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Abstract 

This paper estimates visual inspection quantitatively prior to its implementation in a Bridge Management 

System (BMS) using a Value of Information (VoI) approach employing a Bayesian pre-posterior analysis. Information 

from a significant number of real bridges from Ireland and Portugal are considered in this regard following existing 

commercial practices.  The variation of different parameters on the estimated VoI is investigated including the 

assumed probabilistic models of the prior bridge state, the likelihood of inspector assigned condition ratings and the 

economic setting surrounding the cost matrix for maintenance decision alternatives. The values of no information, 

perfect information and imperfect information are presented and the change in the optimal strategy based on such 

information is assessed. The effect of human imperfections in assessment and difference in condition rating scale are 

also estimated. The studies and findings of this paper are expected to allow a better insight for practising engineers 

and researchers working in bridge management. 
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1.0 Introduction 

This paper aims to addresses the gap in knowledge that exists in an organised estimate of visual inspection, measured 

through Value of Information (VoI), within a bridge management system (BMS) framework. A significant number of 

operational bridges have been used for these estimates to be useful and multiple countries have been considered. The 

impact of human effects, variation in inspection accuracy and precision, impact on current bridge state on visual 

inspection and the variations of estimates from using different BMS have been considered. Collectively, the results 

assess the visual inspection for individual BMS and allow infrastructure managers of other BMS to assess their bridge 

stock and take decisions on inspection based on their method, accuracy and precision – thereby ensuring the 

portability of the method and findings to a range of disparate situations.  

 Successful infrastructure management is fundamental to economic growth and international competitiveness 

(ASCE, 2013). Bridges age over time and often exceed their design life. Comprehensive BMSs facilitate owners in 

inspecting, maintaining and rehabilitating deteriorating bridge stock within the limitations of financial resources 

(Mirzaei et al., 2014). A BMS refers to a set of decisions, in relation to design, construction, maintenance; and 

structural intervention, made by infrastructure management over time, to maximise performance (Sánchez-Silva et al., 

2016). Uncertainties of either epistemic or aleatory nature complicate such decision problems and may lead to 

suboptimal actions or even actions with catastrophic consequences (Der Kiureghian & Ditlevsen, 2007). Information 

is fundamental to reduce uncertainties; information about the state of bridges and its components, and about the 

consequences of various decision alternatives (Konakli et al., 2015). Information gathering practices (Znidaric et al., 

2011) are central to the success of a BMS, and can be broadly categorised under three main levels - visual inspection; 

principal inspection; and special inspection.  

 Visual inspection is typically the first step in a BMS, whereby each bridge is visually evaluated and assigned a 

pre-defined condition rating, providing a condition assessment of the selected stock of bridges (Chase et al., 2016). 

These condition ratings can be and are often used to predict the future condition state of elements (Zanini et al., 2016), 

to determine if maintenance or structural intervention is to be carried out, commonly using the Markovian 

deterioration model (Wellalage et al., 2014; Li et al., 2014; Beck & Au, 2002). Otherwise, condition ratings are simply 



used to identify areas for future evaluation; either through structural assessment (Saydam et al., 2013) or further 

inspection via principal inspection (NRA, 2008), special inspection (Browne et al., 2010; Duffy, 2004) or emerging 

technologies (Vaghef et al., 2011; Washer & Fuchs, 2015; Zink & Lovelace, 2015). In this regard, for earthquake 

loadings, a risk-based metric can be adopted (Morbin et al., 2015). While principal inspections refer to visual 

assessments, special inspections (Pakrashi et al., 2012) can involve significant mechanical and chemical testing of the 

structure as per requirements and the cost of special inspection can be significantly higher than principal inspections 

and variable based on the requirement of tests and the size of the bridge.  

 There is a lack of understanding of the estimated benefit of visual inspection information since explicit 

information regarding the mechanical properties of the material or structural components are unavailable. Empirical 

attempts have been made with limited success to use visual inspection results to update reliability analysis of bridges 

using conservative assumptions (Estes et al., 2004; Wang, 2010). Visual inspection data can be incomplete and is 

uncertain in comparison to testing and monitoring involving emerging technologies. A specific defect or parameter is 

usually  updated by monitoring at optimum time intervals and can be used to directly update the reliability of a 

structure (Luque & Straub, 2015). Assigning a quantitative value to the reduction of uncertainty via condition rating 

information is essential in bridge management to ensure that there is a correct basis for allocating resources 

(Weninger-Vycudil et al., 2015) to visual inspection strategies (Deshmukh & Bernhardt, 2000). Srinivasan & Kumar 

(2013) provided a methodology to compare the merits of different condition monitoring approaches, one being visual 

inspection, for underground tunnels. However, in bridge management, focus has centred around the accuracy of visual 

inspection data, rather than benefit estimates (Graybeal et al., 2002; Moore et al., 2001). Probabilistic models exist for 

condition rating (Attoh-Okine & Bowers, 2006; Gattulli & Chiaramonte, 2005; Pozzi et al., 2010; Rafiq et al., 2015) 

but the VoI concept is significantly unexplored.  

