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Abstract—Assessing a conversational agent’s understanding
capabilities is critical, as poor user interactions could seal
the agent’s fate at the very beginning of its lifecycle with
users abandoning the system. In this paper we explore the
use of paraphrases as a testing tool for conversational agents.
Paraphrases, which are different ways of expressing the same
intent, are generated based on known working input by per-
forming lexical substitutions. As the expected outcome for this
newly generated data is known, we can use it to assess the
agent’s robustness to language variation and detect potential
understanding weaknesses. As demonstrated by a case study,
we obtain encouraging results as it appears that this approach
can help anticipate potential understanding shortcomings and
that these shortcomings can be addressed by the generated
paraphrases.

1. Introduction

A Conversational Agent is a piece of software intended
to dialogue with a human user to provide specific services,
serve as a virtual assistant, or take part in social conversa-
tions. In recent years, these agents, also known as chatbots,
have become increasingly popular. Many companies see
them as a cost effective solution to handle great volumes
of simple customer requests while users enjoy a convenient,
fast, and always accessible service. Big “tech” firms have
recently developed their own personal assistants, such as
Apple’s Siri or Microsoft’s Cortana, while both Google and
Amazon released physical devices based on their assistant.

Despite the recent progress made in the field, conver-
sational agents still seem to struggle to win over peoples’
hearts: according to some analysts, their current retention
rate remains low, at an average of just 4% on a 7-day time
frame [6]. As with any service or product, the final quality
of these agents is assessed by the user. Characteristics
such as efficiency, reliability, and effectiveness will impact
their willingness to continue to use the service. When it
comes to conversational agents, accurately interpreting user
input is a key factor in the final user experience and thus
in user perception of agent quality. An agent unable to
understand the natural language of its users, forcing them
to repeatedly rephrase their requests, is unlikely to have
a high retention rate. Therefore, the ability to assess the

agent’s understanding of user input during the development
phase could provide useful insight and ultimately lead to an
improvement in user experience.

In this paper, we investigate how to automatically test the
robustness of text-based conversational agents to language
variation, limiting our study to the intent recognition aspect
of those agents. In the context of Natural Language Under-
standing, intent recognition consists of labelling a user query
according to the perceived nature of this query. For example,
queries such as “i need to cancel my ticket” or “why cant
i see my contacts” could lead an agent to classify those
as “CancellationRequest” and “ContactsListHelp” requests
respectively. In the context of Linguistics, language variation
refers to the different ways of expressing the same semantic
content. Variations can take the form of a different word
choice or a different syntax, and are often related to the
regional and socio-economic background of the speaker.

We only consider agents that can be represented as an
automaton, with the transitions being queries formulated by
the user and each state triggering an action and a written re-
sponse from the agent. This structure makes it easy to verify
that an agent correctly understands a query by checking the
resulting state. This therefore excludes agents with a much
more complex structure, for example agents that try to have
social conversations with their users, such as cleverbot1.

Briefly put, the problem can be summarised as auto-
matically performing divergent example testing for con-
versational agents [19]. Divergent examples are similar to
adversarial examples as defined in [11] as “a sample of input
data which has been modified [...] in a way that is intended
to cause a machine learning classifier to misclassify it”. In
our case, we wish to generate divergent examples that retain
the same meaning while expressing it in a range of different
ways: we call this operation paraphrasing.

The research question we are examining is “Can para-
phrasing techniques be used to evaluate the understanding
capabilities of Conversational Agents?” – and our contribu-
tion is an evaluation of the work we presented in Ruane
et al. [19] that described a testing framework for conversa-
tional agents. In particular, we show that divergents, such
as our paraphrases, can be used to discover weaknesses of
a conversational agent. We also address the related research

1. http://www.cleverbot.com/
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questions “Can paraphrases be used to enrich the training
models of conversational agents?” – the decision being
between giving more (independent) data to the language
models of the conversational agents (more examples) or
generating and using paraphrases.

The remainder of this paper is organised as follows:
Section 2 presents a literature review of the paraphrase
generation process and discusses work related to diver-
gent testing; Section 3 gives a description of our testing
framework; Section 4 presents our paraphrase generation
module; Section 5 is an evaluation of our technique to test
conversational agents; and Section 6 concludes our study.

