
What Do CS1 Syllabi Reveal About Our Expectations of
Introductory Programming Students?

Brett A. Becker
University College Dublin
Belfield, Dublin 4, Ireland

brett.becker@ucd.ie

Thomas Fitzpatrick
University College Dublin
Belfield, Dublin 4, Ireland

thomas.fitzpatrick.1@ucdconnect.ie

ABSTRACT
A well-received ITiCSE 2016 paper challenged the orthodox view
that programming is hard to learn. It contended that CS1 educators’
expectations are too high, which can result in poor teaching and
learning, and could impact negatively on diversity and equity. The
author posed a challenge to the community to collect research-
based evidence of what novice programmers can achieve, and use
evidence to derive realistic expectations for achievement.

We argue that before rising to this challenge we must deter-
mine:What exactly do educators expect of introductory programming
students? This paper presents our efforts toward answering this
question. We manually curated hundreds of CS1 syllabi, providing
a fresh perspective of expectation in CS1 courses. We analyzed
learning outcomes and their concepts, in addition to languages
utilized and other useful CS1 design and delivery information.

This work contributes to a current picture of what is expected
of introductory programming students, and provides an interactive
online tool linked to all collected syllabi and containing all learning
outcomes and other associated information. We hope this will aid
the community in deciding whether or not we have unrealistic
expectations of our CS1 students and if so, our contributions provide
a starting point for the community to adjust them.

CCS CONCEPTS

• Social and professional topics→ Computer science educa-

tion; CS1.

KEYWORDS
CS1; CS1 languages; curriculum design; introductory programming;
language choice; learning objectives; learning outcomes; novice
programmers; syllabi; syllabus; teaching languages

ACM Reference Format:

Brett A. Becker and Thomas Fitzpatrick. 2019. What Do CS1 Syllabi Re-
veal About Our Expectations of Introductory Programming Students?. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Edu-
cation (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3287324.3287485

1 INTRODUCTION
A central focus of computing education research is the teaching
and learning of a first programming language [21]. Despite this,
a well-cited ITiCSE working group found that “Three decades of
active research on the teaching of introductory programming has
had limited effect on classroom practice” [19, p. 204]. It is also fre-
quently stated that programming is hard to learn [1, 21], a claim
that regularly goes back to the McCracken working group that
found “many students do not know how to program at the conclu-
sion of their introductory courses” [15, p. 125]. The reasons for this
are believed to be multifaceted, and that difficulties in learning to
program contribute to low motivation and high dropout rates [2].

At ITiCSE 2016, Andrew Luxton-Reilly presented a paper titled
‘Learning to Program is Easy’ [12]. The paper was well-received,
earning a commendation from the program committee, and quickly
generating discussion in the community [8]. Luxton-Reilly’s paper
challenged the orthodox view that programming is hard to learn,
and claimed that this view results in uncritical teaching practices,
poor student learning, and may also impact negatively on diversity
and equity in computing. The paper also presented substantial evi-
dence that this view has deeply permeated the computing education
community’s culture, literature and psyche. Luxton-Reilly claimed
that computing educators make introductory courses difficult by
establishing unrealistic expectations for novice programmers. He
proposed that by revisiting the expected norms for introductory pro-
gramming we may be able to substantially improve the learning of
novice programmers, address negative impressions of disciplinary
practices, and create a more equitable environment.

Specifically, Luxton-Reilly showed that the literature on failure
rates and novice programmer ability represents a substantial body
of evidence supporting the claim that students are not able to pro-
gram at the level expected by instructors. He argued that it is not
clear that this means that programming is inherently difficult. In-
stead he proposed that the computing education community should
view our learning outcomes for CS1 courses as being unrealistic.
He concluded with a challenge to the community: Collect research-
based evidence of what novice programmers can achieve in CS1, and
use evidence to derive realistic expectations for achievement.

Intrigued by this challenge, we realized that addressing it would
most likely be complex and time consuming. It would likely require
at least one large-scale, multi-institutional, multi-national study,
involving significant resources and time-frames. We argue that
before rising to this challenge, the community must be able to
answer the question: What exactly do we expect our introductory
programming students to achieve? This paper presents our efforts
toward answering this question. We view this as a first step towards
meeting Luxton-Reilly’s challenge.

https://doi.org/10.1145/3287324.3287485
https://doi.org/10.1145/3287324.3287485


1.1 Overview and Motivating Questions
We manually curated CS1 syllabi by searching the websites of all
916 institutions making up the 2016-2017 QS World University
Rankings®1. We analyzed these syllabi, seeking to answer our ques-
tions below. We also provide a web front-end to our database in-
cluding learning outcome information and links to syllabi, and offer
it to the computing education community as a tool, as described
in Section 5. To move toward answering our overarching question
What exactly do we expect our introductory programming students
to achieve? we formulated four questions specific to CS1 learning
outcomes, as these are central to Luxton-Reilly’s challenge (Q1-4).
To dive deeper into current CS1 teaching practices we formulated
two additional questions on languages and syllabi (Q5-6):

Q1: What percentage of CS1 courses have explicit learning
outcomes?

