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ABSTRACT: It is of practical importance for inspectors to have knowledge of the efficiency of Non-
Destructive Testing (NDT) tools when applied commercially. It has become common practice to model the 
performance of NDT tools in a probabilistic manner in terms of Probability of Detection (PoD), Probability of 
False Alarm (PFA) and eventually by Receiver Operating Characteristic (ROC) Curves. Traditionally, these 
quantities are estimated from training data, however, there are often doubts about the validity of these estimates 
when the sample size is small. In the case of underwater inspections, the scarcity of good quality training data 
means that this scenario arises more often than not. Comprehensive studies around the on-site performance of 
image-based damage diagnostic tools have only recently been made possible through the availability of online 
resources such as the Underwater Lighting and Turbidity Image Repository (ULTIR), which contains 
photographs of various damages forms captured under controlled visibility conditions. This paper shows how 
meaningful information can be extracted from this repository and used to construct ROC curves that can be 
related to the on-site performance of image-based NDT methods for detecting various damage forms and under 
a range of environmental conditions. The ability to draw connections between image-based techniques applied 
in real underwater inspections with ROC curves that can be constructed on-demand provide the 
engineer/inspector with a clear and systematic route for assessing the reliability of data obtained from image-
based methods. As a case study, the general approach has been applied to characterise the performance of 
image-based techniques for identifying instances of corrosion and cracks on marine structures. A discussion 
around how the results can be used for further analysis is provided. This includes looking at how the results can 
be fed into in the decision chain and can be used for risk analysis, intervention and work scheduling, and 
eventually understanding the value of information.  

1 INTRODUCTION 

The quality of subsea inspections largely depends on 

the ability of inspectors to detect and objectively 

record details of defects. Various NDT tools are often 

employed to help inspectors to this end, however, 

choosing the right NDT tool for a given situation is 

not always straightforward. The type of damage 

present and the on-site operating conditions are 

crucial factors that dictate which tool should be 

adopted. In the highly corrosive marine environment, 

common damage types include chloride-induced 

corrosion and cracks that form on concrete structures 

due to volume expansion of corroding reinforced 

steel. These damage forms can usually be detected 

using vision-based systems, which are often the most 

convenient option, however, the efficacy of vision-

based systems in practice is heavily reliant on the 

underwater environment. The reduced visibility 

conditions diminish the ability of the camera, and 

subsequent image-processing algorithms, to 

effectively identify instances of damage. It is 

therefore important that inspectors can develop an 

understanding of the relationship between visibility 

conditions and the performance of image-processing 

techniques so that they can rationalise the use of 

image-processing methods as part of an underwater 

inspection campaign. 

While many image-processing methods have been 

devised for structural health monitoring applications 

over the years, comprehensive studies around their 

on-site performance levels have only recently been 

made possible through the development of the 

Underwater Lighting and Turbidity Image Repository 

(ULTIR) (O’Byrne et al., 2017). ULTIR is a platform 



that allows image-based damage detection techniques 

to be easily investigated under a host of realistic 

operating conditions, and through studies such as this 

one, provide meaningful information to inspectors 

regarding the expected detection accuracy of 

techniques when applied in the field. 

This paper demonstrates how inspectors can gain 

an insight into this relationship and develop a deeper 

intuition around on-site conditions by consulting 

ULTIR. Two case studies are presented that look at 

how the performance of crack and corrosion detection 

methods change as visibility conditions vary, and 

how the information gleaned from ULTIR can be 

used to forecast the expected change in performance. 

2 BACKGROUND AND METHODOLOGY 

This section gives a brief overview of the ULTIR 

database and describes the methodology for 

evaluating and ranking image-processing techniques. 

2.1 Description of the repository 

ULTIR is a large database containing hundreds of 

photographs of various damage instances that were 

captured under known turbidity and lighting levels. 

Ground-truth data is also provided which shows the 

true locations of damage in each image, thereby 

enabling the performance of applied damage 

detection algorithms to be evaluated. It is freely-

available online at www.ultir.net (O’Byrne et al., 

2018). 

The repository is partitioned into three categories 

that relate to the assessment of crack detection 

techniques, general surface damage detection 

techniques (such as corrosion), and techniques for 

recovering 3D shape information. This paper focuses 

on the first two of these categories.  

