
possible performance this algorithm might achieve (if it was able to
guess the correct value of k from the start).

Datasets. We use four well-known heterogeneous datasets:

Flickr [3], DBLP [27], Enron [27], and Yelp [1]. Figure 4 gives an

overview of their properties. Notice that Enron, DBLP and Flickr

have denser graphs than Yelp. In order to create weights for indi-

vidual edges, we used the age of the age with an exponential decay

based on the difference between edge creation time and query time.

Query templates. We created five different pattern templates
listed in Fig. 5. For each pattern, we chose 300 different assignments

of actual nodes to the query leaves, which gave us 300 queries per

template, for a total of 6,000 query instances across all datasets.

Performance metrics. We vary k between 1 and total number

of results, and compare the algorithms on three performance met-

rics. 1) Running time: We measure the time between having loaded

the dataset into memory and returning the k-th result, reporting the

average for each template. 2) Memory consumption: We report the

maximum number of nodes (i.e., partial matches weighted by the

number of matched nodes they contain) stored at any time during

the execution of each algorithm. 3) Size of search space: We report

the total number of partial matches (weighted by the number of

matched nodes they contain) that are stored during execution.

Template 1 Template 2 Template 3 Template 4 Template 5

Flickr

Yelp

business

user

tip

user

group

photo

Enron

address

email

topic

DBLP

paper

conference

keyword

author

person

Figure 5: Template used to generate queries for each dataset. Shapes
indicatenode types; the cyan-colored nodes are terminals.

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

n
u
m

b
e
r

o
f

m
a
tc

h
e
s

k

number of homo and iso matches as k grows

#homo-matches
#iso-matches

Figure 6: Number of isomorphic and homomorphic matches for an
instance of Template 1 on the Enron dataset.

Experimental setup. Experiments were run on an Intel Xeon

CPU E5-2440 1.90GHz with 200GB of memory running Linux. We

compiled the source code with g++ 4.8 (optimization flag O2).

6.1 Discussion and Highlights
To justify our “solving isomorphism through homomorphism” ap-

proach, we also ran KARPET with node-repetition check turned off.

This produces all homomorphic matches, from which we can then

determine offline how many were also results for the isomorphism

case. We plot both numbers as we increase k in Figure 6. It shows

a representative result, obtained from the Enron dataset using a

query from Template 1. The small gap between the lines confirms

that the vast majority of homomorphic matches are also isomorphic

result patterns.

Figure 7 shows a representative result comparing KARPET to

Unguided, which bulk-computes the entire output and hence is

not affected by the choice of k . It is clearly visible how our any-

k algorithm continuously returns the top-ranked results in order,

with very low latency between consecutive outputs. By the time

Unguided finally returns the first match, KARPET has already de-

livered more than 85% of all matches. In the end, it took KARPET

4.98s to output all matches. For comparison, bulk-computation

by Unguided took 4.31s, indicating a small overhead of 0.67s for

supporting the anytime property.

For each template (fixing k = 5) we show the average running

time, memory usage, and search space of our algorithm, along with

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600 700

R
u
n
n
in

g
 t

im
e
 (

s)

k

KARPET
Unguided

Figure 7: Running time for increasing k until all results are re-
turned, for KARPET and Unguided.

Data Algorithm T1 T2 T3 T4 T5

Flickr

KARPET 43.86 58.17 99.28 20.12 81.92

Unguided 2200 2085 5951 2021 5518

Backbone 2946 9678 3033 4114 9963

DBLP

KARPET 9.51 8.87 104.33 8.67 8.15

Unguided 1090 1936 1995 814 1110

Backbone 839 502 337 1109 1059

Enron

KARPET 10 57 29 57 104

Unguided 202 1036 1013 669 891

Backbone 4914 18925 5124 7056 11075

Yelp

KARPET 0.11 0.13 0.78 0.20 0.15

Unguided 1.68 1.79 2.27 1.40 2.06

Backbone 3.84 3.53 1.02 3.82 3.02

Table 2: Average running time (milliseconds) for each
dataset, algorithm, and template. Cells with the least run-
ning time in the three algorithms are marked gray.