Q2: What concepts do explicit CS1 learning outcomes cover?

Q3: How do These Concepts Align With CS2013?

Q4: What do explicit CS1 learning outcomes look like?

Q5: What is the current CS1 teaching language distribution?

Q6:What are the most common computing terms found in CS1
syllabi?

In forming these questions, we aimed to provide information from
three vantage-points:

(1) That of other educators, by presenting information such
as their explicit CS1 learning outcomes word for word, for
further analysis/use by the community.

(2) That of our tool, by presenting derived information such as
a list of concepts included in learning outcomes.

(3) A somewhat agnostic view, by including information such
as full-syllabus word frequency counts.

Our contributions are the beginnings of a current, multi-faceted,
picture of what is expected of CS1 students, and an online tool
where educators can utilize and contribute to our dataset. It is
our intention that these results and the tool that we provide will
better position the community to decide if we, as a community,
have unrealistic expectations of our CS1 students, as proposed by
Luxton-Reilly, and to move towards addressing his challenge.

Before continuing, we comment on terminology. We use the
term learning outcome to mean an explicit statement expressing
something that students are expected to know, or be able to do,
upon successful completion of a course. These are sometimes called
“learning objectives”. We do not include as learning outcomes any
consequences of learning such as student grades. It is important
to recognize that it is through learning outcomes that we tell our
students what we expect of them. This is important, as what we
tell students can be adjusted, as Luxton-Reilly noted.

This paper is organized as follows. In Section 2 we review related
work. In Section 3 we present our methodology, followed by our
results and discussions in Section 4. In Section 5 we provide an
overview of the tool that presents our data. We discuss threats to
validity in Section 6 before concluding in Section 7.
1www.topuniversities.com/university-rankings/world-university-rankings/2016

2 RELATEDWORK
What is taught in CS1 has been the subject of numerous studies
over several decades [3, 13]. Although many computing degrees
have similar structures, and CS1 often fills a common place in them,
there are many approaches. Reflecting this, CS2013 [11] discusses
various trade-offs between design decisions in first year courses, but
is generally non-prescriptive with respect to first year curricula [12].
Additionally, most CS1 research does not focus on explicit learning
outcomes, instead focusing on course content, material, assessment,
and other practical aspects of delivery. Thus, most of these studies
do not directly investigate what is expected of CS1 students.

In their 2001 ITiCSE working group, McCracken et al. [15] (men-
tioned in Section 1) developed a set of learning outcomes that
described the expected level of skill for students at the end of their
first year of study. Students were expected to be able to complete
the following steps: (1) Abstract the problem from its description;
(2) Generate sub-problems; (3) Transform sub-problems into sub-
solutions; (4) Re-compose the sub-solutions into aworking program;
and (5) Evaluate and iterate. These were formulated in response to
the question “What should be assessed [in CS1]” [15, p. 126]. The
authors state that this is an ideal and generalized situation, and do
note some problems with their abstraction.

In 2006, Schulte and Bennedsen sought to create a general, world-
wide picture of teachers’ opinions about what should be taught in
introductory programming courses [22]. They specifically studied
what educators believe to be important to teach, what they actu-
ally teach, and what they believe students find most difficult. They
culled 28 topics from the literature and used these in a survey where
instructors were asked to rate the difficulty and relevance of each.

Goldman et al. [6] constructed a list of 32 CS1 topics in 2010,
using a structured multi-step (Delphi) process that uses a group of
experts to achieve a consensus opinion. Specifically, they sought
a set of key topics for which if a student fails to demonstrate a
conceptual understanding of, then confidence could be given to the
conclusion that the student had not mastered the course content.

In 2011, Petersen et al. [20] noted that final exams are a use-
ful proxy for deriving curricular expectations and determining
what instructors understand to be important. They presented the
analysis of nine experienced CS1 instructors who reviewed final
examinations from a variety of North American institutions. Their
instrument drew concepts from [22] and [6] discussed above. Their
final instrument contained 28 CS1 topics.

Around the same time, Elliott Tew and Guzdial were working
towards developing a validated assessment of CS1 topics known as
the FCS1 (Foundational CS1) assessment instrument [26]. In [25]
they sought to identify concepts that a wide variety of introductory
courses and approaches had in common. They chose textbooks as
the external artifact representing the content of a course, because
they deemed other measures such as course syllabi or assignments
as not feasible to analyze at a large scale. They conducted a doc-
ument analysis of the table of contents of the two most widely
adopted CS1 textbooks from each of the six major publishers of
computing textbooks (a total of 12 books). Using a bottom-up ap-
proach, they aggregated topics listed in the tables of contents, not-
ing which concepts were covered by which texts. However their

www.topuniversities.com/university-rankings/world-university-rankings/2016


list became unwieldy with over 400 concepts, ranging from low-
level topics such as byte code and computer architecture details to
advanced topics traditionally covered later in the curriculum. They
used the framework of the Computer Science volume of Computing
Curricula 2001 [17] to revise their initial list of topics, resulting in
188 topics. They further refined this list by analyzing the content
of canonical texts representing each of the common introductory
approaches (objects-first, functional-first, and imperative-first). A
concept was included in this step of revision if it was covered by all
texts, or excluded by any one of the canonical texts. This resulted in
a final list of 29 fundamental computing concepts common across
languages and pedagogical approaches. As this list was only one
step toward developing an assessment instrument, they further
refined it to arrive at a list of 10 constructs amenable to testing.

