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Abstract—Optical circuit switches have recently been pro-
posed as a low-cost, low-power and high-bandwidth alternative
to electronic switches for the design of high-performance
compute clusters. An added advantage of these switches is that
they allow for a reconfiguration of the network topology to suit
the requirements of the application.

To realize the full potential of a high-performance computing
system with a reconfigurable interconnect, there is a need to
design algorithms for computing a topology that will allow
for a high-throughput load distribution, while simultaneously
partitioning the computational task graph of the application for
the computed topology. In this paper, we propose a new frame-
work that exploits such reconfigurable interconnects to achieve
these interdependent goals, i.e., to iteratively co-optimize the
network topology configuration, application partitioning and
network flow routing to maximize throughput for a given
application. We also present a novel way of computing a high-
throughput initial topology based on the structural properties
of the application to seed our co-optimizing framework.

We show the value of our approach on synthetic graphs that
emulate the key characteristics of a class of stream computing
applications that require high throughput. Our experiments
show that the proposed technique is fast and computes high-
quality partitions of such graphs for a broad range of hardware
parameters that varies the bottleneck from computation to
communication.

Keywords-Graph-partitioning algorithms; Reconfigurable
topology; Optical circuit switch; co-optimization

I. INTRODUCTION

Optical circuit switches have recently been proposed as a
low-cost, low-power and high-bandwidth alternative in the
design of high-performance compute clusters (e.g., [19],
[10], [3], [17]). At the same time, these switches allow users
to configure the network topology to suit the requirements
of the application.

The option of configuring the interconnect opens up new
possibilities for improvement in topology-aware graph par-
titioning approaches. Instead of asking the question “given
an application graph G, how would you partition it on a set
of compute nodes connected in topology H?” we are won-
dering “given an application graph G, how would you best
interconnect the compute nodes to elicit the best possible
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partitioning of G from your favorite graph partitioner?” This
research addresses this question by formulating an iterative
strategy for co-optimizing the partitioning of the application
graph and the configuration of the network topology.

There are two constraints that further complicate this
issue. In a real system, a compute node has only a fixed
number of ports to connect to the reconfigurable switch.
Secondly, the reconfigurable switch has a limit on the
maximum number of simultaneous links that it can maintain.
Therefore, as an unavoidable part of our strategy, we also
try to minimize the maximum traffic on the interconnect
while satisfying the above two constraints. Because our
framework attempts to co-optimize topology configuration,
application partitioning and interconnect routing, we refer to
it as TPR co-optimizing framework.

Our approach is not tied to a particular communication
pattern within the application. In our experimental results,
we show performance gains for thousands of application
graphs randomly selected, (with random communication
patterns) from within the class of stream computing appli-
cations. Please note that our algorithm works for general
graphs, even though our experiments are done on class of
graphs that emulate stream computing applications.

The rest of this paper is structured as follows. We present
the notations, definitions, the problem addressed and our key
contributions in Section II. Section III describes our main
framework together with all the details of the individual
steps. Our experiments are reported in Section IV and the
related work is described in Section V. We conclude with
future research directions in Section VI.

II. PRELIMINARIES

In this section, we describe some of the notations and
definitions used in this paper and formally describe our
problem and our contribution.

A. Notations

We refer to application graph as G(VG, EG) (or simply
G) and to avoid tedious notation, also use the same notation
for contracted application graphs. The notation H(VH , EH)
(or simply H) is used to refer to the topology graph. The
elements of VG are referred to as vertices while elements in



VH are referred to as nodes or compute nodes. The notation
NP denotes the total number of processors in the super-
computer. Since the nodes in the topology graph correspond
to the actual compute nodes in the architecture, we have
NP = |VH | (although they need not all be connected or have
some computation load). We are interested in the mapping of
vertices in application graph to nodes in the topology graph.
The weight of a vertex or node u is denoted by wv(u), while
the weights on an edge e of either the application graph or
topology graph is referred as we(e).

B. Problem Definition

We are given a computational task graph G(VG, EG)
where the vertices denote computational kernels and the
edges capture the dependencies between the different com-
putational kernels.

The weights on vertices denote the average amount of
computation that needs to be performed at the corresponding
kernel to produce one element of output. Similarly, the
weight on an edge represents the average amount of data
transfer between the kernels (corresponding to the two
incident vertices) to produce one element of output.

We assume that the compute nodes in the high-
performance system are identical with the same processing
speed (hereafter denoted by Scomp). These compute nodes
are connected through a reconfigurable switch, which can
alter the topology to suit the application. We also assume that
bandwidth on all links connected through the reconfigurable
switch is identical (denoted by Scomm).

In order to run the application on the system, we need to
map each vertex v ∈ VG to a compute node and route each
edge e ∈ EG along some path in the network topology. Let
µ(v) be a mapping that specifies the compute node to which
a particular vertex v is mapped. Let ρ(e) be the sequence
of communication links that are used to route an edge e
in EG. Given such a mapping and a routing scheme, the
computation load on a compute node Pi ∈ VH is

wv(Pi) =
∑

(u∈VG)∧(µ(u)=Pi)

wv(u)

and the communication load over a link e ∈ EH is

we(e) =
∑

(e′∈EG)∧(e∈ρ(e′))

we(e′).