 VoI (Lindley (1956); Raiffa & Schlaifer (1961); DeGroot (1984)), typically calculated as the difference 

between the prior and pre-posterior analysis and represented in terms of maximum expected utility (Von Neumann & 

Morgenstern, 1953), is a powerful tool for assessing the merits of an inspection technique prior to implementation, and 

for choosing the optimal inspection strategy among possible alternatives (Pozzi & Der Kiureghian, 2012).  Since being 

introduced to civil and structural engineering (Ang & Tang, 1975; Benjamin & Cornell, 1970; Tang, 1973), Bayesian 

updating of probabilistic models with inspection results have provided the basis to optimise inspections in aircraft and 

offshore structures subject to fatigue deterioration (Madsen et al., 1989; Sørensen & Thoft-Christensen, 1986). A 

similar method based on Markovian deterioration models was employed in infrastructure management (Madanat, 

1993). Recent research has focussed on the value of deterministic information, albeit imperfect or uncertain, and the 



ability of this information to directly update the prior belief of the degradation state or reliability of a structural 

component or system (Konakli et al., 2015). Structural reliability methods (SRM) can be used to effectively model the 

VoI (Straub, 2014) by measuring the evolution of structural performance as a support to maintenance interventions 

(Goulet et al., 2015; Pozzi & Der Kiureghian, 2011; Straub & Faber, 2005). VoI analysis has had widespread 

applications (Goulet & Smith, 2013; Malings & Pozzi, 2015; Pozzi et al., 2010) for SHM prsactices, including sensor 

placement (Krause, 2008), investigating long term benefits of SHM (Pozzi & Der Kiureghian, 2011) and the 

comparison of alternative SHM methods (Pozzi & Der Kiureghian, 2012). The impact of SHM on decision making, in 

economic terms, has been quantified (Zonta et al., 2014). In the field of natural hazards, VoI has been utilised to 

prioritise post-earthquake bridge inspections (Bensi et al., 2015; Bensi, 2010) and De Leon et al. (2015) used it to 

develop economic strategies to reduce the expected number of fatalities and losses for bridge sites exposed to 

hurricane risk.  

A graphical framework is proposed to quantify the VoI of visual inspection by use of Bayesian Network (BN) 

and Influence Diagram (ID) (Jensen & Nielsen, 2007; Koller & Friedman, 2009). A cohort bridges is often comprised 

of deterministic and random factors that interact with each other; dependencies occur naturally and are important to 

account for (Biondini & Frangopol, 2016). Although a probabilistic model is a logical format, where the state of an 

infrastructure system is represented via a joint distribution, even in the simplest case, the explicit solution of this joint 

distribution is unmanageable due to computational demands and statistical data requirements. BNs can represent high 

dimensional distributions by exploiting conditional independence, (Koller & Friedman, 2009) and can be quantified 

through physical variables linked to the degradation process in an intuitive way through expert judgment combined 

with field measurements. Firstly, the condition-based maintenance strategy must be modelled, considering the 

decision alternatives and associated utilities. This model must describe the condition-based deterioration and allow for 

updating based on a sample of visual inspection results (Memarzadeh & Pozzi, 2016), so that a revised expected life-

cycle management cost (after inspection results are observed) can be deduced. Bayesian inference allows updating of 

the probabilities when observations, such as bridge condition ratings, become available (Bensi et al., 2013; 

Kosgodagan et al., 2015). Dynamic Bayesian Networks (DBNs), BNs with a time-indexed sequence of nodes, can be 

used to analyse problems with time-varying domains, including inspection and monitoring (Bensi et al., 2013; Straub, 

2009). The type of deterioration examined in this paper, relating to concrete and masonry arch bridges, is more varied 

and is commonly assessed through condition indicators, which have complex interdependencies. Attoh-Okine & 

Bowers (2006) and Rafiq et al. (2015) have presented condition based deterioration models of such bridge structures, 

using both BN and DBN models.  