Data Algorithm T1 T2 T3 T4 T5

Flickr

KARPET 278 286 1212 458 1957

Unguided 1212 294 17560 833 61603

Backbone 460 139 76 939 1057

DBLP

KARPET 162 146 387 251 253

Unguided 162 146 409 251 253

Backbone 29 35 26 72 103

Enron

KARPET 459 676 546 727 713

Unguided 477 697 569 745 728

Backbone 188 109 11 168 87

Yelp

KARPET 1.02 1.02 1.36 1.01 1.02

Unguided 1.02 1.02 1.36 1.01 1.02

Backbone 1.03 1.02 1.00 1.01 1.02

Table 3: Average Memory measured by the max number
of nodes stored, for each dataset, algorithm, and template.
Cells using the least memory are marked gray.

the two baselines, on all four datasets in Tables 2, 3, and 4. In terms

of average running time, KARPET outperforms the baselines in all

cases. On DBLP, we can see 100x faster running time compared to

Unguided, and 10x speedup compared to Backbone. We make the

following detailed observations about these results.

6.1.1 Varying the Dataset. We observed that KARPET’s mar-

gin of improvement over the baselines is generally greater on denser

graphs. Higher density leads to more matches, which KARPET

can handle best, because it prioritizes the search based on subtree

weight more effectively than the two baselines. The Yelp graph is

extremely sparse, causing many queries to have only one or two

Data Algorithm T1 T2 T3 T4 T5

Flickr

KARPET 1.16-e6 1.18-e6 9.29-e5 1.12-e4 1.56-e6

Unguided 5.41-e6 1.55-e6 1.96-e7 1.52-e5 2.20-e7

Backbone 5.37-e6 1.99-e6 1.16-e6 1.02-e7 8.04-e6

DBLP

KARPET 4.84-e4 3.98-e4 5.48-e4 9.35-e4 4.55-e4

Unguided 7.25-e5 3.35-e5 1.58-e6 2.16-e5 8.91-e5

Backbone 4.64-e5 1.68-e5 2.91-e5 9.38-e5 9.57-e5

Enron

KARPET 4.22-e4 1.13-e5 7.39-e4 1.29-e4 3.52-e4

Unguided 8.41-e5 9.50-e5 9.11-e5 8.93-e5 8.60-e5

Backbone 1.31-e6 8.86-e5 1.39-e6 3.07-e5 5.74-e5

Yelp

KARPET 58 99 191 51 104

Unguided 58 99 233 51 104

Backbone 45 100 17 48 62

Table 4: Average Search space measured by weighted total
number of partial matches, for each dataset, algorithm, and
template. Cells exploring the least search space are marked
gray.

matches. For those queries, all three algorithms behave nearly iden-

tically, e.g., running time for a typical single-match query on Yelp
was 0.15 msec for KARPET, 0.2 msec for Unguided, and 0.16 msec

for Backbone. However, even for this sparse graph, there are several

queries for each pattern that have a larger number of candidate

instances. These result in a significantly slower average running

time for both baselines, while KARPET averages to less than 1 msec.

Backbone does relatively well compared to Unguided on the

larger dataset DBLP, and is the same order of magnitude for Flickr,

but fails to perform well on Enron. For dense graphs, if the branch-

and-bound does not terminate quickly, the overhead required by

the divide-and-conquer merging steps can be very large because

the same subtree may be visited multiple times.

6.1.2 Memory. The backbone-based algorithm often uses the

least amount of memory, because in each iteration, it only holds the

backbone matches and the single instance of the backbone it grows.

The memory bottleneck for Unguided is the amount of storage

needed to hold all matching trees when they are sorted by weight.

6.1.3 Relative Strengths and Weaknesses. For “easy”

queries, which only have a few matching instances, all three

approaches show similar running time. On the other hand, when a

query has to select the top-k from a larger result set, e.g., dozens or

100s of results, KARPET has a significant advantage from efficiently

pruning the search space at an earlier stage. For such “hard” queries,

Unguided enumerates all matching instances before sorting them.

Backbone only partially exploits pruning opportunities for the

backbone. The non-trivial extensions proposed for KARPET are

required to fully benefit from the constraints encoded by the entire

tree structure.

Backbone can exhibit faster running times than Unguided in

some cases. It achieves this speed-up due to its branch-and-bound

nature, filtering out instances that exceed the threshold established

by matches for the lightest backbones explored early on. (Note that

this type of pruning takes advantage of advance knowledge of the

final value of k . In practice, the algorithm would not know k and

hence could not apply any such pruning.) Either way, in most cases,

this advantage is outweighed by the fact that Backbone introduces

an overhead for merging subtrees and repeatedly visiting some of

the subtrees.

7 RELATEDWORK
Our proposed notion of an any-k algorithm is novel and extends

the functionality of the previously-studied class of top-k algorithms.