Since all computation over the nodes and communication
over the links happen concurrently, the throughput is con-
strained by the slowest element. We define the throughput of
a node Pi to be Scomp/wv(Pi) and the throughput of a link e
to be Scomm/we(e). The compute throughput of the system
is the minimum throughput of a node and the communication
throughput of the system is the minimum throughput over
a link. The throughput generated by the overall system is

the smaller of the compute throughput and the communi-
cation throughput. Note that our definition of throughput
arises out of stream computing applications, where we view
the compute nodes and communication links as processing
units running concurrently so that the overall throughput
is equal to the throughput of the slowest processing unit
(similar to the throughput of a fetch-decode-execute pipeline
where fetch, decode and execute stages run concurrently).
Nonetheless, other problem-specific definitions can be used
(with an accompanying change to the performance vector in
Section III-B3).

In a real system, a compute node has only a fixed number
of ports to connect to the reconfigurable switch. Let this
constraint be called the max-degree constraint, denoted as
∆max. Also, the reconfigurable switch has a limit on the
maximum number of simultaneous links that it can maintain.
We refer to this limit as max-edges constraint, denoted as
Emax. Thus, the switch can configure any topology that
satisfies the constraints that maximum degree in the topology
is no more than ∆max and the total number of links is not
more than Emax. Note that these constraints on the space of
configurable topologies are very natural and can easily arise
in many other applications.

Our goal is three-fold.
• Compute a network topology graph H that is likely

to elicit a high throughput mapping for the application
graph G.

• Compute a mapping of vertices in VG to nodes in VH
to achieve a high computation throughput.

• Compute a routing scheme for edges in EG to commu-
nication links in H so as to minimize congestion and
thereby provide high communication throughput.

A good topology is one that allows a mapping and a
routing scheme to yield a high throughput (ideally close
to the optimum). Since the definition of a good topology
depends on the difficult problems of computing good map-
ping and routing schemes, it is not easy to compute. We
therefore propose a framework where we derive a good
initial topology based on the structural properties of the
application graph and then iteratively improve this topology
by performing local modifications.

Note that although the connections created by optical
switch are directed in nature, we treat them as undirected.
This is because engineers invariably pair these optical cables
to keep the routing protocols simple. Often, the two optical
fibers in an optical cable are used for making the data-
transfer bidirectional.

C. Key Contributions

Our key contributions are as follows.
1) A new framework that exploits reconfigurable inter-

connects in order to iteratively co-optimize the net-
work topology, the partitioning and routing schemes
to maximize throughput for a given application.



2) A novel way of computing a high-throughput initial
topology based on the structural properties of the input
graph without explicitly identifying those properties.
This topology is referred to as “initial” because it is
used as a seed for the framework in item 1 above.

3) A statistically rigorous experimental analysis of the
goodness of our technique.

D. Definitions

Given an edge e = {u, v}, we define the expansion of an
edge to be

Ξ(e) =
we(e)

wv(u) · wv(v)
(1)

We refer to the denominator in the expansion term as vertex-
product, i.e., the vertex-product of an edge e = {u, v} is
wv(u) · wv(v).

Contracting an edge e = {u, v} means to replace vertices
u and v by a new vertex w such that wv(w) = wv(u) +
wv(v). All edges of the form {u, x} or {v, x} for x ∈ V are
replaced by {w, x}. If both edges {u, x} and {v, x} exist,
we({w, x}) = we({u, x}) + we({v, x}) in the contracted
graph.

A matching M ⊆ E is a set of edges that do not share
any common vertex, i.e., the graph G(V,M) has maximum
degree 1. Contracting a matching refers to contracting all
edges in the matching.

III. OUR FRAMEWORK

In this section, we propose our framework for co-
optimizing the network topology, the partitioning and rout-
ing scheme. Co-optimization is needed because these three
goals are inter-dependent. In the first phase, our framework
computes an initial topology, and corresponding partitioning
of the application graph, and an accompanying routing
scheme for the computed topology. In the second phase,
we perform a number of iterations where each iteration
alters the topology and computes both a re-partitioning for
the modified topology and an accompanying re-routing. We
repeat this iterative procedure till there is no improvement
in throughput for a pre-specified number of iterations.

Our framework consists of the following steps.
1) Computing an “initial topology”. Here we first

compute an architecture-oblivious partitioning of
G(VG, EG) so as to minimize the maximum volume
of data incident to a subdomain (i.e., a partition),
together with the traditional objectives of balancing
the work load on partitions and reducing the total
cut-size. No attempt is made to satisfy the max-
degree and max-edges constraints. Then we derive a
network topology that accommodates the architecture-
oblivious partitioning while satisfying the max-degree
constraint on the maximum degree and max-edges
constraint on the total number of edges. This topology

is referred to as “initial” because it will go through a
number of iterative improvements later.

2) Computing an architecture-aware partitioning. We
calculate a partitioning of the graph to maximize the
throughput on the given topology.

3) Computing a low-congestion routing. We compute a
routing scheme to determine how each edge in the
graph G can be routed in the given topology so as to
minimize the maximum congestion over any link. Note
that we do not allow the path to be split as that will
require adaptively splitting the data-stream at run-time
and a system may not have such capabilities.

4) Performing “TPR co-optimization” In the last phase,
we evaluate the existing topology configuration, parti-
tioning and routing, and decide if further optimization
is needed. If yes, we repeat the following steps until
there is no improvement for a pre-specified number of
iterations.
• Modify the network topology based on the ex-

isting partitioning and routing of the application
graph.

• Perform steps 2 and 3 to re-partition, from
scratch, VG and re-route EG for the modified
topology.

Since we co-optimize in the above framework for
topology configuration, partitioning and routing, we refer
to it as a TPR co-optimization framework in our paper.

