
50 Years of CS1 at SIGCSE: A Review of the Evolution of
Introductory Programming Education Research

Brett A. Becker
University College Dublin

Ireland
brett.becker@ucd.ie

Keith Quille
Institute of Technology Tallaght

Ireland
keith.quille@it-tallaght.ie

ABSTRACT
The SIGCSE Technical Symposium is celebrating its 50th year, and
a constant theme throughout this history has been to better un-
derstand how novices learn to program. In this paper, we present
a perspective on the evolution of introductory programming ed-
ucation research at the Symposium over these 50 years. We also
situate the Symposium’s impact in the context of the wider litera-
ture on introductory programming research. Applying a systematic
approach to collecting papers presented at the Symposium that
focus on novice programming / CS1, we categorized hundreds of
papers according to their main focus, revealing important introduc-
tory programming topics and their trends from 1970 to 2018. Some
of these topics have faded from prominence and are less relevant to-
day while others, including many topics focused on students—such
as making learning programming more appropriate from gender,
diversity, accessibility and inclusion standpoints—have garnered
significant attention more recently. We present discussions on these
trends and in doing so, we provide a checkpoint for introductory
programming research. This may provide insights for future re-
search on how we teach novices and how they learn to program.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; CS1.

KEYWORDS
CS1; CS 1; CS-1; programming; introductory programming; intro-
duction to programming; novice programming; survey; review
ACM Reference Format:
Brett A. Becker and Keith Quille. 2019. 50 Years of CS1 at SIGCSE: A Re-
view of the Evolution of Introductory Programming Education Research.
In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3287324.3287432

1 INTRODUCTION
The SIGCSE Technical Symposium (the Symposium) is celebrat-
ing its 50th year, and researching how novices learn to program

has been a consistent theme throughout this history. We present a
perspective on this research over these first five decades. We also
situate the Symposium and its impact in the context of the wider
literature on introductory programming research. From an initial
selection of 777 papers presented at the Symposium, we categorized
481 CS1 papers and offer a discussion on their topics and trends,
providing a checkpoint for introductory programming research go-
ing forward into the second half of the Symposium’s first century.
This may prove insightful for future research on how we teach
novices and how they learn to program. Our research goals are:

RG1 Identify the important topics in introductory programming
education research, including their trends, over the first 50
years of the SIGCSE Technical Symposium

RG2 Situate the introductory programming research presented
at the SIGCSE Technical Symposium in the context of the
wider literature

2 RELATEDWORK
Despite the large volume of work on introductory programming
(commonly called ‘CS1’ [19]), there are relatively few surveys, re-
views and meta-analyses with wide scope. Most relevant to the
present work as it only considered papers presented at the Sym-
posium, is a 2004 paper by Valentine [44], which focused on CS1
and CS2, including papers, workshops and panels. These were orga-
nized into a ‘taxonomy’ based on the paper approach (Marco Polo,
Tools, Experimental, Nifty, Philosophy or John Henry), while our
categorization is based on paper content/topic. A 2002 paper by
Vasiga also provided data on CS1 and CS2 at SIGCSE, and stated:
“To say there has been much discussion of CS1 and CS2 in SIGCSE
circles is a gross understatement” [45, p. 28]. Table 1 shows the
number of papers reported by these authors compared to the sub-
sets of our papers that align with their dates. It is important to note
that we only considered papers on CS1 (not CS2). We explain our
method in Section 3.

Another effort relevant to our work is a 2018 ITiCSE Working
group led by Luxton-Reilly & Simon which performed a large lit-
erature review of introductory programming research, citing over
700 references [29]. We discuss this further in Section 4.

Valentine [44] Vasiga [45] this study
1984-1993 17 - 36
1994-2003 28 - 98

2000 - 18 8
Table 1: Number of papers reported at the Symposium on
CS1 & CS2 [44, 45] and CS1 (this study). Note that these are
subsets of our data as our study spans 1970-2018.

https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/3287324.3287432


3 METHOD
We chose to analyze papers presented at the SIGCSE Technical
Symposium focusing on introductory programming courses at the
university level, commonly called CS1 [19]. We conducted a pre-
liminary search of the ACM Digital Library (ACM DL) on January
21, 2018 and carried out a short feasibility study, mainly to refine
the search parameters and method. On August 3, 2018 we con-
ducted our final search, which was for papers including any of the
following terms in the title, abstract, or keywords: CS1, “CS 1”, “in-
troductory programming”, “introduction to programming”, “novice
programming”, “novice programmers”. This search returned 3,153
hits in the ACM DL Guide to Computing Literature, and 2,354 hits
in the ACM DL Full-Text Collection. We then extracted all papers
sponsored by SIGCSE (1,442 hits) and then filtered, leaving only
papers presented at the SIGCSE Technical Symposium (777 hits).
We then applied the exclusion criteria: (1) Papers less than three
pages in length (eliminating 244), and (2) Papers not focusing on
first-year university-level introductory programming (eliminating
52). This resulted in a final list of 481 papers. Our actual query was:
acmdlTitle: (CS1 “CS 1” “introductory programming” “introduction to programming”
“novice programming” “novice programmers”) OR recordAbstract: (CS1 “CS 1” “intro-
ductory programming” “introduction to programming” “novice programming” “novice
programmers”) OR keywords.author.keyword: (CS1 “CS 1” “introductory program-
ming” “introduction to programming” “novice programming” “novice programmers”)