The studiesmentioned above involve investigatingwhat is taught
in CS1, commonly involving constructing CS1 concept lists, and
often with an extra dimension such as the difficulty students have
with the concepts. Also related to the present work at a different
angle is the CITIDEL (Computing and Information Technology
Interactive Digital Educational Library) Syllabus Collection [27],
now a part of Ensemble [10]. This work aimed to provide a syllabus
information tool to the computer science education community,
which is also an aim of the present work.

The CITIDEL Syllabus Collection currently contains 5,083 com-
puting syllabi, organized into 14 subjects. The subject ‘Program-
ming Fundamentals’ has 406 syllabi from 67 institutions. An inspec-
tion of filenames revealed syllabi dating as far back as 1994, with
possibly older syllabi also included. We decided that we wanted to
compile a current collection representing more institutions, result-
ing in our present approach. Nonetheless we completed a prelimi-
nary analysis of the CITIDEL syllabi and plan on using this for a
historic comparison with the collection we curated.

3 METHODOLOGY
Our methodology was shaped by several factors. First, we aim to
provide a foundation for the community to answer the question
What exactly do we expect our introductory programming students
to achieve? We view this as a first step toward enabling the com-
munity to move towards addressing Luxton-Reilly’s challenge of
collecting research-based evidence of what novice programmers
can achieve in CS1, and using evidence to derive realistic expec-
tations for achievement. We felt that the core of this foundation
should be explicit which led us to the decision to examine learning
outcomes from as many up-to-date CS1 syllabi as possible. In this
way we are getting to the root of what we as a community are
expecting of our CS1 students. In addition to the analysis presented
in this paper, we make these learning outcomes available word for
word, in one place, as described in Section 5.

Second, as reviewed earlier, many efforts to identify CS1 con-
cepts focus on what concepts are most important, or most difficult.
This is problematic, as noted by [6, p. 5:9]: “Finding consensus on
the most important and difficult concepts for a CS1 course is inher-
ently challenging given the diversity of approaches in languages ...,
pedagogical paradigms ..., and programming environments used.
These factors influence the perceptions of the importance and diffi-
culty of the topics.” Thus we did not want to focus on ‘important’ or

‘difficult’ learning outcomes, but a large and representative sample
of all types of CS1 learning outcomes.

Third, we noted the difficulty identified by Elliott Tew and Guz-
dial in analyzing course syllabi on a large scale. Facing this difficulty,
we decided to curate the learning outcomes of CS1 courses on a
meaningful scale, by hand. We view learning outcomes as a fun-
damental starting point to answer our overarching question. We
believe that although it may be possible to attempt to answer this
question by analyzing proxy instruments such as assessments, these
would need to validly assess the learning outcomes, which is not a
guarantee. Additionally, computing education lags other discipline-
based education research in the number and range of validated
assessments available to the research community [18]. Further, it
has been suggested that the assessments we currently use to eval-
uate learning are simply too difficult in the first place [12], which
brings into question their suitability for purposes such as ours.

3.1 Syllabus and Learning Outcome Curation
We began by randomizing the 916 institutions making up the
QS World University Rankings® 2016-2017. We then procedurally
searched for CS1 syllabi by following the below steps:

(1) Navigate to institution website
(2) Navigate to Computer Science / Information Technology /

Computer Engineering faculty or program page
(3) Search module lists or lists of major requirements for likely

CS1 courses - allowing for multiple courses per institution
(4) If at this point a syllabus was not found, we often had a

course name (but it did not link to a syllabus). We then
performed a Google search for <course title + university
name + “syllabus”>.

We populated a database with the details of these syllabi in-
cluding: URL, learning outcomes, if the learning outcomes were
explicitly stated, programming language, prerequisites, and other
details. If the learning outcomes were explicitly stated, we saved
these (verbatim) for later analysis. By explicitly stated, we mean if
the syllabus had a set of statements of student expectations, often
under a heading of ‘learning outcomes’, ‘learning objectives’ or
similar, often appearing before any other material such as ‘course
content’, etc. These frequently begin with wording such as ‘At the
end of this course the student will be able to...’ or similar.

We used Guo’s methodology [7] and Hertz [9] as guides in iden-
tifying CS1 courses. Where a course slightly deviated from these
requirements (for instance having prerequisites), or if it was possi-
bly a CS2 course) we tagged it so that in the future these courses
could be removed from analysis if desired.

3.2 Learning Outcome Concepts
We manually analyzed the learning outcome statements to derive
a list of concepts they cover. For instance if a learning outcome
mentioned recursion, we added recursion to our list of learning
outcome concepts. If we later found another course that mentioned
recursion in a learning outcome, we marked that syllabus as such,
and updated our total ‘recursion count’. For syllabi that did not
specifically include learning outcomes, we used the ‘course content’
or similar sections to continue populating our concept list. We also
marked that syllabus entry with the tag ‘!Explicit’ indicating that



there were no explicit learning outcomes, and that we ‘scraped’
concepts from other syllabus content. This allows these syllabi to be
excluded from future analysis when required, for instance, allowing
researchers and educators to use our tool to only analyze those
syllabi that contained explicit learning outcomes.