2. Related Work

The process of automatically paraphrasing a given input
sentence can be broken down in to two main steps; the ac-
quisition of paraphrasing data and rules, and the generation
of new sentences using this knowledge. According to Barzi-
lay and McKeown [1], there are three major approaches to
the problem: manual collection of paraphrases, utilization of
lexical resources, and corpora-based acquisition.

The manual collection of paraphrases is usually per-
formed with the use of crowd-sourcing platforms, such as
Amazon’s Mechanical Turk. This type of approach is no-
tably used by Chklovski [5], where the corpus of paraphrases
is built through a game in which users are given a sentence
that they must reformulate, the goal being to correctly guess
a hidden reference paraphrase. The guesses entered by the
users during this game can then be used as new paraphrases.
Other tasks that have been successfully used for manual
collection of paraphrases include describing a clear and
unambiguous action performed in a very short video clip
[2], and asking users to directly select sentences that are
paraphrases of each other with the sentences being extracted
from tweets of trending topics [23].

The most notable work based on lexical resources has
been proposed by Hassan et al. [10]. The authors propose
a solution to the SemEval 2007 Lexical Substitution task
which consists of finding the most probable synonym of an
ambiguous word given its context. Their solution involves
multiple scoring methods such as language models, word-
sense disambiguation, and latent semantic analysis, amongst
others. The authors claim to consistently rank in first or
second place for this task.

The corpora based approaches to paraphrasing are the
most commonly encountered in the literature. They aim to
collect paraphrases from texts which are close in meaning,
such as news articles discussing the same events or multiple
translations of the same book. The approach proposed by
Shinyama et al. [20] is one of the first to extract paraphrases
from text corpora by leveraging different translations of
the same news articles. Paraphrases are identified based
on common named entities (such as proper nouns), and
are then used to build a synchronous context-free grammar
which is used for the generation process. This method is
able to achieve interesting but low-coverage results. Sim-
ilarly to Machine Translation, Quirk et al. [17] approach

paraphrasing by considering it as a statistical problem. The
paraphrases are also learned based on news articles using
statistical machine translation tools, but the generation pro-
cess consists of finding the optimal path through a graph
representing the multiple rephrasing possibilities and their
associated likelihood given the input sentence. Zhao et al.
[24] extend the method by combining multiple resources in
order to improve coverage. While paraphrases of sentences
from news articles achieve a human acceptance rate of up
to 70%, informal sentences from forums are only deemed
acceptable 40% of the time.

Paraphrasing with a target style has also been investi-
gated in previous work, as done by Xu [23] who proposed
a Shakespeare/Modern English “translation” tool. The ap-
proach is based on the method proposed by Quirk et al.
[17] using translations of Shakespeare’s plays into Modern
English as the input data. The same method is also applied
with “Internet English” as the target style by using Twitter
as the data source.

Some efforts have also been made to build databases of
known paraphrases, as done by Callison-Burch et al. [8],
[16]. In their papers, the authors perform paraphrase acqui-
sition through a “bilingual pivoting method”. The core idea
of their approach is that if two English phrases translate to
the same foreign phrase, they can be considered paraphrases
of each other. The second version of their paraphrasing
database for English contains more than 100 million entries
which are expressed in the form of synchronous context-free
grammar rules such as: 〈 the X1 of X2, X2 ’s X1 〉. These
paraphrasing rules have been further used by Napoles et al.
[15] in their ready-to-use paraphrasing engine based on the
statistical machine translation engine Joshua. The authors
claim that their solution is the first one to provide researchers
with a ready-to-use paraphrasing engine.

As with many other fields, deep learning is now being
applied to paraphrasing, as done by Gupta et al. [9]. The
approach they propose is a combination of generative mod-
els (based on Variational Auto-Encoders) with sequence-to-
sequence models (based on Long Short-Term Memories),
and is able to generate a paraphrase for a given input sen-
tence. The training data is made up of original sentences and
their reference paraphrase. According to the authors, their
technique outperforms the state-of-the-art by a significant
margin and sets a new baseline for future research.