Since many of the above mentioned problems are NP-hard
in general, we need heuristics to solve them efficiently. We
now present our heuristics for engineering a good solution
for the TPR co-optimization.

A. Computing Initial Topology

A fundamental question that we address in this section
is given an application graph, what topology will yield a
high throughput. Our first idea was to identify key structural
properties of the application graph, use these properties to
classify the input graph into a fixed number of categories,
and dedicate a possibly separate scheme for each category.
However, the number of such properties needs to be very low
for such an approach to be effective and such an approach
may not be scalable. We therefore use a condensed graph
based approach to determine a good topology.

1) Computing the Architecture-Oblivious Partitioning:
Given the computational task graph G(VG, EG) of the
application, we first partition it into NP subdomains to
achieve the following objectives.
• Balance the load, defined as the sum of all vertex

weights mapped to a subdomain, across all subdomains.
This is to ensure that all compute nodes are adequately
utilized, assuming there is enough computational load
to require all partitions.

• Minimize the total cut-size, i.e. the total weight of
all edges between vertices in different partitions. This



ensures that inter-partition communications will be
minimized.

• Minimize the maximum subdomain weighted degree,
i.e., the total weight of all edges in G that have exactly
one incident vertex in the subdomain This objective
was chosen in the hope that the weighted degree of
a subdomain is correlated to the actual degree of the
subdomain.

We use the graph partitioning library METIS [11] ver. 5.0
for this purpose with a random seed, maximum imbalance of
1.05 and the option for minimizing the subdomain degree.
The last option relies on the algorithm by Selvakkumaran
and Karypis [20]. (While we chose to use METIS for this
research, other graph partitioning software could have been
used as well, e.g., Chaco [7], JOSTLE [24], Scotch [16] and
Zoltan [4]).

Figure 1 illustrates some of the steps involved in creating
the initial topology. Please refer to that as needed.

2) Creating Connected Condensed Graphs: Based on the
topology-oblivious partitioning, we condense the input graph
G. There are as many vertices in the condensed graph as
there are nodes in H (i.e., the required number of partitions
or subdomains of G). An edge exists between two nodes Pi
and Pj if and only if there exists an edge {u, v} ∈ G such
that vertex u is mapped to partition Pi and v is mapped to
partition Pj . The weight of a node Pi ∈ Gc is the sum of
weights of all vertices in G that are assigned to partition Pi
and the weight of an edge {Pi, Pj} is the sum of weights
of all edges {u, v} in G such that u is assigned to Pi and
v is assigned to Pj .

In our experiments, we found that the resulting condensed
graph does not always span all NP nodes in Gc. Therefore,
we first ensure that Gc is connected and spans the entire
graph. To this end, we connect the different components by
inserting additional edges. The weight of the newly inserted
edges is 0.

3) Satisfying the Constraint on Maximum Node Degree:
Next, we impose the constraint that the degree of each node
in Gc is less than or equal to ∆max and later, we ensure that
the total number of edges (i.e., the physical communication
links) in the topology is at most Emax, ensuring that switch
does not have more edges to it than are possible. A major
consideration in removing the edges from the graph, to
satisfy these constraints, is to avoid creating bottleneck links.

Let us call a node heavy if its degree is greater than ∆max.
We call an edge strongly heavy if both its incident nodes are
heavy and weakly heavy if only one of its incident node is
heavy.

We meet the max-degree constraint by repeatedly remov-
ing edges till all nodes and edges are light, implying that
all constraints on degree are satisfied. For any H edge, eH ,
(i.e., physical communication link) that we remove, we re-
route, along a minimum-congestion path, any G edges that
were mapped on eH .

First, we consider all edges in increasing order of weight
and remove those strongly heavy edges that leave Gc con-
nected. When removing an edge {Pi, Pj}, data-streams that
were getting routed along this path need to be re-routed
through a minimum congestion path. Since the graph Gc is
still connected after removing this edge, the existence of a
path between Pi and Pj is guaranteed.

Thereafter, we consider all edges in the increasing order
of weight and remove those weakly heavy edges that leave
Gc connected. As before, the flow along these edges is re-
routed through a minimum congestion path.

If there are still some heavy vertices left, we remove an ar-
bitrary weakly heavy edge and let the graph be disconnected
into two components. We pick the minimum weight edges
{u, v} and {w, x} in the two components, remove them and
insert {u,w} and {v, x}. This transformation connects the
two components, preserves the degree of the vertices and
does not increase the total number of edges. As before,
the new edges are initialized with a weight 0 and the flow
along the removed edges is re-routed through the minimum-
congestion path.

4) Satisfying the Constraint on Maximum Number of
Edges: Our approach here is similar to that for satisfying the
constraint on maximum node degree. First, we consider all
edges in increasing order of their weight and remove them if
they leave the graph connected. If this still does not satisfy
the constraint on total number of edges, we let the graph be
disconnected and re-connect it using edge swaps as before.

The goal here has been to preserve as much structural
information from the condensed graph as possible and re-
route as little traffic as possible.

B. Partitioning Input Graph for the Given Topology

Our scheme for partitioning the input graph for a given
topology is based on a multilevel scheme. Multilevel tech-
niques (e.g., [11], [24], [7], [16]) have been a big success
both from the scalability point-of-view as well as for pro-
viding high-quality partitions.