We decided to generate a concept list instead of using an existing
one from the literature as we wanted the resulting list to represent
the concepts explicitly involved in what educators expect of CS1
students, without bias inherent in lists derived from assessments,
or those that focus on ‘important’/‘difficult’ concepts, etc.

4 RESULTS AND DISCUSSION
From the 916 institutional websites we searched, we found 234
CS1 syllabi from 207 institutions. Table 1 shows the 30 countries
represented in this collection and the number of syllabi, institutions,
and the percent of all syllabi.

Table 1: Number of syllabi (#S) and institutions (#I ) per coun-
try, and percent of total syllabi (%T ), n = 234.

Country #S #I %T Country #S #I %T
USA 118 114 50 India 4 4 2
England 33 31 14 South Africa 3 3 1
Australia 15 15 6 Turkey 3 3 1
Scotland 9 8 4 Portugal 2 1 1
Ireland 8 5 3 Sweden 2 2 1
Canada 7 7 3 Netherlands 2 2 1
New Zealand 6 5 3 Lebanon 2 2 1
Wales 5 5 2
China, Czech Republic, Denmark, Egypt, Ghana, Hungary, Jordan,
Kenya, Pakistan, Philippines, Qatar, Singapore, South Korea, Switzer-
land and United Arab Emirates have 1 syllabus each (<1%).

We note that this seems biased towards Anglophone countries.
We did expect some bias, particularly aswe can only process English-
language material. However the bias seems to not be coming so
much from the list we searched, but possibly fromwhat we are look-
ing for. In total our list had universities from 81 countries, 72 of them
not English speaking, representing 65 percent of institutions. How-
ever Table 1 shows that most syllabi found are from Anglophone
countries. Nonetheless, we note that almost all websites we vis-
ited were in English, even those of institutions in non-Anglophone
countries. Additionally we only saw a handful of what we believe
might be syllabi in languages other than English. It is also possible
that other educational systems are not strongly based on learning
outcomes as countries like the USA, and EU countries. As our tool is
available for researchers to contribute to (see Section 5), we would
welcome syllabi from a more diverse set of countries.

4.1 Q1-4: Explicit Learning Outcomes in CS1
4.1.1 Q1: What percentage of CS1 courses have explicit learning
outcomes? 154 (65.8%) of the 234 CS1 syllabi we curated have ex-
plicitly stated learning outcome or learning objective statements.
We believe this is important, as explicit learning outcomes provide
a direct mechanism to gauge the expectations we have for students,
and are therefore central to Luxton-Reilly’s challenge.

4.1.2 Q2: What concepts do explicit CS1 learning outcomes cover?
Table 2 shows the learning outcome concepts we identified along
with the percentage of: explicit learning outcomes containing these
concepts (column Explicit); syllabi without explicit learning out-
comes that contain these concepts elsewhere in the syllabus (column
!Explicit); and percentage of syllabi containing each concept either
in explicit learning outcomes or otherwise (column All).

Table 2:Most frequent syllabus concepts. ‘Explicit’ is the per-
centage of CS1 courses with explicit learning outcomes ad-
dressing the given concept. ‘!Explicit’ is the percentage of
CS1 courses without explicit learning outcomes where the
given concept was featured somewhere else in the syllabus.
‘All’ is the percentage of all CS1 courses where the given con-
cept appeared either in an explicit learning outcome, or else-
where. nExplicit = 154,n!Explicit = 80,nAll = 234. Concepts
are in descending order of column ‘Explicit’.

Concept Percentage of Courses
Explicit !Explicit All

Testing & debugging 56 28 45
Writing programs 55 30 46
Selection statements (if/else,etc.) 46 43 44
Problem solving (including
computational thinking terms)

45 47 45

Arrays, lists, vectors, etc. 41 37 39
Basic OOP 40 32 36
Variables, assignment, arithmetic
operators, declarations, data types

40 35 38

Functions, methods, procedures 38 25 33
Repetition & loops 37 29 34
Designing algorithms 29 37 31
Classes & objects 25 18 22
File handling & I/O 23 28 24
Documentation 21 11 17
Recursion 20 16 18
Data structures (general or
specific - e.g. stacks)

19 30 23

The following concepts occur in < 19% of Explicit LOs, < 16%
of !Explicit, and < 16% of All (presented in decreasing order of
column Explicit LOs): Program design methodology & style, Abstrac-
tion, How computers work & history of computing, Inheritance, IDE
use, Strings, Searching algorithms, program comprehension, Sorting
algorithms, Exception handling, “Fundamentals of programming”, Eval-
uating time & space complexity, Basic graphics & GUIs, Teamwork
skills & communication; Encapsulation; Polymorphism; Pointers; Ab-
stract classes & interfaces; Scope; Memory allocation; Tracing program
execution; Detecting syntax errors; Detecting semantic errors; Informa-
tion representation; Command prompt use; UML; Code manipulation;
Functional programming; Web development; Pseudocode; Induction;
Security; IT & Data; Scientific skills; Version control; Boolean logic;
Multithreading & concurrency

.