The problem of fast graph pattern search has been studied in dif-

ferent research communities, such as algorithms, graph databases,

and data mining. While traditional data mining and work in the-

ory focuses on the structure of the graph, meta-path based ap-

proaches [34] also leverage the type information.

Subgraph isomorphism. Subgraph isomorphism is an NP-hard

problem [28], and state-of-art algorithms are not practical for large

graphs. Lee et al. [26] empirically compare the performance of

several state-of-art subgraph isomorphism algorithms, including

the Generic Subgraph Isomorphism Algorithm [11], Ullmann algo-

rithm [36], VF2 [10], QuickSI [33], GADDI [41], and GraphQL [17].

They test on real-world datasets AIDS, NASA, Yeast and Human,

covering a spectrum of relatively small graphs with hundreds to

thousands of vertices (⋃︀V ⋃︀ < 1000). Modern social networks easily

exceed that size by orders of magnitude, and the exact sub-graph

isomorphism problem remains intractable for larger networks when

label constraints and top-k are not fully exploited. Hence, to the best

of our knowledge, none of these existing precise pattern matching

algorithms could be used for our target application.

K-shortest simple paths. The k-shortest paths problem is a

natural and long-studied generalization of the shortest path prob-

lem, in which not one but several paths in increasing order of length

are sought. The additional constraint of “simple” paths requires that

the paths be without loops. This problem has been researched for

directed graphs [40], undirected graphs [23], approximation algo-

rithms [32], and algorithm engineering [15, 18]. However, this body

of literature was developed for graphs without labels. In contrast,

KARPET efficiently finds k-lightest instances matching a given

query pattern by leveraging the heterogeneity constraints on the

node and edge types to speed up the computation. Furthermore, in

our scenario, k is not known upfront.

Querying graph data. In the database community, querying

and managing of large-scale graph data has been studied [5], e.g., in
the context of GIS, XML databases, bioinformatics, social networks,

and ontologies. The main focus here has been on identifying con-

nection patterns between the graph vertices [9, 14, 22, 31, 35, 37].

In contrast, KARPET finds matches for a given query pattern.

HINs and path patterns. Heterogeneous Information Net-

works (HINs) [16] are an abstraction to represent graphs whose

nodes are affiliated with different types. To derive complex relations

from such information networks, “meta-paths” defined as node-

typed paths on a heterogeneous network, are a representation of

connections between nodes, by specifying the types along a path in

the network [34]. Thus, while the focus in this line of research has

been on learning good meta-path patterns for various applications,

KARPET efficiently finds matches for a given query pattern.

Liang et al. [27] derived a top-k algorithm for ranking path

patterns in HINs. However, their algorithm does not easily extend

to more complicated patterns such as trees; our Backbone baseline

attempts to adapt their algorithm for ranking tree patterns, and our

experiments shows a considerable advantage of KARPET.

Top-k query evaluation in databases. There is considerable
amount of work on top-k queries in a ranking environment [6, 13,

21, 29]. This work aims at minimizing I/O cost by trading sorted

access vs. random access to data. In contrast to that body of work,

we focus on main memory applications and a different cost model.

Graph search on RDFs and XML. Top-k keyword search al-

gorithms for XML databases [8] combine semantic pruning based

on document structure encoding with top-k join algorithms from

relational databases. The main challenge lies in dealing with query

semantics based on least common ancestors. RDF is a flexible and

extensible way to represent information about World Wide Web

resources. Searching for a pattern on RDFs can be represented in

SPARQL, and can be applied to ontology matching [12]. Recent

work on graph pattern matching in RDF databases [7, Chapter 2]

has resulted in several different approaches to database layout [7,

Chapter 3]. However, as in the case of top-k query evaluation, it

appears that more focus has been placed on scalability issues, such

as replication, parallelization, and distribution of workloads [19, 20],

as RDF datasets are often too large for a single machine. It is well

known that SPARQL is descriptive enough to capture graph pat-

tern matching queries (so-called basic graph patterns [7, Chapter

2]), and these queries are typically decomposed into combinations

of database primitive operations such as joins, unions, difference,

etc. [7, Page 23]. Although work has been done optimizing these

primitive operations in the context of graph patterns for certain

types of queries that appear in practice [30], we are not aware of

a similar approach to KARPET being employed for general tree

patterns in the context of RDF.