3.1 Classification of papers
We acknowledge the inherent difficulty of reliably coding academic
papers [41]. As this is not a systematic literature review, we allowed
categories and subcategories to emerge as Author 1 processed all
481 papers. Our main goal was to categorize the papers fitting our
criteria in a way that would accurately describe the landscape of
CS1 research at the Symposium, and how it has changed in the last
50 years. For this reason we chose to categorize each paper into
one category only (a many-to-one mapping). We discuss this and
other threats to validity in Section 6. Once initial categories and
subcategories were determined through Author 1 processing all 481
papers, Author 2 re-categorized a random sample of 10% placing 41
of 48 papers in the same categories, indicating 85% agreement. A
third faculty member at the same institution as Author 1 repeated
this re-categorization with a new random 10% sample and placed
40 of 48 papers in the same category as Author 1, indicating 83%
agreement. After this, Authors 1 & 2 discussed the categories and
made minor refinements resulting in eight top-level categories: (1)
First languages & paradigms; (2) CS1 design, structure & approach; (3)
CS1 content; (4) Tools; (5) Collaborative approaches; (6) Teaching; (7)
Learning & Assessment; and (8) Students. In the interest of making
this work useful for the community, details on these 481 papers
including URLs, number of citations, and citations/year are included
in a CSV file available at www.brettbecker.com/sigcse2019.

4 SITUATING THE SIGCSE TECHNICAL
SYMPOSIUM IN THEWIDER LITERATURE

Before looking within the Symposium and the evolution of intro-
ductory programming education research over the last 50 years,
we wanted to gain a picture of the Symposium within the broader

literature. As mentioned in Section 2, Luxton-Reilly et al. conducted
a 2018 review of introductory programming literature [29], using a
similar but slightly broader search query and a much wider search
space (not limited to the ACMDigital Library). This resulted in over
5,000 papers, reduced to 1,844 after applying exclusion criteria. We
started with 1,442 papers which reduced to 481, approximately 26%
of the 1,844 from the ITiCSE working group. This quick comparison
reveals that the SIGCSE Technical Symposium represents not only
a considerable space in the literature of introductory programming
literature indexed by the ACM, but a healthy percentage of the
introductory programming literature in general.

To gain a different perspective, we performed our search against:
the ACM Digital Library Guide to Computing Literature; all papers
published byACM; and, all proceedings sponsored by SIGCSE. Table
2 shows our findings as a percentage of the hits from the Guide to
Computing Literature. Like the comparison to the ITiCSE working
group mentioned above, this shows that the SIGCSE Technical
Symposium occupies a significant footprint in the wider literature;
approximately 25% by this measure, almost the same as the 26%
when compared to [29] in the above paragraph.

Search Space hits % total
ACM Digital Library Guide to Computing Literature 3,153 100%
Published by ACM 1,823 ~58%
Conferences sponsored by SIGCSE 1,442 ~46%
SIGCSE Technical Symposium 777 ~25%

Table 2: Number of hits and percentage of total (ACM DL
Guide to Computing Literature) for our search query.

5 THE EVOLUTION OF INTRODUCTORY
PROGRAMMING EDUCATION RESEARCH

In this section we provide a view of the introductory programming
research presented at the Symposium, followed by discussions on
the evolution of each of the eight top-level categories we identified.
We also discuss interesting subcategories.

Figure 1 shows a TreeMap of all 481 papers categorized into
8 top-level categories and 54 subcategories. Some top-level cate-
gories have a subcategory called ‘General’, reserved for papers that
are broad in scope and represent the whole top-level category as
opposed to a specific subcategory. Additionally, if we had a subcate-
gory with less than five papers (other than a ‘General’ subcategory),
we aggregated these into a single ‘Other’ subcategory. For instance,
the top-level category First languages & paradigms has a subcat-
egory called Other containing papers from any First languages &
paradigms papers that were in subcategories with less than five
papers. Thus, the only subcategories in Figure 1 that may have less
than five papers are General and Other subcategories.

Figure 2 shows the evolution of each of the eight top-level cate-
gories over the last five decades. To compensate for the fact that
the overall number of papers published in each decade has steadily
increased, we normalized the number of papers per decade by divid-
ing the number of papers per top-level category in each decade by
the total number of papers in our dataset published in each given
decade. This broadly shows the evolution of these eight top-level
categories over the last 50 years. In the following subsections we
discuss trends and a selection of notable developments/papers in
each of these top-level categories, and some subcategories.

www.brettbecker.com/sigcse2019


Figure 1: TreeMap of 481 papers in 8 categories and 54 subcategories. The area of each rectangle is proportional to the number
of papers in each topic area. More details are discussed in Section 5.