Many interesting observations and discussions could come from
Table 2, and a full discussion is limited here by space and partici-
pants. This is one of the reasons that we decided to make our data
available, so that others can perform their own analyses. First, it
should be noted that Table 2 is not the answer to Q2 – it is one
of several possible, many of which can be found with the tool we



have made available. Second, Table 2 provides evidence that CS1
syllabi that include explicit learning outcomes may be quite differ-
ent to those that don’t. This is an interesting topic for further study.
Finally, we note the high rank of ‘testing & debugging’ (which
we decided to group together) which occurs more frequently than
‘writing programs’. We are confident that when ‘debugging’ and
‘testing’ are considered separately, the most frequent concept would
be quite fittingly, ‘writing programs’. This is something that a user
of our website could determine readily.

4.1.3 Q3: How do These Concepts Align With CS2013? A full com-
parison of the results of this study and CS2013 [11] is a direction
for future work, but we wondered how many of the concepts in
Table 2 are covered by the Software Development Fundamentals
(SDF) Knowledge Area (KA) in CS2013 [11], and specifically the
Knowledge Unit (KU) Fundamental Programming Concepts (FPC) in
that KA. Eight of the top 15 concepts presented in Table 2 are cov-
ered by the FPC KU, and 13 are covered when including the other
three KUs within the SDF KA (with some overlap). The only two
concepts not covered by SDF are Basic OOP and Classes & objects,
which are covered by the KU Object-Oriented Programming under
the KA Programming Languages. This is not surprising, given the
fact that FPC “identifies only those concepts that are common to
all programming paradigms” [11, p. 167].

4.1.4 Q4: What do Current CS1 Learning Outcomes Look Like? Of
the 154 CS1 syllabi with explicit learning outcomes, we found a total
of 1,029 learning outcome statements, an average of 6.68 learning
outcomes per syllabus. All of these learning outcomes are available,
word for word, on the website we describe in Section 5.

4.2 Q5: Current CS1 Language Distribution
Our fifth question was:What is the current CS1 teaching language
distribution? Table 3 shows the languages we encountered as sole
teaching languages (152 syllabi). To compare our list to [23] (a large
2012 survey of teaching languages) we omitted the 65 syllabi with
no language specified (as [23] utilized more information than just
syllabi, at times directly contacting instructors, they recorded a
much lower number of no-language courses). To keep the com-
parison simple we also omitted the 17 syllabi reporting multiple
languages. By this count, Java is by a good margin the most fre-
quent CS1 language, used in 74 (49%) of the 152 syllabi. The second
most frequent is Python at 36 (24%). C++ comes next at 30 (20%)
followed by C at 8 (5%). Neither column adds to 100% as we do not
report several languages with < 5% share. These results broadly
align with those of Simon et al. [24] who conducted parallel surveys
of introductory programming courses in Australasia [14] and the
UK [16] (both in 2016), with a view to examining the programming
languages being used.

These studies, compared to those we discuss now, provide evi-
dence that the distribution of the top CS1 languages hasn’t changed
too dramatically in 20 years. In 2007, Pears et al. [19] noted that
Java, C, and C++ ‘topped the list’. This was also the case for surveys
conducted in 1998, 2001, 2003, and 2005 (see [19]). Also in 2007, Gi-
angrande corroborated the dominance of Java, C, and C++, notably
not mentioning Python at all [5].

The most obvious shift has been the rise of Python, evidenced
by comparison with Siegfried et al. [23], whose 2012 list of CS1
languages comprised of data from 404 US institutions (356 reporting
single languages). Unsurprisingly, the biggest changes are Java
(down from 55 to 49%) and Python (up from 12 to 24%). This shows
that the rise of Python has likely come at the expense of Java, and to
a lesser degree C++. Nonetheless, Python’s rise was not as dramatic
as anticipated given that in 2014 Guo reported that Python had
overtaken Java as the teaching language of choice at the top CS
schools in the United States [7]. This could be explained to some
extent by the fact that Guo only examined the top 39 PhD-granting
institutions, and considered CS0 courses as well as CS1.

For a comprehensive review of publications on teaching lan-
guages, the reader is guided to [13], a 2018 review of the introduc-
tory programming literature that processed more than 5,000 papers.

Table 3: Current CS1 teaching language distribution. n = 152.
The final column is data from 2012 [23], n = 356.

Language This study (2016-17 data) From [23] (2012)
Number of Courses % %

Java 74 49 55
Python 36 24 12
C++ 30 20 23
C 8 5 5
Haskell, JavaScript and R appeared ≤ 1% in both studies. We do not
report languages appearing in [23] but not in our data such as Alice.

4.3 Q6: CS1 Syllabus Terms
Our final question was:What are the most common computing terms
in CS1 syllabi? We analyzed the frequency of all words in each of
the HTML syllabi (n = 185). We are currently working on PDF
and other file types (n = 49). Table 4 shows the 14 most frequent
computing terms overall. For the sake of presentation, and as an
example of the kind of analysis our tool enables, we excluded what
we deemed to be non-computing terms.