8 CONCLUSION
We proposed KARPET for finding tree patterns in labeled graphs,

e.g., heterogeneous information networks. Compared to previous

work, it combines two unique properties. First, it is a top-k anytime

algorithm, in the sense that it quickly returns the top-ranked re-

sults, then incrementally delivers more on request. This is achieved

without sacrificing performance for full-result retrieval compared

to bulk-computation. Second, while being subject to the same gen-

eral hardness of graph isomorphism, KARPET aggressively exploits

the special properties of HINs. We demonstrate this by proving

surprisingly strong theoretical guarantees that connect space and

time complexity to parameters affected by heterogeneity: result car-

dinality for the slightly relaxed graph homomorphism problem and

number of adjacent edges of a given type. The formulas show that

greater heterogeneity of graph and query labels works in our favor

by reducing the “gap” between homomorphism and isomorphism,

and by reducing result size. In future work we will attempt to ex-

tend the approach to query patterns with cycles—which appears to

be significantly more challenging. Intuitively, it is more challenging

to perform elimination of spurious node and edge candidates when

pruning based only on local neighborhoods.

Acknowledgments. This work was supported in part by the Na-

tional Institutes of Health (NIH) under award number R01 NS091421

and by the National Science Foundation (NSF) under award number

CAREER III-1762268. The content is solely the responsibility of

the authors and does not necessarily represent the official views

of NIH or NSF. We would also like to thank the reviewers for their

constructive feedback.

REFERENCES
[1] 2017. Yelp data set. (2017). https://www.yelp.com/dataset_challenge/dataset

[2] 2018. Any-k: anytime top-k pattern retrieval in labeled graphs (code). (2018).

https://github.com/northeastern-datalab/Any-k-KARPET

[3] 2018. Flickr. (2018). http://www.flickr.com/

[4] 2018. Vitrage. (2018). https://wiki.openstack.org/wiki/Vitrage

[5] Charu C. Aggarwal and HaixunWang. 2010. Graph DataManagement andMining:
A Survey of Algorithms and Applications. Springer, 13–68.

[6] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. 2007. Best Position Algo-

rithms for Top-k Queries. In Proc. VLDB. 495–506.
[7] Gunes Aluc. 2015. Workload Matters: A Robust Approach to Physical RDF Database

Design. Ph.D. Dissertation. University of Waterloo, Ontario, Canada.

[8] L. J. Chen and Y. Papakonstantinou. 2010. Supporting top-K keyword search in

XML databases. In Proc. ICDE. 689–700.
[9] James Cheng, Yiping Ke, and Wilfred Ng. 2009. Efficient processing of group-

oriented connection queries in a large graph. In CIKM. ACM, 1481–1484.

[10] Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2001.

An improved algorithm for matching large graphs. In Proc. IAPR-TC15 Workshop
on Graph-based Representations in Pattern Recognition. 149–159.

[11] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A

(sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. on
Pattern Analysis and Machine Intelligence 26, 10 (2004), 1367–1372.

[12] Jérôme Euzenat, Pavel Shvaiko, et al. 2007. Ontology matching. Vol. 18. Springer.
[13] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algo-

rithms for middleware. J. Comput. Syst. Sci. 66, 4 (2003), 614–656.
[14] Christos Faloutsos, Kevin S McCurley, and Andrew Tomkins. 2004. Fast discovery

of connection subgraphs. In Proc. ACM SIGKDD. 118–127.
[15] Gang Feng. 2014. Finding k shortest simple paths in directed graphs: A node

classification algorithm. Networks 64, 1 (2014), 6–17.
[16] Jiawei Han, Yizhou Sun, Xifeng Yan, and Philip S Yu. 2010. Mining knowledge

from databases: an information network analysis approach. In Proc. ACM SIGMOD.
1251–1252.

[17] Huahai He and Ambuj K Singh. 2008. Graphs-at-a-time: query language and

access methods for graph databases. In Proc. ACM SIGMOD. 405–418.
[18] JohnHershberger, MatthewMaxel, and Subhash Suri. 2007. Finding the K Shortest

Simple Paths: A New Algorithm and Its Implementation. ACM Trans. Algorithms
3, 4, Article 45 (Nov. 2007).

[19] Katja Hose and Ralf Schenkel. 2013. WARP: Workload-aware replication and

partitioning for RDF. In Proc. ICDE Workshops. 1–6.
[20] Jiewen Huang, Daniel J. Abadi, and Kun Ren. 2011. Scalable SPARQL Querying

of Large RDF Graphs. PVLDB 4, 11 (2011), 1123–1134.