Our experiments with other approaches for computing
the partitioning for a topology suggested that local search
heuristics could significantly improve the quality of the
partitioning (as measured by the resultant throughput), but
for the local search heuristics to be effective, they need to
be able to work at coarser levels of graph as well. At the
coarser levels, these localized heuristics can move bigger
chunks of graphs around.

A multilevel scheme for graph partitioning consists of
three phases. In one round of the coarsening (or contracting)
phase, we identify matchings M ⊆ EG and contract the
edges in M . These rounds are repeated till the number
of vertices is smaller than some pre-defined threshold. It
is followed by an initial partitioning phase where some
expensive techniques can be used to partition the graph into
required number of subdomains. In the refinement phase, the
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Figure 1. This figure shows various steps in computing an initial topology of the application graph shown in top left for an architecture that has 4
compute nodes, a max-degree constraint of at most two physical communication links per compute node, and a max-edges constraint of at most 4 physical
communication links. The top right shows an architecture-oblivious (i.e., degree and edge constraints ignored) 4-way partition. A condensed graph of the
architecture-oblivious partitioning is shown in bottom left. The initial computed topology is shown in bottom right, where both max-degree and max-edges
constraints are met, and the maximum congestion on all 4 physical communication links is optimized.

matchings are uncontracted. After uncontracting a matching,
the refinement algorithm uses some local search heuristics
to improve the partitioning objective.

The multilevel approaches work well because the coars-
ening phase preserves the structure of the input graph while
reducing its size. Therefore, a good partitioning at a coarser
level leads to a good partition at the finer level as well.
Please refer to extensive literature on multilevel partitioning
(e.g., [11], [24], [7], [16]) for more details.

In our case, the multilevel approach has the following
components: (a) coarsen the graph, (b) compute an initial
mapping of vertices to topology nodes and compute a routing
scheme for the coarsest graph (c) refine where the local
search heuristics in the refinement phase can potentially
move the vertices between different partitions as well as
reroute the traffic through a different path. We give more

details of these components below.
Note that in this section, we treat the topology graph

as unweighted, i.e., each node and edge in the topology
graph has a weight of one. This is to ensure that the
current partitioning is not influenced by partitioning done
in previous iterations and is re-computed from scratch.

1) Coarsening: For the coarsening phase, matchings
based on edge expansion have been shown to be more
effective than those based on edge weights [8]. We therefore
use a greedy maximal matching based on edge expansion for
contracting the graph.

We start with an empty matching M = ∅. We consider
the edges in increasing order of their expansion values. If
both end-points of an edge e have degree 0 in G(V,M), we
insert the edge e in M . We coarsen the graph till we have
only max{P 1.5, 100} vertices left, where P is the desired



number of partitions.
2) Initial Partitioning: The initial mapping of the coars-

ened graph to the topology graph is computed by recursively
bisecting both of these graphs to minimize the total edge-cut
and then mapping the bigger part of the coarsened graph
to the bigger part of the topology and the smaller part to
smaller. A part is considered bigger if it has a higher load
(total weight of all vertices in it) or if the two loads are
equal, than it has more edges. The intuition behind this
approach is that it maps the sparse cut in the coarsened
graph to the sparse cut in the topology in order to avoid (or
alleviate as the case may be) communication bottlenecks.
The definition of bigger graph is particularly relevant for
the topology graph as that is treated as unweighted and
is typically small. Thus, the two partitions have the same
number of nodes, but the partition with higher number of
edges can deal with higher load partition of the coarsened
graph as it can balance the load among its nodes better. Note
that this approach is similar to the one used in Scotch [16].

We use METIS to partition the two graphs. However, we
observed that for very small graphs (less than 8 vertices),
METIS tends to put all nodes in the same partition, irre-
spective of the load balance required. To avoid this, we do
a brute-force partitioning for small graphs. We consider all
cuts that create balanced partitions and select the one with
minimum edge-cut.

For routing the traffic, we first route using the shortest
path metric and then update the routes using minimum-
congestion path. For the shortest path routing, we consider
all edges in the coarsened graph. If the incident vertices of
an edge are mapped to different nodes in the topology graph,
we route the data-stream between the vertices through the
shortest path between the mapped processors in the topology.
To update it using minimum-congestion routing scheme, we
consider the edges of the coarsened graph in decreasing
order of their weight. If routing the flow of the edge
through the minimum congestion path results in increased
throughput, we change the route of the corresponding data-
stream. Considering the edges in decreasing order of weight
allows for the lower weight flows (data-streams with fewer
expected data) to route through less loaded links after the
distribution of heavy weight flows broadly defines the load
on the links.

The intuition behind using the shortest path routing first
is that the shortest path routing minimizes the total flow
(summed over all links) and then the min-congestion routing
performs relatively minor modifications to distribute this
flow more evenly at the cost of increasing the total flow
by a small amount.

3) Refinement: The coarsened graph is projected back to
the original by assigning vertices u and v that were merged
to produce vertex w, to the processor to which w was
assigned at the coarser level. Similarly, the flow for edge
{u, x} or {v, x} for x ∈ VG is routed through the same

path as {w, x} in the coarser graph. This is then followed
by a greedy local update procedure which either re-maps a
vertex to another processor or re-routes a flow to improve
the performance of the system till it converges to a local
optimum.