Figure 2: 50-year trends of the 8 top-level categories in introductory programming at the SIGCSE Technical Symposium. To
compensate for the fact that the overall number of papers published in each decade has steadily increased, we normalized the
number of papers per decade by dividing the number of papers per top-level category in each decade by the total number of
papers in our dataset published in each given decade.



5.1 First Languages & Paradigms

’70s ’80s ’90s ’00s ’10s
General languages & paradigms 2 2
Specific paradigms 1 7 10 1
Specific text-based languages 3 5 6 1
Other 4 2 1

Table 3: Number of papers in the First Languages &
Paradigms category.

Table 3 shows the subcategories in this category and the corre-
sponding number of papers published in each decade. As can be
seen in Figure 2, interest in this area has slowly declined since the
1990s. Other than language/paradigm choice, one of the most dis-
cussed topics in this category has been objects first approaches [12].
At the 2018 Symposium, Simon et al. presented a survey of language
choice in CS1 courses in Australasian and UK universities, reveal-
ing that the most popular teaching language is Java, followed by
Python and C [39]. Interestingly, at the 2004 Symposium, Roberts
called for educators to “take responsibility for breaking the cycle of
rapid obsolescence [of teaching languages] by developing a stable
and effective collection of Java-based teaching resources that will
meet the needs of the computer science community” [37, p. 115].
Whether or not this call was met, and whether this was predictive
of the prominence of Java reported by Simon et al. is beyond the
scope of this paper, but it is interesting to note that the Roberts
paper was published in 2004, near a peak in teaching language
interest, and that in the current decade, interest has waned consid-
erably, perhaps due to stability brought on by the popular use of
Java and Python. Other factors that may have served to draw atten-
tion away from the language/paradigm debate recently include the
2004 adoption of Java for the APCS exam [37], which has remained
unchanged since, and the evolution of ACM/IEEE model curricula—
CC2001 categorized introductory languages by paradigm, while the
CS2013 Fundamental Programming Concepts knowledge unit only
identifies concepts common to all programming paradigms [23].

5.2 CS1 Design, Structure & Approach

’70s ’80s ’90s ’00s ’10s
General design; structure; approach 3 1 2 2
How CS1 relates to CS0 or CS2 4 6
Dealing with ACM model curricula 1 3 2
Physical Settings
> Online, remote or MOOC delivery 2 8 5
> Labs 1 9 3
> Other physical settings 1 1
Other 1 2 1 2

Table 4: Number of papers in the CS1 Design, Structure &
Approach category.

Table 4 shows the subcategories in this category and the corre-
sponding number of papers published in each decade. Papers in the
Other category included those on learning outcomes, the impact of
hardware decisions and cost-effective methods of teaching CS1. In-
terest in this category has also waned since the turn of the century,
as shown in Figure 2.

It is noteworthy that interest in Labs peaked in the 1990s, and
Online, remote or MOOC delivery peaked a decade or so later. The
apparent fall-off in work on remote delivery mechanisms could be
due to the advent of new conferences specifically addressing these
topics, leading to a migration in where such research is presented.
Papers Dealing with ACM model curricula peaked in the 1990s,
while How CS1 relates to CS0 and CS2 featured in ten papers, all
appearing after 2002 (with four of these since 2016). Perhaps related
to this, there has been relatively recent interest in completely re-
thinking the structure and approach of CS1 itself, as evidenced
by a 2010 paper by Hertz titled “What do CS1 and CS2 Mean?
Investigating Differences in the Early Courses” [19], and Harvard’s
‘reinventing’ of CS1 resulting in their popular CS50 course, which
was redesigned due to two problems that they hypothesized the
course suffered from: poor perception and a dated design [31]. It
is interesting to note that the idea of redesigning the CS1 course
is not new; Cherniak delivered a paper at the 1976 Symposium on
reconsidering the CS1 approach [10]. It is noteworthy that despite
being presented over 40 years ago, this paper discussed high school
programming syllabi. Other notable ‘early mentions’ were liberal
arts colleges in 1980 [15] and delivering CS1 online in 1999 [9].

5.3 CS1 Content

’70s ’80s ’90s ’00s ’10s
Upper-level topics in CS1 5 4
Software engineering approaches 1 1 4 3 2
Other 1 2 1 6 8
Table 5: Number of papers in the CS1 Content category.

Table 5 shows the subcategories in this category and the cor-
responding number of papers published in each decade. As seen
in Figure 2, interest in this category has remained relatively flat,
while the subcategories have varied individually. Topics in theOther
subcategory include data science approaches, CS+X [5], and me-
dia computation [42], which have only appeared in the last two
decades. Papers on Software engineering approaches [21] have been
published in each of the five decades, while papers on Upper-level
topics in CS1 [16] have all appeared after 2000.

5.4 Tools

’70s ’80s ’90s ’00s ’10s
Editors, APIs, etc. 1 2 2 4
Libraries, etc. 1 5
Visualization 2 1 4
Debugging & testing 2 6 1
Other 1 3 3

Table 6: Number of papers in the Tools category.