As mentioned in Section 1, divergent example testing
[19] is conceptually similar to the use of adversarial exam-
ples to test machine learning systems [11]. However, the
goal of divergent testing is not to trick the conversational
agent per se, rather, we try to mimic and emulate the
complexity that is embedded in the way users naturally
express themselves. This entails phenomenons such as the
use of slang words and colloquial expressions (in the case
of paraphrase generation), as well as grammar, spelling,
and homophone mistakes. Similarly, divergent testing is
related to metamorphic testing as proposed by Chen et al.
[3] in 1998. Metamorphic Testing (MT) leverages relations
between expected output of multiple related inputs and has
been successfully applied in numerous domains. [4] Like



MT, divergent testing utilises working input (successful test
cases) but does not require a formal process of identifying
“metamorphic relations”.

Finally, and to the best of our knowledge, we couldn’t
find any other previous work regarding the use of paraphras-
ing techniques as a testing tool for conversational agents.

3. Divergent Testing Framework

As presented previously, the context in which this work
takes place is the testing of conversational agents, based
on the principle of divergent example testing [19]: a base-
case is altered while retaining the same expected outcome
to assess the robustness of the subject under test [11].

We refer to the sentences produced by a user as utter-
ances. They have an intent, which is the purpose of the query
made by the user, and entities, which are the parameters of
this query. For example, for the utterance “Add a 1 hour
meeting for tomorrow at 2pm in room A1” the intent would
be adding an event to the calendar, and the entities would
be the time, date, duration and location of the event.

A schematic representation of the framework (see [19]
for more details) is given in Figure 1, which works as fol-
lows. Original utterances are first processed by the agent in
order to retrieve the original intent. These original utterances
are then used to generate divergent utterances, which are in
turn processed by the agent under test in order to retrieve
the divergent intents. Based on those divergent intents, we
can compute the robustness of an agent to a given intent.
We define the robustness R to an intent i as Ri = |Ci|

|Ti| ,
where Ci corresponds to the divergent utterances correctly
classified as being of intent i, and Ti designates all the diver-
gent utterances of intent i, with the divergent utterances in
both sets being generated from correctly classified original
utterances only.

Figure 1. Schematic representation of the test framework in use. Original
utterances are processed to generate divergent examples which help assess
the robustness of the agent under test.

4. Divergent Example Generation

Paraphrasing in the context of conversational agent test-
ing holds two additional constraints compared to other para-
phrasing problems. Firstly, we focus on accuracy rather than
coverage. We wish to minimise the number of false negative
test cases, i.e. cases where the agent fails to correctly handle
an utterance that a human agent would not understand either.
Secondly, paraphrases should model various types of speech,
for example by making use of informal vocabulary. The goal
is to generate data that is as close as possible to utterances
produced by human users, but also as diverse as possible,
in order to anticipate real cases of misunderstanding.

These additional constraints lead us to favour a rule-
based approach, as opposed to data-driven paradigms. We
expect this type of approach to give us more flexibility
and control with regards to the style of the output being
produced, while not having to deal with data-sparseness is-
sues that would otherwise be likely encountered. Moreover,
it also seems important to have a fine-grain understanding
of how paraphrases were generated in order to trace back
misunderstandings.

We propose to generate divergent utterances by pro-
cessing input data through Lexical Substitutions, which
aims to change the vocabulary used in the utterance by
either using generic and neutral synonyms (Generic Lexical
Substitutions), as opposed to synonyms specific to a reg-
ister of speech or a geographical region (Targeted Lexical
Substitutions).

Note that we could use first a Structural Modifications
step, similar to the work of Napoles et al. [15] but we believe
that lexical paraphrases and other alterations to the surface
forms of words may be more insightful when testing con-
versational agents. Indeed, agents are not capable of linking
different words or written forms to the same concepts unless
encountered in the training data or specifically handled, for
example with a spelling corrector. While interesting, word
ordering or the use of different non-key words might not
have as much impact on the understanding capabilities. We
therefore choose to focus on lexical substitutions as our main
paraphrasing technique.

We assume that all input utterances are grammatically
and syntactically correct with no spelling mistakes. We
furthermore transform the input utterances to lower-case as
a preprocessing step to avoid case sensitivity issues.

4.1. Lexical Substitutions

In the following we propose an approach to paraphras-
ing through lexical substitutions, that is we replace words
occurring in a given input utterance with their synonyms.
The goal of this paraphrasing is to introduce variations in
the vocabulary, either by remaining generic or by targeting a
specific type of English. We chose this approach because of
its relative simplicity and little overhead compared to more
complex solutions such as adapting a Machine Translation
Engine.