2.2 Influence of turbidity and lighting 

Image quality is assumed to be chiefly affected by 

luminosity, sharpness (focus accuracy), contrast and 

noise. These quality factors are directly related to the 

on-site operating conditions, for which lighting and 

turbidity are the most significant (Mahiddine et al., 

2012). Turbidity is defined as the cloudiness in a 

liquid caused by the presence of suspended solids that 

scatter and absorb light and therefore reduce 

visibility. Turbidity can be caused by organic 

particles, such as decomposed plant and animal 

matter; or by inorganic particles such as silt and clay  

In this paper, two levels of turbidity are 

considered: clear water, or 0 NTU (Nephelometric 

Turbidity Units), and 12 NTU. To put these values in 

context, water that is visibly cloudy has a turbidity of 

6 NTU, while water that is murky has a turbidity of 

25 NTU. A high-point of 12 NTU was used in this 

study as it becomes increasingly difficult to interpret 

and extract useful information from images beyond 

this point. In waters above 12 NTU, image-based 

methods become an increasingly infeasible option as 

a quantitative inspection tool. Additionally, the 

turbidity of many rivers and water bodies’ lies within 

the 0 – 12 NTU range, and thus, focusing on these 

limits is of high practical relevance. 

The on-site lighting is also crucial for achieving 

good visibility. Ambient light may be sufficient for 

near-surface inspections; however, it is unlikely to be 

sufficient at greater depths at which point artificial 

light will be needed. Two light levels were used in 

this study: 100 lux and 10000 lux. To put this in 

context, the approximate illuminance on a very dark 

overcast day is 100 lux, a moderately overcast day is 

1000 lux, and a bright day is 10,000 – 25,000 lux.  

2.3 Performance measures 

The performance of image-processing methods 

was evaluated and ranked using Receiver Operating 

Characteristic (ROC) curves. ROC curves offer a 

convenient way of characterising the performance of 

NDT methods under various environmental 

conditions (Rouhan and Schoefs, 2003) and have 

been expanded to image detection (Pakrashi et al., 

2008). The Detection Rate (DR) along with the 

accompanying Misclassification Rate (MCR) - which 

are similar to the Probability of Detection (PoD) and 

Probability of False Alarm (PFA) in the field of 

probability space and decision theory - are 

determined by comparing the damaged regions, as 

identified by a given image-processing method, with 

a visually segmented image that acts as the control as 

it is assumed it shows the true extent of damage.  

The DR and MCR are represented as a fraction 

between 0 and 1. Each (MCR, DR) pair form a 

coordinate in the ROC space that corresponds to a 

particular decision threshold. The DR and MCR are 

defined as: 

c

Card(E)
DR

n
   with     1gE = g ; =   (1) 

Card(F)
MCR

n
  with    1gF = g ; = −     (2) 

where Card(.) indicates the cardinal of a particular 

set,   1, ...= ,n , n is the total number of pixels in 

the image, nc denotes the number of damaged pixels 

and g is an instance label vector, where 1g =

http://www.ultir.net/


 
Figure 1. ROC curves of three crack detection techniques under four operating conditions. The techniques are: A percolation-based 

method (O’Byrne et al., 2014a), Eigenvalue analysis of the Hessian (Frangi et al., 1998), and Kirsch templates (Kirsch, 1971).  

 

corresponds to correctly identified non-damaged 

pixels, i.e. true positives, and 1g = −  corresponds to 

incorrectly detected pixels and undetected damaged 

pixels, i.e. false negatives and false positives. F 

gathers incorrectly detected and undetected damaged 

pixels while E gathers correctly detected pixels. 

The α-δ method is employed to find the optimum 

threshold value that maximises detection. This 

method provides a measure of how well a parameter 

can distinguish between two diagnostic groups (i.e. 

damaged region/non-damaged region) (Baroth et al., 

2011, Schoefs et al., 2012). It relies on calculating the 

angle, α, and the Euclidean distance, δ, between the 

best performance point, defined as an ideal NDT 

technique with 100% detection rate and 0% 

misclassification rate and the considered point to give 

a measure of the performance of the considered point. 