Table 4: Most frequent computing terms in 185 CS1 syllabi.

Term Count Term Count
Programming 1,384 Class/es 275
Design 627 Assignment 227
Data 520 Object/s 207
Algorithm/ic/s 410 Web 196
Test/ing/s 356 Control 181
Method/s 330 Array/s 175
Function/s 317 Security 175

We intended this data to be agnostic, but for a meaningful analy-
sis we realized that certain termswere problematic and needed some
human intervention. This started with removing non-computing
words. Other more specific words were also problematic. For in-
stance, the third most frequent term in Table 4 is Data, but many
of these occurrences probably came from the two-word term Data
Type/s. Similarly, the ninth most frequent word is Assignment –



some of these probably come from the term Assignment operator,
but many could refer to assessment tasks. On the other hand we
excluded the plural word Assignments which came up 407 times,
because this term quite likely refers to assessment tasks almost
exclusively. Nonetheless, these word frequency lists could be re-
generated by others with a different methodology if desired as the
sources are all available on our website. This, for example, would
allow a researcher to quickly locate the syllabi that contain a spe-
cific word or combination of words, allowing them to query what
languages these courses use, what their learning outcomes are, etc.

5 A TOOL FOR THE COMMUNITY
We have made available a tool at csed.ucd.ie/sigcse2019/ contain-
ing all of the data used to generate our results. It allows all 234
syllabi we curated to be searched and sorted by language, location,
if the learning outcomes are explicit, learning outcome concepts
(including their counts from matching linked syllabi), and more.
Researchers and educators are encouraged to add their own syllabi
to the collection through a submissions page. Future enhancements
will be geared towards making it more useful for the computing
education community, and feedback is welcomed.

As a very brief example of the kind of analysis that can be done
with this tool, Table 5 shows the countries (with 4 or more syllabi)
with the highest percentages of syllabi containing explicit learning
outcomes. The fact that European countries rank so highly is most
likely due to the fact that explicit learning outcomes are an integral
part of the Bologna Process [4].

Table 5: Countries with 4 or more syllabi with the highest
percentages of explicit learning outcomes (%ELOs), n = 234.

Country %ELOs Country %ELOs Country %ELOs
Ireland 100 Scotland 89 Canada 71
New Zealand 100 England 82 USA 58
Wales 100 Australia 73 India 25

6 THREATS TO VALIDITY
Our results have some threats to their validity. First, all of our
syllabi are from institutions on the 2016/2017 QS World University
Rankings®. Using rankings for similar purposes has been done by
other studies (e.g. [7]), but any biases in the rankings may bias the
results. We know that the ranking we used biases results towards
research universities. We also noted a likely language bias discussed
in Section 4. We chose to use this ranking as it included nearly
1,000 institutions which we felt fit the time and resources we had
available. Future work directions include adding institutions from
other rankings and sources. We also hope that members of the
community avail of the opportunity to add syllabi to the collection.

We could have missed some courses. We aimed for a processing
time of 5minutes per website, amounting to one researcher working
full-time for over three weeks on data collection only. We also could
have incorrectly included non-CS1 courses although we found
Guo’s methodology [7] and Hertz’s description [9] helpful.

The learning outcome concepts presented in Section 4.1 are
affected by our concept of ‘explicit’, and our methodology in de-
veloping our concept list. However, as all of our data is available,

it would be easy for these results to be replicated or the query
modified to suit individual requirements. Our results on language
frequency in Section 4.2 are similarly affected by the sample of
syllabi. Additionally, the syllabus word frequency results are, as
discussed in section 4.3, subject to some judgment calls—for exam-
ple in dealing with singular and plural versions of the same word.
However as above, these results could be easily reproduced, or the
queries modified. Finally, it is also important to recognize that as
we are looking at learning outcomes, we are analyzing what we
tell our students we expect of them. This is important, as what we
tell students can be adjusted, but also, what we tell students of our
expectations may not correlate perfectly with what we actually
expect.

Additionally, we acknowledge that our analysis of the curated
learning outcomes focus on concepts, and not the depth to which
these concepts are covered. We note however that an analysis of
the depth to which these concepts are covered is possible as we
provide the full wording of all learning outcomes on our website, in
addition to links to the original syllabi. Finally, we do not address
the possibility of reinforcement bias among syllabi. For example,
it is probable that many syllabi are designed either by consulting
model curricula or are inspired from other, more established syllabi
at other universities. Such a possibility aligns with Luxton-Reilly’s
claim that certain views have deeply permeated the computing
education community’s culture, literature and psyche.

7 CONCLUSIONS AND FUTUREWORK
We presented a tool that allows researchers to access hundreds
of current CS1 syllabi and associated data. We also present initial
insights based on these syllabi, focusing on CS1 learning outcomes,
languages, and syllabus keywords. These results paint a picture of
what we expect CS1 students to achieve. We view this as a first
step in allowing the community to answer the question:What ex-
actly do we expect our introductory programming students to achieve?
Answering this question, in turn, will put the community in a bet-
ter position to rise to the challenge proposed by Luxton-Reilly
in 2016 [12]: Collect research-based evidence of what novice pro-
grammers can achieve in CS1, and use evidence to derive realistic
expectations for achievement.