4.1.1. Generic Lexical Substitutions. We follow the lead
of Hassan et al. [10] and build our approach on these two
successive steps:

1) Retrieval of possible synonyms for each word ap-
pearing in the input utterance, and generation of the
candidate paraphrases by substituting the original
word with its inflected synonyms.

2) Scoring of the candidate paraphrases yielded by the
previous step in order to weed out bad candidates
and provide a ranking of the remainders.

4.2. Generation of Candidate Paraphrases

The processing of each input utterance starts with tok-
enization and Parts-of-Speech tagging, using the Microsoft
Cognitive Services API2. Dependency parsing using the
Stanford Core NLP tools [12] is also performed in order
to identify and retrieve dependencies of interest.

For each token obtained in the previous step, we skip
over punctuation signs and stop-words. The remaining to-
kens are then lemmatized using the Pattern [21] library.
In the case of phrasal verbs, the corresponding particle
is retrieved based on the information obtained from the
dependency parsing, and is included in the lemma form3.

These lemma forms are then used to retrieve the possible
synonyms from lexical databases, namely WordNet [14].
These synonyms are in turn inflected and inserted into the
input utterance, yielding candidate paraphrases. The sup-
ported inflections include pluralization, singularization and
conjugation. Indefinite article epenthesis4 is also supported.
These operations are handled by the Pattern [21] library.

Finally, we only consider paraphrases that are one edit-
ing distance away from the input utterance. We do not
consider the simultaneous substitution of multiple lemma
forms in the input utterance. This is done in order to to
limit the number of generated candidate paraphrases and to
maintain a better quality.

4.3. Scoring of Candidate Paraphrases

Many words have different meanings depending on the
context in which they occur, and as such performing sub-
stitutions with synonyms will lead to nonsensical results.
Filtering out poor paraphrases is therefore necessary, and
we perform this task by adapting and combining some of
the strategies presented by Hassan et al. [10]. The following
strategies have been implemented:

• Language Model (LM) The fluency of candidate
paraphrases is scored with a 5-gram language model.
The probability of each candidate paraphrase is com-
puted by the Language Model API provided by
Microsoft’s Cognitive Services platform.

2. https://azure.microsoft.com/en-us/services/cognitive-services/
3. For example, the verb in the sentence “He made it up” lemmatizes to

“make up” rather than “make”.
4. I.e. the indefinite article a becoming an before a vowel.

• Translation Pivoting (TP) The input utterance is
translated into a foreign language and then back into
English, producing a pivoted sentence. Candidates
whose inflected synonym appears anywhere in one
of the pivoted sentences are given a score of 1, 0
otherwise. In our implementation, we rely on the
Microsoft Translator Text API using French as piv-
oting language and requesting multiple translations
to French and back to English in order to increase
the diversity of the pivoted sentences.

• Word Vectors (WV) This strategy yields a higher
score for candidate paraphrases whose inflected syn-
onym has a strong lexical similarity with the input
utterance. In order to assess the lexical similarity we
rely on Word2Vec [13] using the Google News pre-
trained data5 and Gensim [18]. The lexical score of
a synonym is computed as the average of the cosine
similarities between the inflected synonym and each
word of the input utterance which is not a stop-word.

• Web Search (WS) Each candidate paraphrase is
queried in a web search engine and scored based
on how many hits were obtained. The search is
performed using the Bing Web Search API.

• Word-Sense Disambiguation (WSD) For each
word replaced in the input utterance, we retrieve its
most probable sense using the Simplified Lesk al-
gorithm provided by Pywsd [22]. Candidates whose
synonym corresponds to the most probable sense of
the replaced word are given a score of 1, 0 otherwise.

• Lexical Frequency (LF) This strategy scores can-
didates by how frequently its synonym has been
encountered as a synonym for the different senses of
the original word and in different lexical resources.
The yielded score corresponds to how many times
the synonym has been encountered.

Our previously described scoring methods are aimed at
different aspects of what makes a good paraphrase. We
measure the semantic relatedness of a synonym with the
input utterance by using the Word-Sense Disambiguation
and Word Vectors strategies, but also take into account the
well-formedness of candidates with the Web Search and
Language Model methods. Finally, Translation Pivoting is
a high-precision but low-coverage strategy that allows us
to identify the most plausible candidates, while Lexical
Frequency encourages the use of synonyms with a broader
sense. Since our scoring strategies are aimed at orthogonal
aspects of the problem, it is expected that combining them
together should provide overall better results.