As this paper does not deal with risk analysis where 

the shape of the ROC is a key factor, only the delta, 

δ, parameter is required as a measure of performance. 

A low value for δ is indicative of a good performance. 

Therefore, the closer the ROC curve is to the upper 

left corner of the plot, the higher the overall accuracy.  

3 DATA ANALYSIS 

This section considers two case studies that 

showcase the value of ULTIR for inspectors. The first 

case study considers underwater crack detection 

techniques while the second case study deals with 

corrosion detection techniques. For both case studies, 

three image processing techniques are applied to 

controlled imagery in ULTIR and the performances 

are characterised through ROC analysis for four 

different visibility conditions. This involves 

constructing ROC curves for each technique under 

the following conditions: 1) low light and low 

turbidity, 2) low light and high turbidity, 3) high light 

and low turbidity, and 4) high light and high turbidity. 

The ROC curves for three crack detection techniques 

are presented in Figure 1, while  ROC curves for three 

corrosion detection algorithms are shown in Figure 2. 

By analysing the ROC curves, the performance 

levels of techniques are found for various on-site 

operating conditions. The techniques are then applied 

to new images and the actual performance levels are 

compared against the expected performance levels as 

predicted by analysing the ROC curves.



 
Figure 2. ROC curves of three damage detection techniques under four operating conditions. The techniques are: REMPS (O’Byrne 

et al., 2014b), Texture analysis (O’Byrne et al., 2014), and Otsu’s Method (Otsu, 1979).

3.1 Case Study I: Analysing and ranking crack 
detection methods  

Cracks provide an indication of structural 

degradation and are an important factor when 

diagnosing the condition of concrete and steel 

structures. Crack assessment has been well studied in 

the past, and numerous image based crack detection 

algorithms have been devised which are capable of 

identifying crack-like features. In this case study, the 

investigated methods are a percolation-based method 

(O’Byrne et al., 2014a), eigenvalue analysis of the 

Hessian (Frangi et al. 1998), and Kirsch templates 

(Kirsch, 1971). These techniques follow different 

methodologies, and naturally, they will differ in terms 

of how well they can tolerate deteriorating lighting 

and turbidity conditions. 

These techniques have been applied to 

photographs of a 1mm crack captured under varying 

lighting and turbidity levels, as shown in Figure 3.  
Figure 3. A crack that was photographed under (a) low light and 

low turbidity, (b) low light and high turbidity, (c) high light and 

low turbidity, and (d) high light and high turbidity. 



The images in Figure 3 are small regions, or sub-

images, taken from the 1 mm controlled crack data set 

in ULTIR. These sub-images represent only a very 

small fraction of the total images in ULTIR that were 

used when producing the ROC curves in Figure 1, and 

therefore, they do not contribute notably to the overall 

shape of the ROC curves. As such, it is remains valid 

to infer information from the ROC curves and use this 

information to conjecture the about the expected 

performance of methods when applied to the images 

in Figure 3.   

The ground truth data for these images, which 

shows the location of the crack, was also extracted 

from ULTIR. Using this ground truth data, the 

performance of the considered techniques was 

established. The actual performances – expressed in 

terms of δ – are summarised in Table 1. The 

performances are ranked from best (lowest δ) to worst 

(highest δ value). The expected performances are also 

presented; these are determined by studying the ROC 

curves in Figure 1 and finding the δ that corresponds 

to the optimum decision threshold. The results from 

the best performing techniques for each set of lighting 

and turbidity levels are shown in Figure 4. The results 

from the best performing techniques for each set of 

lighting and turbidity levels are shown in Figure 4. 

 
Table 1. Performance of the Percolation, Frangi, and Kirsch 

methods when applied to images in Figure 4. The expected 

performance value is derived from the ROC curves in Figure 1. 

Ref. 

No. 