For this local update step, we consider a performance
vector. For a topology graph H(VH , EH), this vector has
|VH | + |EH | entries, corresponding to its vertices and edges.
For each node v ∈ VH , we insert Scomp/wv(v) in the vector
to denote the throughput obtained if v was the bottleneck
vertex. Similarly, we insert Scomm/we(e) for each edge
e ∈ EH to denote the throughput obtained if e was the
bottleneck. A performance vector is obtained by sorting the
values in increasing order. Note that the overall throughput
is the first entry in this vector. We say a performance vector
P ′ is better than a performance vector P if P ′[i] > P [i] and
P ′[j] = P [j] for 0 ≤ j < i. Clearly, the best performance
vector also yields the best throughput.

Optimizing the whole performance vector rather than just
the throughput (which is the first entry in the performance
vector) helps in a more even distribution of load and com-
munication. In our experiments, we found that quite often,
it also improves the throughput. This is because alleviating
the load on the neighbors of the bottleneck processor or link
allows some load to move to them, thereby improving the
throughput.

Our greedy local update procedure considers a series of
steps involving vertex re-mappings and re-routing of flows
and selects the update that results in the best performance
vector among all steps considered. The best step is actually
executed and the partitioning information and/or routing
tables are modified. The procedure of greedily selecting
a locally best update and executing it is repeated till the
process converges to a locally optimum performance vector.

The steps considered for the local update procedure are
as follows:
• For each vertex v ∈ VG mapped to processor Pi, we

consider re-mapping it to all neighboring processors of
Pi in the topology graph H .

• For each edge e ∈ EG, we consider re-routing it
through a minimum-congestion path.

C. Reconfiguring the Topology to Improve Partitioning

In this section, we show how we modify our topology
by identifying the key bottleneck with the partitioning com-
puted in the previous iteration. Note that these changes do
not necessarily make the topology better and can be undone
in the next iteration.

Let the current iteration be i and the current topology
graph be Hi. We first identify whether computation or
communication is the bottleneck. If computation is the
bottleneck, it could be because the partitioning algorithm
could not move the vertices of the input graph to lower
weight nodes (partitions) for the fear of increasing cut. (We



understand that the reason might very well be the fact that
the partitioning algorithm is just not good enough. However,
we are choosing to make this assumption now and later test
it in our experiments.) This implies that in the topology,
we need more edges between low-weight nodes and high-
weight nodes so as to alleviate the high-cut concerns of the
partitioning algorithm and thereby enable it to find a more
balanced computational load distribution in the next itera-
tion. We therefore select an edge between two low-weight
nodes and one between two high-weight nodes and perform
a swap operation. Note that this swap can only be done
in a setting where topology is reconfigurable. Furthermore,
this swap, and the accompanying considerations, are among
the features that make this framework a co-optimization
because identification of issues with the partitioning lead
to local fixes in the topology, which elicits another round
of partitioning. A swap operation between edges {u, v} and
{w, x} involves removing the two edges and either inserting
{u,w} and {v, x} or inserting {u, x} and {v, w}.

The edge ehigh with the lowest expansion value (ehigh =
mine∈Hi

Ξ(e)) satisfies the requirements of a low-weight
edge between high-weight nodes. To select the edge between
two low-weight nodes, we consider the edges in increasing
order of their vertex-product and identify the first edge elow
that can be swapped. An edge pair can be swapped if all of
the following conditions are true.
• The two edges are vertex disjoint.
• Swapping the edges leaves the graph connected.
• The new edges to be inserted in the graph in the swap

operation are not already present.
We then swap the edges ehigh and elow in Hi to obtain

the topology Hi+1 for the next iteration i+ 1.
If on the other hand, the bottleneck is the communication

over a link eb in the topology, we try to guess the bottleneck
cut and introduce more edges between the two sides of the
cut to alleviate the bottleneck.

The bottleneck cut is identified by sorting the edges in
decreasing order of their weight and then removing the edges
till the graph gets disconnected. After the two sides of the cut
are identified, the edges are re-inserted into the graph. We
then find low-weight edges from both sides such that they
can be swapped and swap it to obtain Hi+1. If one of the
components has no edges (e.g., it might have only one node),
we identify the lightest weight edge-pair that can be swapped
and swap it to get Hi+1. In our experiments, we observed
that the last case happens quite often as communication
bottleneck is caused by a node that needs to send vast
amount of data to the remaining nodes in the topology and
it does so by distributing the communication load roughly
equally along all incident edges.

A major problem with the above technique for modifying
topology is that it tends to get stuck in small cycles, i.e.,
Hi+c = Hi for a small c. This restricts the number of
different topologies explored quite significantly. In order to

avoid this problem, we introduce a measure of randomiza-
tion. Even if an edge pair can be swapped, we ignore it with
a certain probability and keep searching for a new pair.

IV. EXPERIMENTS AND RESULTS

A. Summary of Results

To the best of our knowledge, we have no direct com-
petitors of our TPR co-optimizing framework because we
are not aware of any algorithms that partition graphs for
a reconfigurable topology platform while co-optimizing cut,
load balance and flow at the same time. This made it difficult
to compare against other efforts. Also, since most variants of
graph partitioning are NP-hard, it is very difficult to ascertain
the quality of our solutions by comparing against a known
optimum for interestingly large problem sizes.

We therefore compare our approach with the extreme case
of computation load being equally balanced on network with
no communication restrictions (i.e., cut minimization does
not matter in this extreme case because it is assumed that
there are links of infinite bandwidth between all compute
node pairs). In our experiments, we found that in the settings
when our approach is computation bound, our throughput
results on our simulated streaming applications are within a
small constant factor (less than 4) of this extreme case of
perfect load balance.