Table 6 shows the subcategories in this category and the cor-
responding number of papers published in each decade. As seen
in Figure 2, similar to CS1 Content, interest in this category has
remained relatively flat over the decades. As noted in Section 5.1,
most of the discussion on CS1 languages has converged on Java and
Python, and this is somewhat reflected in the Tools category, where
several tools for Python [14, 18] and Java [35] have been introduced.



Reis and Cartwright [35] also addressed the ongoing debate of ped-
agogical vs. ‘industry relevant’ tools, a theme also reflected in First
languages & paradigms. Most of the papers on Libraries focus on
GUI and graphics or games. It is noteworthy that several papers
that focused on C or C++ tools were in the Debugging & testing and
Visualization subcategories. It is also noteworthy that not all tools
are for development. For instance, Kumar developed Epplets to help
students solve Parsons Puzzles [26], and the Blackbox project [8]
provides tools and a large programming dataset for researchers.

5.5 Collaborative Approaches

’70s ’80s ’90s ’00s ’10s
Pair programming 5 9
Peer instruction 1 5
Other 3 6 7

Table 7: Number of papers in the Collaborative Approaches
category.

Table 7 shows the subcategories in this category and the corre-
sponding number of papers published in each decade. Papers in the
Other subcategory included topics such as peer code review, studio-
based instruction (which includes pedagogical code review) [22],
POGIL [20], and group projects. As can be seen in Figure 2, interest
in this area has risen dramatically since the turn of the century.

It is arguable that Pair programming [33] and Peer instruction [40]
could be in the same subcategory but after an extensive look at the
papers involved and searching the ACM Digital Library for these
topics, we decided that they warrant separate subcategories. In fact,
none of the six Peer instruction papers mentioned pair programming,
and only one of the 14 Pair programming papers mentioned peer
instruction, and the one that did, discussed the topics as separate
approaches [1]. Beck et al. provided a discussion on cooperative
learning vs. pair programming [3], and we found one paper catego-
rized in Other which, in summarizing the importance of peer learn-
ing principles, suggested that ‘peer instruction’ is a more general
term than ‘pair programming’, ‘peer testing’ or ‘peer review’ [17].
Regardless, collaborative approaches to teaching CS1 have steadily
increased in popularity since 2000.

5.6 Teaching

’70s ’80s ’90s ’00s ’10s
General teaching 1 1 1
Model problems & exercises 4 9 10 1
Specific topics (arrays, recursion,
etc.)

1 2 3

Games 6 3
Hardware (robots, etc.) 8
Aids, examples & tricks 2 3 4 3
Flipped approaches 5
Video 2 4
Other 2 3 6 6 15
Table 8: Number of papers in the Teaching category.

Table 8 shows the subcategories in this category and the corre-
sponding number of papers published in each decade. Papers in the

Other category included those on teaching assistants and mentors,
feedback, plagiarism, and many more topics with less than 5 papers
each. We chose these subcategories carefully - for instance, Model
problems & exercises was not chosen as a subcategory of Learning
& Assessment as by-and-large these are not used as assessment, but
as teaching devices. Similarly, we saw Games, and Hardware (robots,
etc.) as teaching devices. Despite Teaching being the category with
the largest number of papers (105), Figure 2 shows that activity in
this area peaked in the 1980s when these papers accounted for 33%
of all papers that decade. Since then activity has steadily declined to
18% in this decade. It is worth noting that despite this, the category
had the highest percentage of papers per decade in the 1980s, 1990s,
and 2000s, and only this decade was surpassed by Students and
Learning & Assessment. Several interesting trends are apparent in
Table 8. Games first appeared in our data in 2006 [27], but is the
third largest subcategory, behind Model problems & exercises [7],
and Aids, examples & tricks. Hardware (robots, etc.) first appeared
in our data in 2001, Aids, examples & tricks has been somewhat
constant, and Flipped approaches [28] first appeared in 2013.

5.7 Learning & Assessment

’70s ’80s ’90s ’00s ’10s
General learning 1
Conceptual or cognitive issues 2 4 3
Learning styles 1 4
Reading, writing, tracing & debug-
ging

1 1 5 6

Errors 3 8
Other learning 2
General assessment 4 1
Automatic tutoring & assessment
systems

1 1 3 6

Authentic assessment 2 3 1
Exams 2 5
Other assessment 1 4 6

Table 9: Number of papers in the Learning &Assessment cat-
egory.

Table 9 shows the subcategories in this category and the corre-
sponding number of papers published in each decade. As can be
seen in Figure 2 and Table 9, this category has seen steady, sharp
growth since the 1980s, moving from 3% to 22% of papers per decade
(second only to Students). It is important to note however, that as
our exclusion criteria eliminates papers less than three pages in
length, we exclude tracks such as panels. Therefore our data does
not accurately represent initiatives like “Nifty Assignments” which
started as a panel at the Symposium in 1999 and is now a track
of its own (nifty.stanford.edu). A number of subcategories have
shown remarkable interest since the turn of the century, including
Reading, writing, tracing & debugging [13], how students deal with
Errors [4, 32], and Learning styles, including achievement goals and
mastery learning [47], and Conceptual or cognitive issues which
revealed papers on topics such as mental models [30].