[21] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A survey of top-k
query processing techniques in relational database systems. ACM Comput. Surv.
40, 4 (2008), 11:1–11:58.

[22] Gjergji Kasneci, Shady Elbassuoni, and Gerhard Weikum. 2009. Ming: mining

informative entity relationship subgraphs. In Proc. CIKM. ACM, 1653–1656.

[23] Naoki Katoh, Toshihide Ibaraki, and Hisashi Mine. 1982. An efficient algorithm

for k shortest simple paths. Networks 12, 4 (1982), 411–427.
[24] Ioannis Koutis and Ryan Williams. 2016. LIMITS and Applications of Group

Algebras for Parameterized Problems. ACM Trans. Algorithms 12, 3 (2016), 31:1–
31:18.

[25] Robert Krauthgamer and Ohad Trabelsi. 2017. Conditional Lower Bound for
Subgraph Isomorphism with a Tree Pattern. Technical Report. https://arxiv.org/
abs/1708.07591

[26] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. 2012. An

In-depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases.

PVLDB 6, 2 (2012), 133–144.

[27] Jiongqian Liang, Deepak Ajwani, Patrick K Nicholson, Alessandra Sala, and Srini-

vasan Parthasarathy. 2016. What Links Alice and Bob? Matching and Ranking

Semantic Patterns in Heterogeneous Networks. In Proc. WWW. 879–889.

[28] Anna Lubiw. 1981. Some NP-complete problems similar to graph isomorphism.

SIAM J. Comput. 10, 1 (1981), 11–21.
[29] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and Jef-

frey Scott Vitter. 2001. Supporting Incremental Join Queries on Ranked Inputs.

In Proc. VLDB. 281–290.
[30] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable

management of RDF data. The VLDB Journal 19, 1 (2010), 91–113.
[31] Cartic Ramakrishnan, William H Milnor, Matthew Perry, and Amit P Sheth. 2005.

Discovering informative connection subgraphs in multi-relational graphs. ACM
SIGKDD Explorations Newsletter 7, 2 (2005), 56–63.

[32] Liam Roditty. 2007. On the K-simple shortest paths problem in weighted directed

graphs. In Proc. SODA. 920–928.
[33] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming

Verification Hardness: An Efficient Algorithm for Testing Subgraph Isomorphism.

PVLDB 1, 1 (2008), 364–375.

[34] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:

Meta path-based top-k similarity search in heterogeneous information networks.

PVLDB 4, 11 (2011), 992–1003.

[35] Hanghang Tong and Christos Faloutsos. 2006. Center-piece subgraphs: problem

definition and fast solutions. In Proc. ACM SIGKDD. 404–413.
[36] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. JACM 23, 1

(1976), 31–42.

[37] Fang Wei. 2010. Efficient graph reachability query answering using tree decom-

position. In Int. Workshop on Reachability Problems. 183–197.
[38] Xiaofeng Yang, Deepak Ajwani, Wolfgang Gatterbauer, Patrick K Nicholson,

Mirek Riedewald, and Alessandra Sala. 2018. Any-k: anytime top-k pattern retrieval
in labeled graphs. Technical Report. https://arxiv.org/abs/1802.06060

[39] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Proc.
VLDB. 82–94.

[40] Jin Y. Yen. 1971. Finding the K Shortest Loopless Paths in a Network. Management
Science 17, 11 (1971), 712–716.

[41] Shijie Zhang, Shirong Li, and Jiong Yang. 2009. GADDI: distance index based

subgraph matching in biological networks. In Proc. EDBT. 192–203.

https://www.yelp.com/dataset_challenge/dataset
https://github.com/northeastern-datalab/Any-k-KARPET
http://www.flickr.com/
https://wiki.openstack.org/wiki/Vitrage
https://arxiv.org/abs/1708.07591
https://arxiv.org/abs/1708.07591
https://arxiv.org/abs/1802.06060

	Abstract
	1 Introduction
	2 Problem Definition and Hardness
	3 Any-k Algorithm
	3.1 Bottom-Up Phase
	3.2 Top-Down Phase

	4 Algorithm Analysis
	4.1 Minimality of Candidate Graph
	4.2 Each Pop, One Result—In Order
	4.3 Algorithm Cost

	5 Homomorphism to Isomorphism
	6 Experiments
	6.1 Discussion and Highlights

	7 Related Work
	8 Conclusion
	References