By varying the ratio between Scomp and Scomm, we can
alter the bottleneck from computation to communication.
A high ratio implies that computation is less likely to
be the bottleneck as the compute nodes can process the
computation load faster than the links can move the data
around. Our results show that our framework provides good
trade-offs between the two extremes as the ratio between
Scomp and Scomm is varied. As the ratio tends to zero,
our algorithm tends to create very few partitions with very
small weight edges across them. On the other hand, as
the ratio tends to infinity, the partitioning solution tends to
produce NP partitions that are almost perfectly balanced.
Note that another major advantage of our approach is that
it need not use all the processors in the system, but can
determine if grouping the computation load into bigger and
fewer partitions to alleviate the communication bottleneck
provides for better throughput.

Our experiments also show that for our simulated stream-
ing applications, our iterative procedure for updating the
topology and the partitioning does manage to provide some
robustness to the partitioning solution. While for the compu-
tation bottleneck, the initial topology and our computation of
partitioning from scratch for the computed initial topology
already provides good results, our iterative updates manage
to improve the throughput for the cases with communication
bottleneck.

We now explain our experiments in detail, in particular the
characteristics of the synthetic application graphs we used



and our validation approach to gain confidence in our results.
We discuss both of these issues next.

B. Key Characteristics of Graphs Used in Experiments

While our TPR co-optimizing framework does not depend
on a particular class of applications, we performed our
experiments for stream computing applications. We picked
this because reconfigurable optical circuit switches are par-
ticularly suitable for stream computing applications as these
applications generate long duration flows that easily com-
pensate for the long (in millisecs) time needed to reconfigure
the optical switches. In addition, such applications also
benefit the most from the circuit switching (as opposed to
packet switching) offered by optical switches.

For simulating stream computing applications, we used a
graph generator that we wrote specifically for this purpose.
The details of the generation process and an experimental
study for evaluating how well the properties of streaming
graphs are emulated by our generated graphs is available
in a research report [2]. In this section, we discuss the key
properties of the graphs we have used for our experiments.
This should give the reader specific information to help
her interpret our results. However, as we stated before, our
proposed techniques do not depend on a particular class of
applications.

Based on various discussions with researchers who have
first-hand experience with streaming applications, we con-
jecture that most streaming graphs will satisfy the following
properties. However, at the moment, the pool of available
streaming applications is too small to obtain statistically
relevant measurements supporting these properties. A subset
of these properties have also been noted in a recent paper [1].
The statistics on kernel mixes are based on the characteri-
zation of StreamIT benchmark [23], [22].
• Streaming graphs are very sparse. Since each edge

represents a high-volume, continuous data-flow, a large
number of edges imply communication of massive
amount of data. This is quite likely a result of a poor
design choice.

• There are no vertices with more than 1 in-degree and
more than 1 out-degree. All vertices fall into one of
the three types:

– Filters: Vertices with in-degree 1 and out-degree
1. In general, filters can do any kind of data trans-
formation including but not restricted to sampling,
filtering, sliding window computations. A special
case of identity filters merely pass the data as they
receive it.

– Split: Vertices with in-degree 1 and out-degree
greater than 1. The splits are subdivided into
following categories: Copy splits that copy the
input stream to output streams; Round-robin or
If-else distributors that distribute the input stream
into output streams.

– Join: Vertices with in-degree greater than 1 and
out-degree 1

• A large majority of the vertices are filters. Around 35%
of splits are copy splits – they copy the input stream
to output streams. The remaining splits are mostly
distributing splits – they distribute the input stream (in
a round-robin way, based on value of elements etc.) into
the output streams. Most joins merge the input streams
in some way, i.e., their output stream rate is the sum
of input stream rates.

• Streaming graphs are mostly acyclic. Note that there
may be cycles involving control signals that are short
data-flows, but we do not model them as edges in our
computational task graph. The edges in our definition
of streaming graphs strictly correspond to continuous,
high-volume data streams.

• For any vertex pair (x, y), all paths from x to y have
roughly the same length, where the length is defined
as the number of edges in the path independent of the
weights on the constituent edges.

• In a typical stream computing application, computa-
tionally intensive tasks are usually performed towards
the end of the computation process after the initial
kernels have sampled and reduced the data volume
significantly. In other words, the weights on nodes
closer to the sink are significantly higher than those that
are closer to the source. On the other hand, the weight
of edges that reflect the data-flow volume, decreases as
we traverse from sources to sink in the directed acyclic
graphs. In particular, the filter vertices in the early part
of the computation process significantly reduce the data
rate.

• There are more splits than joins close to the sources
and there are more joins than splits closer to the sinks.

Our graph generator takes only one input parameter:
the number of vertices. The number of edges, and their
placement, are determined by the graph generator keeping
into account the above properties of stream computing
applications.

C. Validation Procedure

We characterize our experiments with the following
parameters: Nnodes, Nvertices, ∆max, Emax, Scomp, and
Scomm, where Nnodes is the number of compute nodes in
the topology and Nvertices is the number of vertices in the
application graph generated using Section IV-B. Let a trial be
defined as one execution of the sequence “generate an appli-
cation graph of Nvertices vertices, create an initial topology
for that on Nnodes nodes assuming constraints implied by
∆max and Emax, and iterate as given in earlier sections to
optimize the throughput given the system constraints implied
by Scomp and Scomm.” Two trials differ from each other only
in the random numbers used to seed the graph generator and
the graph partitioner. That is, for each new trial we create a



new random application graph, and also seed both METIS
and our own algorithm with new seeds. This ensures that our
results do not depend on a “lucky” selection of application
graph or the parameters for the search algorithms. To further
ensure that serendipity is not a factor in the goodness of
our reported results, we consider an experiment completed
only when enough trials have been performed to give us a
certain level of confidence in the results we report. Let the
imprecision, π(x), of a set of values of x be defined as the
half-width of the 95% confidence interval divided by the
mean of x. We call an experiment completed when enough
trials have been performed to give an imprecision of no more
than 5% for the measured throughput.