5.8 Students
Table 10 shows the subcategories in this category and the corre-
sponding number of papers published in each decade. Figure 2

http://nifty.stanford.edu/


’70s ’80s ’90s ’00s ’10s
Non-majors 2 3 8
Retention 1 5 5
Gender, diversity, inclusion & acces-
sibility

5 7

Prior knowledge 2 3
> Concept inventories, geek genes,
misconceptions

1 5

Predicting & measuring success 2 5 10
> Programming process data 2 6
Other 1 1 4
Table 10: Number of papers in the Students category.

shows that this category went from 16% in the 1970s to 0% in the
1990s to 25% today (the most popular category). Several insights
can be drawn from Table 10. It is interesting to note that Non-majors
were considered as early as 1973 [38], yet interest has only recently
gathered pace. Gender, diversity, inclusion & accessibility has only
appeared since 2004, when Rich et al. proposed a CS1 course ex-
plicitly aimed at non-majors and women [36]. In 2004, Valentine
noted that only half of Symposia between 1984 and 2004 had any
‘appearances’ on women in computer science. Prior knowledge in-
cluding Concept inventories [43], geek genes (or the non-existence
thereof) andMisconceptions [24] have also only appeared since 2000.
In 2017, Kirkpatrick et al. introduced an alternative CS1 for students
with prior programming knowledge [25]. Predicting & measuring
success [6, 46] and research on Programming process data [2] have
also only appeared since the turn of the century. It is interesting
to note that concerns about large enrollments appeared as early as
1974 [11], while Retention, dating back as far as 1984, has shown
significant interest more recently [34].

6 THREATS TO VALIDITY
We note several threats to validity, but do not believe that these
significantly detract from achieving our goals set out in Section 1.
Firstly, our search query may not be completely representative of
the literature, but it is similar to a recent survey with a much wider
scope [29], and as discussed in Section 4, we believe it is broadly
representative of the wider literature. Also, if carried out by other
researchers, the categories that emerged may have been different.

We acknowledged the “significant difficulty of reliably coding
academic papers” [41, p. 223] and as this is not a systematic litera-
ture review, we allowed categories to emerge as we began classifica-
tion. However as outlined in Section 3.1 our categorization proved
to be acceptably reproducible. Next, in the interest of being succinct,
we employed a many-to-one mapping of papers to categories (each
paper has exactly one category, but a category may have more than
one paper). Thus, we did not allow cross-categorization, which
may have provided for a richer (but probably more complex) analy-
sis and discussion. Additionally, our trends are coarsely based on
decades. A finer resolution may have provided more subtle trends.

In excluding papers less than three pages in length, we excluded
tracks such as panels, and therefore initiatives such as Nifty Assign-
ments which provide valuable contributions. Finally, we remind the
reader that we have specifically researched CS1 papers presented
at the SIGCSE Technical Symposium only, and that that the trends

observed may not necessarily be reflective of the broader trends of
the computing education community.

7 CONCLUSION
We categorized 481 CS1 papers presented during the first 50 years
of the SIGCSE Technical Symposium. We have endeavored to adopt
best practice to categorize these papers in the interest of being
fair and objective, and believe that the picture we present of the
evolution of introductory programming research during the first 50
years of the Symposium is useful in terms of meeting the research
goals set out in Section 1. Future work on a larger scale could
address some of the threats identified in Section 6. Our analysis
revealed several important trends and highlights the fact that CS1
research is not only focused on programming. We also situated
the Symposium in the wider literature, revealing that it occupies a
significant space in the CS1 literature.

This work provides a checkpoint for introductory programming
research going forward into the second 50 years of the SIGCSE
Technical Symposium and will hopefully provide insights for future
research on how we teach novices and how they learn to program.

REFERENCES
[1] Onni Aarne, Petrus Peltola, Juho Leinonen, and Arto Hellas. 2018. A Study of Pair

Programming Enjoyment and Attendance Using Study Motivation and Strategy
Metrics. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (SIGCSE ’18). ACM, New York, NY, USA, 759–764. https://doi.org/10.
1145/3159450.3159493

[2] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Investigat-
ing Novice Programming Mistakes in Large-Scale Student Data. In Proceedings of
the 46th ACM Technical Symposium on Computer Science Education (SIGCSE ’15).
ACM, New York, NY, USA, 522–527. https://doi.org/10.1145/2676723.2677258

[3] Leland L. Beck, Alexander W. Chizhik, and Amy C. McElroy. 2005. Cooperative
Learning Techniques in CS1: Design and Experimental Evaluation. In Proceedings
of the 36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’05). ACM, New York, NY, USA, 470–474. https://doi.org/10.1145/1047344.1047495