The aforementioned strategies are combined together by
first rescaling each of the metrics in the range [0; 1], rescaled
metrics which are then combined linearly as shown in
equations 1 and 2. In these equations, sm and s′m represent
the original and rescaled scores yielded by strategy m, λm
is the weight of strategy m, c is the candidate paraphrase
to score, C is the set of all paraphrases to score, and s(c)
represents the global score of candidate paraphrase c.

5. https://code.google.com/archive/p/word2vec/

https://azure.microsoft.com/en-us/services/cognitive-services/
 https://code.google.com/archive/p/word2vec/


TABLE 1. BEST WEIGHTS AND PRUNING THRESHOLDS FOR THE
LEXICAL SUBSTITUTIONS SCORING TASK, OBTAINED BY FAVORING

PRECISION OVER RECALL.

LM TP WV WS WSD LF Pruning
59 43 77 13 53 18 0.59

s′m(c) =
sm(c)−min

x∈C
(sm(x))

max
x∈C

(sm(x))−min
x∈C

(sm(x))
(1)

s(c) =

m∑
i=1

λm ∗ s′m(c) (2)

Candidates that obtain a global score lower than a pre-
determined threshold t are considered bad and are pruned
from the final set of paraphrases.

The best weights λm and the best pruning threshold t are
determined by a genetic algorithm which tries to maximise
the amount of acceptable paraphrases being returned by our
lexical substitutions. More specifically, the fitness function
that the algorithm tries to maximise is the average F-score
over all the input training utterances. The training data
was collected by submitting all candidate paraphrases of
randomly selected input utterances to a panel of fluent
English speakers, with each judge being asked to select
the candidates they deemed as acceptable paraphrases. The
genetic search is moreover performed multiple independent
times on random subsets of this training data in a process
similar to bagging. The final weights and pruning thresholds
are obtained by averaging the fittest individuals of each run
in an attempt to limit over-fitting. These operations were
performed using the Deap library [7]. The final weights
are shown in Table 1, and were obtained by only taking
precision into account, the recall rate having no impact on
the fitness function. The precision yielded by these weights
is 0.611, with a recall of 0.150 over all the training data.

4.3.1. Targeted Lexical Substitutions. We extend our ap-
proach presented in the previous section by relying on data
provided by the Oxford Online Thesaurus. This thesaurus
contains annotations for the register of speech6 and the
region of use7 of proposed synonyms.

The process is thus the same as presented previously,
with the exception that we use the Oxford Thesaurus rather
than WordNet to retrieve synonyms and filter them accord-
ing to the targeted register and/or region. We furthermore
do not perform any word-sense disambiguation as we were
unable to retrieve the definitions associated to the different
synonyms. The weights and pruning threshold are the same
as for the generic lexical substitutions.

Some examples of the divergent utterances generated by
our strategies are showcased in Table 2.

6. For example, “informal”, “dated”, “archaic”...
7. For example, “American”, “British”, “West Indian”, ...

TABLE 2. EXAMPLE OF DIVERGENT UTTERANCES GENERATED BY THE
DIFFERENT AFOREMENTIONED STRATEGIES. THE DIFFERENCES

BETWEEN original AND generated UTTERANCES ARE UNDERLINED.

Lexical Substitutions (Generic)
Original: i need to book a flight.
Generated: i need to reserve a flight.
Original: is my flight leaving as scheduled?
Generated: is my flight departing as scheduled?

Lexical Substitutions (Informal)
Original: i want to cancel my ticket.
Generated: i want to scrap my ticket.
Original: is it possible to cancel my booking.
Generated: is it doable to cancel my booking.

5. Results

In this section we evaluate the ability of our conver-
sational agent testing framework to identify understanding
issues using paraphrases; we also study whether adding
paraphrases to the language model used by the conversa-
tional agent improves its robustness.