Output of a given trial gives the following information: the
maximum throughput achieved; iopt, the iteration in which
the maximum throughput was achieved; Φ, the improvement,
if any, over the throughput achieved in the initial topology;
and an indication whether this particular value of system
throughput was limited by the processing speed of the
compute nodes or by the bandwidth of the communication
links.

At the end of an experiment, we compute the following
additional metrics: Npb

trials, the fraction of total trials that had
computation as the bottleneck (‘pb’ stands for ‘processor
bottleneck’); Φ̄, the average value for Φ; π(Φ̄), the impreci-
sion for Φ̄over Ntrialstrials; and Nnc

trials, the fraction of trials
that showed no improvement over the initial topology (‘nc’
stands for ‘no change’).

D. Detailed Results

We report our results in Table I and Table II, for several
experiments, each with a different set of values for parame-
ters Nnodes, Nvertices, ∆max, Emax, Scomp, and Scomm. In
Table I, the notation rlooseub refers to the ratio of actual
throughput to the throughput for the hypothetical scenario
with perfect load balance on a topology with all-pair links
of infinite bandwidth.

Table I shows results for some settings in which the
computation is the bottleneck (as shown by high values of
Npb

trials). For these settings, the throughput of our partitioning
solution is within a small constant factor (at least 27.9%) of
the throughput of the extreme case of perfect load-balance.

A clear trend emerges from Table II and Figure 2. As
the fraction of total trials that have computation as the
bottleneck decreases, the performance improvement given
by our algorithm increases. This phenomenon produces three
distinct clusters of data. We have separated them in Table II
with horizontal lines, and can also be seen in Figure II. The
cluster of points with the highest throughput was observed in
experiments where most of the trials had communication as
the bottleneck, i.e., Scomp and Scomm were set to give very
small values of Npb

trials. Similarly, the cluster of points with
the lowest throughput was seen in experiments where most
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Figure 2. As the fraction of total trials that have computation as the
bottleneck increases, the performance improvement given by our algorithm
increases.

of the trials had computation as the bottleneck, i.e., Scomp

and Scomm were set to give very high values of Npb
trials.

The fact that our scheme does not show much improve-
ment over the initial topology for high values of Npb

trialsis
understandable. Recall that the initial topology is based on
a condensed graph from METIS partitioning that puts greater
emphasis on balancing the load (as maximum allowed load
imbalance is 1.05). Therefore, the initial partitioning (com-
puted from scratch afterwards) ensures that the computa-
tional load is still well-distributed. Our experiments confirm
that computational load is indeed well-balanced after the
partitioning for the initial topology and if the computation
is the bottleneck, it already provides for good partitioning
solution (e.g., for settings in Table I).

Since METIS minimizes the total cut value and the
maximum total weight leaving a node (maximum subdomain
degree), but not the maximum communication between
compute-node pairs, the initial topology may not be as
good when communication is the bottleneck. In such cases,
our iterative procedure for updating the topology and the
partitioning provides significant improvements.

The largest performance improvement we saw was 65%
improvement in throughput over that given by the initial
topology. This was for the 12th system configuration in Table
II. Throughput in this particular configuration was highly
limited by the bandwidth available over links (only 3.3%
of 360 trials showed computation as a bottleneck). Another
point to note here is that this configuration saw one of the
smallest values for Nnc

trialsat 13.3%. That is, our algorithm
succeeded in improving the throughput over that of initial
topology for almost 87% of all trials.

Although the results shown in this section are for input
graphs with small values of Nvertices and small number



Table I
EVALUATION AGAINST THE HYPOTHETICAL EXTREME CASE OF PERFECT LOAD BALANCE ON INFINITE BANDWIDTH PERFECTLY CONNECTED

NETWORK

Φ Nnodes ∆max Emax Scomp Scomm Nvertices Npb
trials π(Φ) Ntrials Nnc

trials rlooseub

1 1.074 16 4 32 100 500 100 1.000 0.009 252 0.282 0.279
2 1.040 16 4 32 100 500 200 0.991 0.004 348 0.244 0.333
3 1.029 16 4 32 100 500 300 0.996 0.004 240 0.163 0.388

Table II
PARAMETERS FOR THE VARIOUS EXPERIMENTS WE CONDUCTED AND THE CORRESPONDING RESULTS.

Φ Nnodes ∆max Emax Scomp Scomm Nvertices Npb
trials π(Φ) Ntrials Nnc

trials

1 1.306 16 4 32 100 10 100 0.386 0.036 360 0.219
2 1.254 16 4 32 100 10 300 0.497 0.027 720 0.189
3 1.240 16 6 48 100 10 300 0.548 0.048 252 0.214
4 1.094 16 4 32 100 100 100 0.950 0.019 180 0.328
5 1.072 16 4 32 100 100 200 0.927 0.014 648 0.230
6 1.057 16 4 32 100 100 300 0.931 0.013 720 0.185
7 1.454 32 4 64 100 10 300 0.225 0.046 324 0.114
8 1.451 16 4 32 1000 10 200 0.042 0.049 168 0.214
9 1.456 16 4 32 1000 10 300 0.028 0.030 612 0.196
10 1.447 16 4 32 1000 10 1000 0.137 0.030 1253 0.229
11 1.418 16 6 48 1000 10 300 0.045 0.054 156 0.237
12 1.646 32 4 64 1000 10 1000 0.033 0.046 360 0.133

of processors Nnodes, our preliminary experiments suggest
that similar trends continue for the larger graphs (e.g., with
Nvertices = 64000) and for larger numbers of processors.