[4] Brett A. Becker, Kyle Goslin, and GrahamGlanville. 2018. The Effects of Enhanced
Compiler Error Messages on a Syntax Error Debugging Test. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18).
ACM, New York, NY, USA, 640–645. https://doi.org/10.1145/3159450.3159461

[5] Tanya Berger-Wolf, Boris Igic, Cynthia Taylor, Robert Sloan, and Rachel Poretsky.
2018. A Biology-themed Introductory CS Course at a Large, Diverse Public
University. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE ’18). ACM, New York, NY, USA, 233–238. https:
//doi.org/10.1145/3159450.3159538

[6] Susan Bergin and Ronan Reilly. 2005. Programming: Factors That Influence
Success. In Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’05). ACM, New York, NY, USA, 411–415. https:
//doi.org/10.1145/1047344.1047480

[7] Kevin Bierre, Phil Ventura, Andrew Phelps, and Christopher Egert. 2006. Moti-
vating OOP by Blowing Things Up: An Exercise in Cooperation and Competition
in an Introductory Java Programming Course. In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’06). ACM, New
York, NY, USA, 354–358. https://doi.org/10.1145/1121341.1121452

[8] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Ut-
ting. 2014. Blackbox: A Large Scale Repository of Novice Programmers’ Ac-
tivity. In Proceedings of the 45th ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE ’14). ACM, New York, NY, USA, 223–228. https:
//doi.org/10.1145/2538862.2538924

[9] Jacobo Carrasquel. 1999. Teaching CS1 On-line: The Good, the Bad, and the Ugly.
In The Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’99). ACM, New York, NY, USA, 212–216. https:
//doi.org/10.1145/299649.299758

[10] Bob Cherniak. 1976. Introductory Programming Reconsidered - a User-oriented
Approach. In Proceedings of the ACM SIGCSE-SIGCUE Technical Symposium on
Computer Science and Education (SIGCSE ’76). ACM, New York, NY, USA, 65–68.
https://doi.org/10.1145/800107.803449

[11] Richard W. Conway. 1974. Introductory Instruction in Programming. In Proceed-
ings of the Fourth SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’74). ACM, New York, NY, USA, 6–10. https://doi.org/10.1145/800183.
810430

https://doi.org/10.1145/3159450.3159493
https://doi.org/10.1145/3159450.3159493
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/1047344.1047495
https://doi.org/10.1145/3159450.3159461
https://doi.org/10.1145/3159450.3159538
https://doi.org/10.1145/3159450.3159538
https://doi.org/10.1145/1047344.1047480
https://doi.org/10.1145/1047344.1047480
https://doi.org/10.1145/1121341.1121452
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/299649.299758
https://doi.org/10.1145/299649.299758
https://doi.org/10.1145/800107.803449
https://doi.org/10.1145/800183.810430
https://doi.org/10.1145/800183.810430


[12] Stephen Cooper, Wanda Dann, and Randy Pausch. 2003. Teaching Objects-first
in Introductory Computer Science. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’03). ACM, New York, NY,
USA, 191–195. https://doi.org/10.1145/611892.611966

[13] Stephen H. Edwards. 2004. Using Software Testing to Move Students from Trial-
and-error to Reflection-in-action. In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’04). ACM, New York, NY,
USA, 26–30. https://doi.org/10.1145/971300.971312

[14] Stephen H. Edwards, Daniel S. Tilden, and Anthony Allevato. 2014. Pythy:
Improving the Introductory Python Programming Experience. In Proceedings of
the 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14).
ACM, New York, NY, USA, 641–646. https://doi.org/10.1145/2538862.2538977

[15] Robert J. Ellison. 1980. A Programming Sequence for the Liberal Arts College.
In Proceedings of the Eleventh SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’80). ACM, New York, NY, USA, 161–164. https://doi.org/10.
1145/800140.804628

[16] Patrick Garrity, Timothy Yates, Richard Brown, and Elizabeth Shoop. 2011.
WebMapReduce: An Accessible and Adaptable Tool for Teaching Map-reduce
Computing. In Proceedings of the 42Nd ACM Technical Symposium on Com-
puter Science Education (SIGCSE ’11). ACM, New York, NY, USA, 183–188.
https://doi.org/10.1145/1953163.1953221

[17] Alessio Gaspar, Joni Torsella, Nora Honken, Sohum Sohoni, and Colin Arnold.
2016. Differences in the Learning Principles Dominating Student-Student vs.
Student-Instructor Interactions While Working on Programming Tasks. In Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Educa-
tion (SIGCSE ’16). ACM, New York, NY, USA, 255–260. https://doi.org/10.1145/
2839509.2844627

[18] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program Visu-
alization for Cs Education. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA, 579–584.
https://doi.org/10.1145/2445196.2445368

[19] Matthew Hertz. 2010. What Do "CS1" and "CS2" Mean?: Investigating Differences
in the Early Courses. In Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (SIGCSE ’10). ACM, New York, NY, USA, 199–203.
https://doi.org/10.1145/1734263.1734335