5.1. Evaluating Lexical Substitutions based Para-
phrasing

The goal of this section is to evaluate the performances
of our lexical substitutions engine. In other words, we
want to check how often a human judge would accept a
lexical paraphrase that our system considers as valid. In the
following we only focus on generic and informal lexical
substitutions, that is targeted lexical substitutions with the
informal register of speech as target. We thus carry out this
evaluation by submitting randomly selected paraphrases to
a panel of human judges who were asked whether or not
a paraphrase should be accepted as valid. Judges were first
presented with the candidate paraphrase before being shown
the original sentence and asked to give their opinion.

This survey was conducted on a sample of 4 native or
near-native English speakers. Out of 20 input sentences, 45
generic and 15 informal lexical paraphrases were generated
and marked as valid by our system. The human acceptance
rate of those paraphrases, according to our survey, is shown
in Table 3. As illustrated by the overall lack of consensus,
defining what constitutes a valid paraphrase is perhaps not as
straight-forward as expected, some judges being seemingly
lenient or on the contrary quite harsh. However, even if
we are very lenient and consider paraphrases that have
been accepted by at least one judge as valid, the human
acceptance rate is at best approximately 50%. This implies
that half of the paraphrases generated and marked as valid
by our system are in fact not.

While those underwhelming results can be explained by
the complexity of the task, they appear to be insufficient in
the context of building a test framework. Rather than having
a fully automated process, we therefore propose to shift our
system towards computer-assisted lexical paraphrase dis-
covery. That is, instead of having a pruning threshold above
which candidate paraphrases are automatically considered



TABLE 3. HUMAN ACCEPTANCE RATE OF CANDIDATE PARAPHRASES
CLASSIFIED AS VALID BY OUR SCORING SYSTEM, FOR GENERIC AND

INFORMAL SUBSTITUTIONS.

Generic Informal
Unanimous 7/45 = 16% 3/15 = 20%
Majority 12/45 = 27% 6/15 = 40%
At least One 25/45 = 56% 8/15 = 53%

valid, we output the N best candidates according to our scor-
ing strategies and ask human judges to manually filter those
best candidates to only keep actually valid paraphrases. This
new approach is very likely to help increase both precision
and recall when compared to a fully automatic system, while
still significantly reducing the human workload compared
to fully manual task. With on average approximately 50
paraphrases being produced per input utterance on the data
used for this survey, having a ranked and pre-filtered system
also helps reduce the human workload. In the following of
this document, we use N = 10. However, this computer-
assisted system would still suffer from scalability issues,
not mentioning the previously discussed consensus issue.

5.2. Case Study

In this section we analyse and discuss the use of our
proposed testing framework [19] through a case study. We
focus on evaluating the agent’s ability to correctly identify
the intent of an utterance and do not consider entity recogni-
tion. We conducted four tests using four utterance datasets,
described below.

The agent under test for these experiments, which we
refer to as AirlineBot, has been trained with the Microsoft
LUIS platform8 to handle typical customer queries that may
be addressed to an airline. The different intents recognized
by this agent are BookFlight, CancelFlight, ChangeFlight,
CheckTime, CheckWeather and FindFlight.

To train and test this agent, we conducted an online
public survey in which users were asked to type queries as if
they were addressing a chatbot. We collected 357 utterances,
each corresponding to one of the 6 intents. These utterances
were manually filtered to only keep syntactically correct
instances. This is an important step in the experiment to
evaluate the proposed testing method while controlling the
impact of paraphrase generation quality. We refer to this
data as the survey data.

From the survey data, 10 utterances per intent were
randomly sampled to serve as our training dataset. We
limited the number of utterances to 10 to avoid overfitting
the bot and ensure the same set size for each intent.

We created two paraphrase datasets comprised of para-
phrases generated on the training data. More precisely, the
paraphrases were yielded by generic lexical substitutions
(GS) and informal lexical substitutions9 (IS). We pass both

8. https://www.luis.ai/
9. That is targeted lexical substitutions with the informal register of

speech as target.

TABLE 4. INTENT PRECISION OF AirlineBot AS MEASURED BY
DIFFERENT SETS OF TESTS.

Intent GS IS Test All
BookFlight 0.68 0.48 0.82 0.83
CancelFlight 1 1 0.89 0.95
ChangeFlight 0.98 0.73 1 0.98
CheckTime 0.92 0.43 0.83 0.84
CheckWeather 1 1 1 0.97
FindFlight 1 1 1 0.95

TABLE 5. INTENT RECALL OF AirlineBot AS MEASURED BY DIFFERENT
SETS OF TESTS.