Method Operating 

Condition 

Actual 

δ [rank] 

Expected 

δ [rank] 

1 Percolation Low light, 

Low turbidity 

0.04 [1] 0.22 [3] 

2 Percolation Low light, 

High turbidity 

0.39 [9] 0.57 [9] 

3 Percolation High light, 

Low turbidity 

0.05 [3] 0.32 [4] 

4 Percolation High light, 

High turbidity 

0.47 [10] 0.36 [6] 

5 Frangi Low light, 

Low turbidity 

0.05 [2] 0.17 [2] 

6 Frangi Low light, 

High turbidity 

0.48 [11] 0.69 [11] 

7 Frangi High light, 

Low turbidity 

0.05 [4] 0.13 [1] 

8 Frangi High light, 

High turbidity 

0.39 [8] 0.67 [10] 

9 Kirsch Low light, 

Low turbidity 

0.30 [7] 0.47 [7] 

10 Kirsch Low light, 

High turbidity 

0.89 [12] 0.69 [12] 

11 Kirsch High light, 

Low turbidity 

0.10 [5] 0.36 [5] 

12 Kirsch High light, 

High turbidity 

0.18 [6] 0.55 [8] 

It may be noted from Table 1 that while the actual and 

expected δ values differ quite markedly in terms of 

magnitude, the relative ranking of methods under 

various environmental situations is similar for both 

the actual results and the expected results. For 

instance, the expected performance of the Kirsch 

templates method in low light and high turbidity is 

ranked as the worst scenario for good detection 

accuracy. This is reflected by the worst performance 

levels (12th out of 12) in the actual results.  

Figure 4. Best performing techniques for each situation (a) 

percolation, (b) percolation, (c) Frangi, and (d) Kirsch. 

3.2 General Observations 

It may be observed from the ROC curves that the 

Frangi technique performs well in low turbidity 

conditions, however, the performance drastically 

diminishes in high turbidity conditions. This indicates 

that this method is highly sensitive to noise/turbidity. 

On the other hand, the percolation-based method 

demonstrates consistently good performance across 

both turbidity levels. The Kirsch template method 

produces moderately good results; however, it does 

not perform as well or as consistently as the 

percolation-based method. Findings of this nature are 

useful for inspectors as it allows them to choose a 

technique appropriate to their needs and one that is 

sufficiently robust to the onsite operating conditions. 

 



3.3 Case Study II: Analysing and ranking 
corrosion detection methods  

The corrosion detection methodology should 

identify and accurately define all corroded regions in 

an image whilst minimising the inclusion of 

extraneous regions. In reality, perfect damage 

detection is difficult to achieve given the inherent 

chromatic and luminous complexities encountered in 

natural scenes. Image-processing based damage 

detection techniques include colour intensity based 

methods and texture analysis based methods. 

Naturally, the techniques in each group are suited to 

different applications. The effectiveness of colour 

based segmentation algorithms and texture based 

segmentation algorithms will vary according to the 

surface and damage type under consideration as 

certain damages are more separable from the 

undamaged surface based on either their colour or 

texture attributes. This section assesses the 

performance of two colour based methods, REMPS 

(O’Byrne et al., 2014b) and Otsu's thresholding 

(Otsu, 1979); along with a texture analysis based 

technique (O'Byrne et al., 2013) previously proposed 

in the domain of NDT.  

These techniques have been applied to 

photographs of a corrosion stain captured under a) 

low light (100 lux) and low turbidity (0 NTU), b) low 

light (100 lux) and high turbidity (12 NTU), c) high 

light (100 lux) and low turbidity (12 NTU), and d) 

high light (10,000 lux) and high turbidity (12 NTU), 

as shown in Figure 5.  

Figure 5. A corrosion stain that was photographed under (a) low 

light and low turbidity, (b) low light and high turbidity, (c) high 

light and low turbidity, and (d) high light and high turbidity. 

As in the case of the first case study, the three damage 

detection algorithms are applied to the images in 

Figure 5 and the performances are ranked from best 

(lowest δ) to worst (high δ value).  The expected 

performances are obtained from analysing the ROC 

curves in Figure 2 and finding the δ that corresponds 

to the optimum decision threshold. These results are 

tabulated in Table 2, and the outputs from the best 

performing techniques for each set of lighting and 

turbidity levels are shown in Figure 6.  

 

Table 2. Performance of the REMPS, Texture Analysis and 

Otsu’s method when applied to images in Figure 5. The expected 

performances are found from the ROC curves in Figure 2. 

Ref. 

No. 