Figure 3 shows a typical scenario for the number of
iteration in which the best throughput was computed. In a
large majority of our experiments, the best throughput was
obtained in very few iterations (less than 3). However, in
some cases, we even obtained improvements in iteration 15
or higher.

The time taken by TPR co-optimizing framework to
execute can be tuned by a parameter controlling the local
search depth in the refinement phase. For a system with 32
nodes and 10,000 vertices, the average time was around 3
minutes.

V. RELATED WORK

We are not aware of any work that configures a topol-
ogy to match the communication requirements of a given
application. We are also not aware of any work that co-
optimizes the partitioning and routing. There is however
considerable work on computing a partitioning of the input
graph for a given architecture, both serial and parallel, and
static and dynamic (e.g., [12], [4], [5], [13], [16], [21]). In
the context of heterogeneous architectures that have compute
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Figure 3. The number of iteration in which the best throughput was
computed

nodes with variable processing speed and links with variable
bandwidth (such as grid infrastructures), the problem is also
referred to as architecture-aware partitioning. This problem
is considered difficult even for designing efficient problem-



specific heuristic approaches. As such, generic local search
heuristics have been used for solving this problem, such
as genetic algorithms [9] and cross-entropy methods [18].
The few problem-specific heuristics include MinEx [6],
MiniMax [14] and a variant of METIS [15].

Our subproblem of computing a topology-aware par-
titioning (within the host of problems solved under the
TPR co-optimizing framework) is actually simpler than the
partitioning for completely heterogeneous architecture as we
assume that the compute nodes are identical and that the
links between them have the same bandwidth. We, however,
believe that the technique developed in this paper will also
be effective for fully heterogeneous architectures such as
those from the domain of grid computing.

The work in [10] is very much related to ours, in the sense
that it substantiates our contribution. Our contribution almost
starts where the contribution of [10] finishes. Specifically, an
important contribution of [10] is doing a very detailed study
of different applications used in high performance comput-
ing, and showing that their communication requirements do
not need as powerful a network as a fat tree. They argue
that a fat tree can be pruned into a more economical fit
tree. Based on their analysis of communication requirements
of different applications, they make an excellent case for
the potential of utilizing a reconfigurable interconnect. This
study, and some others like it, motivate our present paper
on how to utilize a reconfigurable interconnect.

Another closely related technique is the MiniMax ap-
proach ( [14]) as that technique is also multilevel. But our
approach differs in the way it coarsens the graph, it does
the initial partitioning, performs refinement, as well as in
the objective function itself.

Unlike some previous efforts (e.g., [3]) that have in-
vestigated the use of reconfigurable interconnect in high
performance computing, our framework does not focus on,
or assume, a certain class of applications or certain commu-
nication patterns.

An approach for generating task graphs that emulate the
key characteristics of streaming applications has recently
been proposed [1]. However, this work heavily relies on
application-specific input from the user that guides the
generation process.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed new algorithms for
iteratively co-optimizing the network topology configura-
tion, application partitioning and network flow routing to
maximize throughput for a given application for systems
that employ reconfigurable interconnects.

We show the value of our TPR co-optimizing framework
on synthetic graphs that emulate the key characteristics of
stream computing applications that require high through-
put. We perform statistically rigorous, serendipity-free ex-
periments to show that (a) TPR co-optimizing framework

achieves a throughput within a small constant factor (less
than 4) of a loose upper bound calculated for a system
with no communication bottleneck (b) TPR co-optimizing
framework consistently improves (ranging from 42% to
65%) upon the initial throughput for the more relevant cases
of communication bound systems.

Our work can be extended to the dynamic setting, where
the weights on vertices and edges can change over time. This
can be done by an iteration of modifying the topology and
updating the partitioning as is done in our framework. How-
ever, the current partitioning update procedure re-computes
the partitioning from scratch. Ignoring the previous parti-
tioning allows our framework to consider radically different
partitioning solutions and may lead to better throughput. But
it might not be desirable in a dynamic scenario as this is
a slow procedure and more importantly, it might involve
a large data-migration between the processors. The cost of
data-migration may be more than the actual benefit accrued
from re-balancing the load. Therefore, we would like to
investigate techniques that use the partitioning from the
previous iterations to compute a new partitioning efficiently
such that the data-migration requirement between the two
partitioning solutions is low.

Another direction of future research is to improve the
scalability of the above approach. This may include par-
allelization, either using MPI interface with threads or using
distributed paradigms such as map-reduce and/or making it
more cache-efficient.

Our eventual goal is to incorporate this framework in a
high-performance computing system with a reconfigurable
switch. Given an application with dynamically changing
weights on the task graph (possibly because of imprecise
estimates on the work load), such a system will decide at the
run-time when and how to re-balance the load, re-route the
network flows, and re-compute and reconfigure the topology
for the best overall throughput. This system will help make
the power-efficiency and bandwidth goals of future Exascale
systems a reality.
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