Intent GS IS Test All
BookFlight 1 1 0.90 0.96
CancelFlight 0.55 0.26 0.80 0.89
ChangeFlight 0.80 1 0.90 0.88
CheckTime 0.88 1 1 0.95
CheckWeather 1 1 0.80 0.89
FindFlight 1 1 0.70 0.85

types of paraphrases to the agent and analyse the output in
terms of intent identification.

As these paraphrases were generated based on the train-
ing data, we also wanted to evaluate the performance of
the agent once deployed (i.e. performance on unseen utter-
ances). As such, we excluded the utterances in the training
dataset from the survey data and used a set of 60 randomly
sampled utterances from the filtered survey data (10 per
intent) that we refer to as Test.In an attempt to approximate
the performances of the agent once deployed, we also use
the entire survey data as an additional (unbalanced) test set,
referred to as All. We pass these utterances to the agent and
analyse the output in terms of intent identification.

We present the results of each test in terms of precision
and recall in tables 4 and 5. As we can observe, lexical sub-
stitutions seem able to uncover understanding weaknesses
that would otherwise perhaps be undetected by a set of new
test utterances. As indicated by the generic lexical substi-
tutions set, many utterances requesting a flight cancellation
appear to be understood as a booking request, leading to
both a low recall for CancelFlight and ChangeFlight, and a
low precision for BookFlight. Upon further inspection, the
cause of the problem seems to be the use of words like
“delete” and “invalidate” to refer to cancellation, and words
like “switch”, “shift” or “alter” to refer to modification
requests. Whether or not those words should be accepted as
valid synonyms in this context is up to debate, however the
knowledge of these formulations causing problems can be
useful to improve the performances of the agent, for example
when handling non-native speakers.

Similarly to the generic substitutions, we can see that
informal vocabulary seems to be poorly understood when it
comes to cancellation requests, leading to the very low recall
of CancelFlight and poor precision of BookFlight, Change-
Flight and CheckTime. Upon further inspection, it appears
that the informal use of verbs like “nix”, “scrub” or “axe” to
refer to cancellation are the cause of the misunderstanding.

We now propose to analyze this conversational agent



TABLE 6. ROBUSTNESS PER INTENT OF AirlineBot TO DIFFERENT
KINDS OF LANGUAGE VARIATIONS.

Intent GS’ IS’
BookFlight 1 0.78
CancelFlight 0.72 0.36
ChangeFlight 0.76 0.75
CheckTime 0.97 1
CheckWeather 0.84 0.89
FindFlight 1 1

TABLE 7. TOTAL NUMBER OF TRAINING UTTERANCES PER INTENT
AND ENRICHED TRAINING DATA.

Intent GS+IS Additional
BookFlight 50 25
CancelFlight 90 25
ChangeFlight 72 25
CheckTime 38 25
CheckWeather 73 25
FindFlight 37 25

using the proposed robustness metric. Assuming all training
utterances are correctly classified by the final agent, the
recall on the training paraphrases and the robustness to the
training utterances actually correspond to the same metric.
We therefore perform this analysis by generating adversarial
examples based on the previously sampled test data. In
order to assess this robustness, we only keep the already
correctly classified utterances that are in turn paraphrased
using generic lexical substitutions (GS’) and informal lexical
substitutions (IS’).The robustness results for each intent are
presented in Table 6.

As previously highlighted by our training paraphrases,
we can notice the same understanding difficulties for the
CancelFlight and ChangeFlight intents, and for similar rea-
sons.

In conclusion, testing a conversational agent with para-
phrases can potentially help uncover weaknesses that would
otherwise possibly go unnoticed with regular testing data.
This observation appears moreover to hold true for para-
phrases generated from both training and test data.

5.3. Enriching the Training Data

In this section we investigate the use of paraphrases
to enrich agent training data. We compare three sets of
training data: (a) the original dataset as used in the previous
section, (b) the original dataset enriched with the paraphrase
datasets described in the previous section which we refer
to as GS+IS, and (c) the original dataset enriched with 15
additional utterances per intent sampled from the survey data
to which we refer to as additional.The sizes of the new
training sets are shown in Table 7.