[20] Helen H. Hu and Tricia D. Shepherd. 2014. Teaching CS 1 with POGIL Activities
and Roles. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (SIGCSE ’14). ACM, New York, NY, USA, 127–132. https:
//doi.org/10.1145/2538862.2538954

[21] Christopher Hundhausen, Anukrati Agrawal, Dana Fairbrother, and Michael
Trevisan. 2009. Integrating Pedagogical Code Reviews into a CS 1 Course: An
Empirical Study. In Proceedings of the 40th ACMTechnical Symposium on Computer
Science Education (SIGCSE ’09). ACM, New York, NY, USA, 291–295. https:
//doi.org/10.1145/1508865.1508972

[22] Christopher Hundhausen, Anukrati Agrawal, Dana Fairbrother, and Michael
Trevisan. 2010. Does Studio-based Instruction Work in CS 1?: An Empirical
Comparisonwith a Traditional Approach. In Proceedings of the 41st ACMTechnical
Symposium on Computer Science Education (SIGCSE ’10). ACM, New York, NY,
USA, 500–504. https://doi.org/10.1145/1734263.1734432

[23] Association for Computing Machinery (ACM) Joint Task Force on Comput-
ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Technical Report. New York, NY, USA. 999133.

[24] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman.
2010. Identifying Student Misconceptions of Programming. In Proceedings of
the 41st ACM Technical Symposium on Computer Science Education (SIGCSE ’10).
ACM, New York, NY, USA, 107–111. https://doi.org/10.1145/1734263.1734299

[25] Michael S. Kirkpatrick and Chris Mayfield. 2017. Evaluating an Alternative CS1
for Students with Prior Programming Experience. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’17). ACM,
New York, NY, USA, 333–338. https://doi.org/10.1145/3017680.3017759

[26] Amruth N. Kumar. 2018. Epplets: A Tool for Solving Parsons Puzzles. In Proceed-
ings of the 49th ACM Technical Symposium on Computer Science Education (SIGCSE
’18). ACM, New York, NY, USA, 527–532. https://doi.org/10.1145/3159450.3159576

[27] Scott Leutenegger and Jeffrey Edgington. 2007. A Games First Approach to
Teaching Introductory Programming. In Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’07). ACM, New York, NY,
USA, 115–118. https://doi.org/10.1145/1227310.1227352

[28] Kate Lockwood and Rachel Esselstein. 2013. The Inverted Classroom and the CS
Curriculum. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (SIGCSE ’13). ACM, New York, NY, USA, 113–118. https:
//doi.org/10.1145/2445196.2445236

[29] Andrew Luxton-Reilly, Simon, Ibrihim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Sys-
tematic Literature Review. In Proceedings of the 2018 ITiCSE Conference on
Working Group Reports (ITiCSE-WGR ’18). ACM, New York, NY, USA. https:
//doi.org/10.1145/3293881.3295779 in press.

[30] Linxiao Ma, John Ferguson, Marc Roper, and Murray Wood. 2007. Investigating
the Viability of Mental Models Held by Novice Programmers. In Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’07).
ACM, New York, NY, USA, 499–503. https://doi.org/10.1145/1227310.1227481

[31] David J. Malan. 2010. Reinventing CS50. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education (SIGCSE ’10). ACM, New York, NY,
USA, 152–156. https://doi.org/10.1145/1734263.1734316

[32] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Measur-
ing the Effectiveness of Error Messages Designed for Novice Programmers. In
Proceedings of the 42Nd ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE ’11). ACM, New York, NY, USA, 499–504. https://doi.org/10.1145/
1953163.1953308

[33] Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The
Effects of Pair-programming on Performance in an Introductory Programming
Course. In Proceedings of the 33rd SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’02). ACM, New York, NY, USA, 38–42. https://doi.
org/10.1145/563340.563353

[34] Leo Porter and Daniel Zingaro. 2014. Importance of Early Performance in CS1:
Two Conflicting Assessment Stories. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (SIGCSE ’14). ACM, New York, NY,
USA, 295–300. https://doi.org/10.1145/2538862.2538912

[35] Charles Reis and Robert Cartwright. 2004. Taming a Professional IDE for the
Classroom. In Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’04). ACM, New York, NY, USA, 156–160. https:
//doi.org/10.1145/971300.971357

[36] Lauren Rich, Heather Perry, and Mark Guzdial. 2004. A CS1 Course Designed
to Address Interests of Women. In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’04). ACM, New York, NY,
USA, 190–194. https://doi.org/10.1145/971300.971370

[37] Eric Roberts. 2004. The Dream of a Common Language: The Search for Simplicity
and Stability in Computer Science Education. In Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’04). ACM, New
York, NY, USA, 115–119. https://doi.org/10.1145/971300.971343

[38] Gerard Salton. 1973. Introductory Programming at Cornell. In Proceedings of the
Third SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’73).
ACM, New York, NY, USA, 18–20. https://doi.org/10.1145/800010.808068