Future work involves adding more syllabi (particularly from
more diverse countries) to the collection, and conducting further
analysis on the data the community now has at its fingertips. As a
public tool, this work could be useful for those who are conducting
CS1 research, and for educators who are designing or modifying
courses.

Finally, we note that there is limited evidence on what we ex-
pect of our students on a large scale. This work demonstrates that
gaining a representative picture of what we expect of our students
fraught with biases and details that make gathering such evidence
difficult. Nonetheless we think that the information we provide
may be useful to the community.

8 ACKNOWLEDGEMENTS
The authors would like to thank the SIGCSE Board for supporting
this work with a SIGCSE Special Project Grant (December, 2016).

csed.ucd.ie/sigcse2019/


REFERENCES
[1] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle

Goslin, and Catherine Mooney. 2016. Effective Compiler Error Message Enhance-
ment for Novice Programming Students. Computer Science Education 26, 2-3
(2016), 148–175. https://doi.org/10.1080/08993408.2016.1225464

[2] Brett A. Becker, CormacMurray, Tianyi Tao, Changheng Song, Robert McCartney,
and Kate Sanders. 2018. Fix the First, Ignore the Rest: Dealing with Multiple
Compiler Error Messages. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education (SIGCSE ’18). ACM, New York, NY, USA, 634–639.
https://doi.org/10.1145/3159450.3159453

[3] Brett A. Becker and Keith Quille. 2019. 50 Years of CS1 at SIGCSE: A Review of
the Evolution of Introductory Programming Education Research. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19). ACM, New York, NY, USA. https://doi.org/10.1145/3287324.3287432 in
press.

[4] Ursula Fuller, Arnold Pears, June Amillo, Chris Avram, and Linda Mannila.
2006. A Computing Perspective on the Bologna Process. In Working Group
Reports on ITiCSE on Innovation and Technology in Computer Science Education
(ITiCSE-WGR ’06). ACM, New York, NY, USA, 115–131. https://doi.org/10.1145/
1189215.1189181

[5] Ernie Giangrande, Jr. 2007. CS1 Programming Language Options. J. Com-
put. Sci. Coll. 22, 3 (Jan. 2007), 153–160. http://dl.acm.org/citation.cfm?id=
1181849.1181881

[6] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey L. Herman, Lisa Kaczmarczyk,
Michael C. Loui, and Craig Zilles. 2010. Setting the Scope of Concept Inventories
for Introductory Computing Subjects. Trans. Comput. Educ. 10, 2, Article 5 (June
2010), 29 pages. https://doi.org/10.1145/1789934.1789935

[7] Philip Guo. 2014. Python is Now the Most Popular Introductory Teaching Lan-
guage at Top US Universities. Communications of the ACM Blog (BLOG@CACM),
July (2014).

[8] Mark Guzdial. September 30, 2016 (accessed August 18, 2017). No, Really -
Programming is Hard and CS Flipped Classrooms are Complicated: ITICSE 2016
Award-winning Papers. https://computinged.wordpress.com/2016/09/30/no-
really-programming-is-hard-and-cs-flipped-classrooms-are-complicated-
iticse-2016-award-winning-papers/

[9] Matthew Hertz. 2010. What Do "CS1" and "CS2" Mean?: Investigating Differences
in the Early Courses. In Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (SIGCSE ’10). ACM, New York, NY, USA, 199–203.
https://doi.org/10.1145/1734263.1734335

[10] Gregory W. Hislop, Lillian Cassel, Lois Delcambre, Edward Fox, Rick Furuta,
and Peter Brusilovsky. 2009. Ensemble: Creating a National Digital Library
for Computing Education. In Proceedings of the 10th ACM Conference on SIG-
information Technology Education (SIGITE ’09). ACM, New York, NY, USA, 200–
200. https://doi.org/10.1145/1631728.1631783

[11] Association for Computing Machinery (ACM) Joint Task Force on Comput-
ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Technical Report. New York, NY, USA. 999133.

[12] Andrew Luxton-Reilly. 2016. Learning to Program is Easy. In Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’16). ACM, New York, NY, USA, 284–289. https://doi.org/
10.1145/2899415.2899432

[13] Andrew Luxton-Reilly, Simon, Ibrihim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Sys-
tematic Literature Review. In Proceedings of the 2018 ITiCSE Conference on
Working Group Reports (ITiCSE-WGR ’18). ACM, New York, NY, USA. https:

//doi.org/10.1145/3293881.3295779 in press.
[14] Raina Mason and Simon. 2017. Introductory Programming Courses in Australa-

sia in 2016. In Proceedings of the Nineteenth Australasian Computing Education
Conference (ACE ’17). ACM, New York, NY, USA, 81–89. https://doi.org/10.1145/
3013499.3013512

[15] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A Multi-national, Multi-institutional Study of Assessment of Pro-
gramming Skills of First-year CS Students. SIGCSE Bull. 33, 4 (Dec. 2001), 125–180.
https://doi.org/10.1145/572139.572181

[16] Ellen Murphy, Tom Crick, and James H Davenport. 2017. An Analysis of Introduc-
tory Programming Courses at UK Universities. The Art, Science, and Engineering
of Programming 1, 2 (2017).