Method Operating 

Condition 

Actual 

δ [rank] 

Expected 

δ [rank] 

1 REMPS Low light, 

Low turbidity 

0.32 [2] 0.36 [2] 

2 REMPS Low light, 

High turbidity 

0.62 [9] 0.49 [5] 

3 REMPS High light, 

Low turbidity 

0.57 [7] 0.48 [4] 

4 REMPS High light, 

High turbidity 

0.59 [8] 0.54 [7] 

5 Texture Low light, 

Low turbidity 

0.50 [5] 0.43 [3] 

6 Texture Low light, 

High turbidity 

0.70 [11] 0.67 [12] 

7 Texture High light, 

Low turbidity 

0.38 [3] 0.49 [6] 

8 Texture High light, 

High turbidity 

0.43 [4] 0.58 [8] 

9 Otsu Low light, 

Low turbidity 

0.31 [1] 0.19 [1] 

10 Otsu Low light, 

High turbidity 

0.63 [10] 0.60 [10] 

11 Otsu High light, 

Low turbidity 

0.57 [6] 0.60 [9] 

12 Otsu High light, 

High turbidity 

0.71 [12] 0.64 [11] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
Figure 6. Best performing techniques for each situation (a) 

Otsu’s method, (b) REMPS, (c) Texture analysis, and (d) 

Texture analysis.  

 

It may be seen from Table 2 that the actual and 

expected δ values agree quite closely with one 

another. This is further conveyed in Figure 7, which 

plots the expected performances alongside the actual 

performances for each scenario (a description of the 

scenarios is provided with reference to Table 2).  

 
Figure 7. The expected and actual performances for each 

situation (which are described in Table 2). 

 

3.4 General Observations 

It may be noted from these results that REMPS 

was quite robust - it displayed less sensitivity to the 

input conditions as evidenced by the similar ROC 

curves across all lighting and turbidity levels in 

Figure 2. While Otsu's method demonstrated success 

in clear conditions (no turbidity), the performance 

levels sharply declined as the visibility conditions 

deteriorated. 

The texture analysis method outperformed the 

colour based methods in the high lighting situations. 

While the high light and the bright surface created 

luminous complexities that misled the colour based 

methods, the strong light source illuminated and 

brought out some of the textural properties of the 

surface which benefitted the texture analysis 

technique. 

Overall, it is hard to accurately predict the success 

of image-processing based methods as there are a host 

of factors that contribute towards successful 

detection. Nevertheless, turbidity and lighting are 

major factors and accounting for these parameters 

represents an important step. This case study shows 

how inspectors can get a sense of the performance of 

image-processing based damage detection methods 

under realistic underwater operating conditions prior 

to carrying out an inspection. This can add value to 

any underwater inspection campaign in which image 

processing based methods are being considered as an 

NDT tool. The work is relevant for traditional 

engineering sectors of SHM like bridges (Pakrashi et 

al., 2013) as well as for bourgeoning sectors like 

renewable energy (Jaksic et al., 2015a,b), leading to an 

optimised maintenance and management of these 

infrastructure systems (Weninger-Vycudil et al., 

2015). 

4 CONCLUSION 

Image processing based methods are increasingly 

being recognised as a valuable tool for inspecting the 

submerged part of offshore and marine structures. 

They provide a source of quantitative information that 

naturally supplements the largely qualitative 

information obtained from traditional visual methods. 

As with all NDT techniques, it is of great practical 

importance for inspectors to know the effectiveness 

of these techniques when applied in the field. For 

image-processing methods applied in an underwater 

setting, this principally means investigating how the 

visibility conditions affect detection accuracy. 

Underwater visibility is chiefly governed by the 

lighting and turbidity levels. This study looks at the 



influence of these parameters by drawing on a large 

image database, known as ULTIR (Underwater 

Lighting and Turbidity Image Repository), which 

consists of submerged specimens that have been 

photographed under controlled lighting and turbidity 

levels. The specimens feature various forms of 

damage - the true extent of which is known - and it is 

therefore possible to measure the performance of all 

applied image-processing methods. Receiver 

Operating Characteristics (ROC) curves are 

employed to rank the techniques under varying 

operating conditions. 
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