[39] Simon, Raina Mason, Tom Crick, James H. Davenport, and Ellen Murphy. 2018.
Language Choice in Introductory Programming Courses at Australasian and UK
Universities. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE ’18). ACM, New York, NY, USA, 852–857. https:
//doi.org/10.1145/3159450.3159547

[40] Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo, and Quintin Cutts. 2010.
Experience Report: Peer Instruction in Introductory Computing. In Proceedings
of the 41st ACM Technical Symposium on Computer Science Education (SIGCSE ’10).
ACM, New York, NY, USA, 341–345. https://doi.org/10.1145/1734263.1734381

[41] Andreas Stefik, Stefan Hanenberg, Mark McKenney, Anneliese Andrews, Srini-
vas Kalyan Yellanki, and Susanna Siebert. 2014. What is the Foundation of
Evidence of Human Factors Decisions in Language Design? An Empirical Study
on Programming Language Workshops. In Proceedings of the 22Nd International
Conference on Program Comprehension (ICPC 2014). ACM, New York, NY, USA,
223–231. https://doi.org/10.1145/2597008.2597154

[42] Allison Elliott Tew, Charles Fowler, and Mark Guzdial. 2005. Tracking an
Innovation in Introductory CS Education from a Research University to a
Two-year College. In Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’05). ACM, New York, NY, USA, 416–420.
https://doi.org/10.1145/1047344.1047481

[43] Allison Elliott Tew andMark Guzdial. 2010. Developing a Validated Assessment of
Fundamental CS1 Concepts. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (SIGCSE ’10). ACM, New York, NY, USA, 97–101.
https://doi.org/10.1145/1734263.1734297

[44] David W. Valentine. 2004. CS Educational Research: A Meta-analysis of SIGCSE
Technical Symposium Proceedings. In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’04). ACM, New York, NY,
USA, 255–259. https://doi.org/10.1145/971300.971391

[45] Troy Vasiga. 2002. What Comes After CS 1 + 2: A Deep Breadth Before
Specializing. In Proceedings of the 33rd SIGCSE Technical Symposium on Com-
puter Science Education (SIGCSE ’02). ACM, New York, NY, USA, 28–32. https:
//doi.org/10.1145/563340.563350

[46] Christopher Watson, Frederick W.B. Li, and Jamie L. Godwin. 2014. No Tests
Required: Comparing Traditional and Dynamic Predictors of Programming
Success. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (SIGCSE ’14). ACM, New York, NY, USA, 469–474. https:
//doi.org/10.1145/2538862.2538930

[47] Daniel Zingaro, Michelle Craig, Leo Porter, Brett A. Becker, Yingjun Cao, Phill
Conrad, Diana Cukierman, Arto Hellas, Dastyni Loksa, and Neena Thota. 2018.
Achievement Goals in CS1: Replication and Extension. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (SIGCSE ’18). ACM,
New York, NY, USA, 687–692. https://doi.org/10.1145/3159450.3159452

https://doi.org/10.1145/611892.611966
https://doi.org/10.1145/971300.971312
https://doi.org/10.1145/2538862.2538977
https://doi.org/10.1145/800140.804628
https://doi.org/10.1145/800140.804628
https://doi.org/10.1145/1953163.1953221
https://doi.org/10.1145/2839509.2844627
https://doi.org/10.1145/2839509.2844627
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1145/2538862.2538954
https://doi.org/10.1145/2538862.2538954
https://doi.org/10.1145/1508865.1508972
https://doi.org/10.1145/1508865.1508972
https://doi.org/10.1145/1734263.1734432
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1145/3017680.3017759
https://doi.org/10.1145/3159450.3159576
https://doi.org/10.1145/1227310.1227352
https://doi.org/10.1145/2445196.2445236
https://doi.org/10.1145/2445196.2445236
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/1227310.1227481
https://doi.org/10.1145/1734263.1734316
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/563340.563353
https://doi.org/10.1145/563340.563353
https://doi.org/10.1145/2538862.2538912
https://doi.org/10.1145/971300.971357
https://doi.org/10.1145/971300.971357
https://doi.org/10.1145/971300.971370
https://doi.org/10.1145/971300.971343
https://doi.org/10.1145/800010.808068
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/1734263.1734381
https://doi.org/10.1145/2597008.2597154
https://doi.org/10.1145/1047344.1047481
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/971300.971391
https://doi.org/10.1145/563340.563350
https://doi.org/10.1145/563340.563350
https://doi.org/10.1145/2538862.2538930
https://doi.org/10.1145/2538862.2538930
https://doi.org/10.1145/3159450.3159452

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Classification of papers

	4 Situating the SIGCSE Technical Symposium in the Wider Literature
	5 The Evolution of Introductory Programming Education Research
	5.1 First Languages & Paradigms
	5.2 CS1 Design, Structure & Approach
	5.3 CS1 Content
	5.4 Tools
	5.5 Collaborative Approaches
	5.6 Teaching
	5.7 Learning & Assessment
	5.8 Students

	6 threats to validity
	7 Conclusion
	References