[17] The IEEE CS / ACM Joint Task Force on Computing Curricula. 2001. Computing
Curricula 2001, Computer Science. (2001). https://www.acm.org/binaries/
content/assets/education/curricula-recommendations/cc2001.pdf

[18] Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication, Val-
idation, and Use of a Language Independent CS1 Knowledge Assessment. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (ICER ’16). ACM, New York, NY, USA, 93–101. https://doi.org/10.1145/
2960310.2960316

[19] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,
Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A Survey of Liter-
ature on the Teaching of Introductory Programming. In Working Group Re-
ports on ITiCSE on Innovation and Technology in Computer Science Education
(ITiCSE-WGR ’07). ACM, New York, NY, USA, 204–223. https://doi.org/10.1145/
1345443.1345441

[20] Andrew Petersen, Michelle Craig, and Daniel Zingaro. 2011. Reviewing CS1
Exam Question Content. In Proceedings of the 42Nd ACM Technical Symposium
on Computer Science Education (SIGCSE ’11). ACM, New York, NY, USA, 631–636.
https://doi.org/10.1145/1953163.1953340

[21] Anthony Robins. 2010. Learning Edge Momentum: A New Account of Outcomes
in CS1. Computer Science Education 20, 1 (2010), 37–71. https://doi.org/10.1080/
08993401003612167

[22] Carsten Schulte and Jens Bennedsen. 2006. What Do Teachers Teach in Intro-
ductory Programming?. In Proceedings of the Second International Workshop on
Computing Education Research (ICER ’06). ACM, New York, NY, USA, 17–28.
https://doi.org/10.1145/1151588.1151593

[23] Robert Michael Siegfried, Daniel Greco, Nicholas Miceli, and Jason Siegfried.
2012. Whatever happened to Richard Reid’s list of first programming languages?
Information Systems Education Journal 10, 4 (2012), 24.

[24] Simon, Raina Mason, Tom Crick, James H. Davenport, and Ellen Murphy. 2018.
Language Choice in Introductory Programming Courses at Australasian and UK
Universities. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE ’18). ACM, New York, NY, USA, 852–857. https:
//doi.org/10.1145/3159450.3159547

[25] Allison Elliott Tew andMark Guzdial. 2010. Developing a Validated Assessment of
Fundamental CS1 Concepts. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (SIGCSE ’10). ACM, New York, NY, USA, 97–101.
https://doi.org/10.1145/1734263.1734297

[26] Allison Elliott Tew and Mark Guzdial. 2011. The FCS1: A Language Independent
Assessment of CS1 Knowledge. In Proceedings of the 42Nd ACM Technical Sym-
posium on Computer Science Education (SIGCSE ’11). ACM, New York, NY, USA,
111–116. https://doi.org/10.1145/1953163.1953200

[27] Manas Tungare, Xiaoyan Yu, William Cameron, GuoFang Teng, Manuel A. Pérez-
Quiñones, Lillian Cassel, Weiguo Fan, and Edward A. Fox. 2007. Towards a
Syllabus Repository for Computer Science Courses. SIGCSE Bull. 39, 1 (March
2007), 55–59. https://doi.org/10.1145/1227504.1227331

https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/3159450.3159453
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/1189215.1189181
https://doi.org/10.1145/1189215.1189181
http://dl.acm.org/citation.cfm?id=1181849.1181881
http://dl.acm.org/citation.cfm?id=1181849.1181881
https://doi.org/10.1145/1789934.1789935
https://computinged.wordpress.com/2016/09/30/no-really-programming-is-hard-and-cs-flipped-classrooms-are-complicated-iticse-2016-award-winning-papers/
https://computinged.wordpress.com/2016/09/30/no-really-programming-is-hard-and-cs-flipped-classrooms-are-complicated-iticse-2016-award-winning-papers/
https://computinged.wordpress.com/2016/09/30/no-really-programming-is-hard-and-cs-flipped-classrooms-are-complicated-iticse-2016-award-winning-papers/
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1145/1631728.1631783
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3013499.3013512
https://doi.org/10.1145/3013499.3013512
https://doi.org/10.1145/572139.572181
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/1345443.1345441
https://doi.org/10.1145/1345443.1345441
https://doi.org/10.1145/1953163.1953340
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1145/1151588.1151593
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1145/1227504.1227331

	Abstract
	1 Introduction
	1.1 Overview and Motivating Questions

	2 Related Work
	3 Methodology
	3.1 Syllabus and Learning Outcome Curation
	3.2 Learning Outcome Concepts

	4 Results and Discussion
	4.1 Q1-4: Explicit Learning Outcomes in CS1
	4.2 Q5: Current CS1 Language Distribution
	4.3 Q6: CS1 Syllabus Terms

	5 A Tool For The Community
	6 Threats to Validity
	7 Conclusions and Future Work
	8 Acknowledgements
	References