We first analyze the impact of the new training datasets
on the performance of the agent to detect any potential
negative impact. In order to do so, we compare the precision
and recall on all the utterances from the survey data that
are not used as training data in any of the aforementioned
sets. We refer to this test set as All Filtered. As shown in

TABLE 8. PRECISION OF AirlineBot ON THE All Filtered TEST DATA,
SETS PER INTENT AND TRAINING DATA.

Intent Original Additional GS+IS
BookFlight 0.68 0.68 0.63
CancelFlight 0.90 0.82 0.78
ChangeFlight 0.99 1 0.92
CheckTime 0.63 0.69 0.57
CheckWeather 0.88 1 1
FindFlight 0.89 0.89 0.82

TABLE 9. RECALL OF AirlineBot ON THE All Filtered TEST DATA, SETS
PER INTENT AND TRAINING DATA.

Intent Original Additional GS+IS
BookFlight 0.90 0.90 0.90
CancelFlight 0.86 0.86 0.86
ChangeFlight 0.87 0.88 0.85
CheckTime 0.83 0.92 0.67
CheckWeather 0.70 0.90 0.70
FindFlight 0.76 0.81 0.67

tables 8 and 9, when compared to its original performances
and trained on GS+IS, our agent seems to be only slightly
negatively impacted, with the exception of the CheckTime
intent which sees a bigger dip in both precision and recall.
When compared to the performances yielded by an agent
trained on the additional data, we can however see a bigger
difference in terms of recall for the CheckWeather and
FindFlight intents. Those results seem to indicate that our
enriched training data leads neither to an improvement nor
a significant decrease in performances for this test dataset.

We compare the robustness of the agent for the different
sets of training data (see Table 10). We can observe that
some issues we previously identified can indeed be corrected
when using enriched training data, leading to an improved
robustness on some intents, such as CancelFlight for infor-
mal substitutions or ChangeFlight for generic substitutions.
It appears, however, that while simply using more training
data to solve those specific understanding issues can lead to
a slight robustness improvement, such as for CancelFlight,
using enriched training data seems to be the most efficient
way to address cases that have been identified as problem-
atic.

While we are not able to witness any improvements
when testing our agent on the generic utterances present
in All Filtered, we do not witness any major decrease in
performances either. This could suggest that our agent is
more robust to the phenomenons not explicitly encountered
in the available data, while mostly retaining the overall same
performances for the more commonly encountered cases.
In a nutshell, training paraphrases should perhaps not be
considered as an alternative to more training data, but rather
as a complimentary tool that helps achieve better coverage
when it is sparse.

6. Conclusion

This work demonstrates the multiple ways paraphrases
can be of use when trying to build conversational agents that



TABLE 10. ROBUSTNESS OF AirlineBot PER INTENT, TRAINING DATA
AND LANGUAGE VARIATION.

Training Data GS’ IS’
BookFlight

Original 1 0.78
Additional 0.91 0.78
Enriched with GS+IS 0.79 0.89

CancelFlight
Original 0.72 0.36
Additional 0.87 0.52
Enriched with GS+IS 0.91 0.95

ChangeFlight
Original 0.76 0.75
Additional 0.57 0.75
Enriched with GS+IS 0.96 0.75

CheckTime
Original 0.97 1
Additional 1 1
Enriched with GS+IS 1 1

CheckWeather
Original 0.84 0.89
Additional 0.88 0.89
Enriched with GS+IS 1 1

FindFlight
Original 1 1
Additional 1 0.86
Enriched with GS+IS 1 1

are robust to language variation. It appears that paraphrases
can be a valuable source of knowledge when trying to build
robust conversational agents, especially when data is sparse.

As we illustrated with our testing framework, we are
able to uncover an agent’s understanding weaknesses thanks
to paraphrases generated from both its testing and training
data. While paraphrases generated from training utterances
can be useful to uncover understanding issues caused by the
vocabulary choice, it seems nonetheless more appropriate to
generate paraphrases from independent testing data, as we
are not only able to detect the same shortcomings as before
but also new ones caused by writing errors. Moreover, we
also showed that enriching the training data of an agent with
paraphrases could help cope with the previously identified
issues, with seemingly no major negative impact in terms
of precision and recall on the same test data. This suggests
that paraphrases should perhaps not be considered as an
alternative to more data, but as a complimentary tool that
can help increase coverage of some phenomenons.
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