 The mathematical framework is presented in the next section, followed in Section 3 by an application for 

individual decision maker managing a single bridge in Section 4. This is extended to the value that visual inspection 

provides to infrastructure asset managers operating a BMS using Irish and Portuguese datasets for a regional road area 

(Section 5). Numerical investigations demonstrate how the decision problem is influenced by the assumed 

probabilistic models. The paper concludes with a summary of the main findings and a discussion on the challenges 

and potentials of VoI analysis for condition rating data. 

 

2.0 Value of Information Analysis  

 This section presents a brief outline of VoI analysis for completeness. The inspection strategy is the one that 

maximises the VoI minus the cost of the strategy. A decision problem under uncertainty where (i) the action 

alternative chosen depends on the state of an uncertain variable, (ii) the true state is unknown, but (iii) it is possible at 

a cost to obtain information about the state of the uncertain variable, the optimal action ( opta ) maximising the 

expected utility (Von Neumann & Morgenstern, 1953)s given by: 

)],([maxarg XauEa X
Aa

opt


=            (1) 

where Aa is an action chosen from space A, Xx  is an uncertain variable in space X, Yy an observed sample 

composed of n observations nyy ,...,1 , ),( xau  is the utility function of a and x and the expected utility (U) is given 

by the expectation (Ex): 

)],([ XauEU optX=             (2) 

 Information gathered prior to making a decision in the form of an inspection strategy, s leads to the revised 

decision problem of finding the combination of inspection strategies s and action alternatives a, that maximise utility. 

If the optimal decision is chosen based on existing knowledge of the system prior to the acquisition of any additional 

information; represented as a prior probability distribution )(xp  and if another optimal decision is determined by 

updating probabilities based on information received from an inspection, the posterior distribution is defined as the 

probability of an unknown parameter conditional on the information obtained, given as )()|()|( xpxypyxp = . The 

two functions are related via Bayes rule, given as: 
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In pre-posterior analysis, the optimal decision is determined by updating probabilities based on expected information 

prior to implementation of an inspection strategy and the potential of additional information to improve decision 

making is assessed before the inspection strategy is implemented. The pre-posterior distribution )(yp  is defined as 

the distribution for future expected information based on the information that has already been seen. It does not 

depend on the unknown parameter as in the posterior case, as the unknown parameter has been integrated out.  

2.1 Prior Analysis  

In the prior analysis, optimal decision is determined based on existing knowledge of the system i.e. with no 

information from inspection, given by: 
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where )(xfX  is the prior probability density function (PDF) of X and ),( xau  is the utility associated with a given set of 

actions a and realizations x. The corresponding prior expected utility is given by: 

==
X

XoptoptXprior dxxfxauXauEU )(),()],([          (5) 

2.2 The Value of Perfect Information       

 Data is considered as perfect, if it is directly informative of the parameter of interest. A decision problem with 

perfect information is the unrealistic situation, in which there is no uncertainty on X. For a given x, the DM can always 

choose the optimal action as: 

),(maxarg)(* Xauxa
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opt


=             (6) 

The conditional value of perfect information (CVPI≥0) is the value of an inspection after the information has been 

received and given as: 

),()),(()( * xauxxauxCVPI optopt −=           (7) 

while the true value of X is not known a priori, it is possible to calculate the expected value of perfect information 

(EVPI) defined as the expected increase in utility that the DM obtains from gaining access to a sample of perfect 

observations, before making a decision and defined as:  
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representing the upper bound of the value of inspection strategy chosen. If the cost of an inspection strategy is greater 

than is EVPI, it is inefficient.  

2.3 The Value of Imperfect Information  

If data is measured with noise, it is imperfect and visual inspection provide imperfect information on the true state X. 

In posterior analysis, imperfect information is received and stored in the vector y and the probabilistic description of X 

is updated based on this information. The optimal action is given by: 
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where )|(| yxf yX
 is the joint PDF of X conditioned on y (posterior PDF) obtained from Bayes’ rule. The posterior 

expected utility is given as: 

]},[{)( | XauEyU yoptXposterior =            (11) 

 The difference between the posterior and prior expected utility, a measure of the VoI and termed Conditional 

Value of Imperfect Information, is expressed as:  

priorposterior UyUyCVII −= )()(            (12) 

)(yCVII  is zero if the posterior optimal decision yopta |  is the same as the prior optimal decision opta  and positive 

otherwise. For a BMS, )(yCVII  has limited benefits. Once an observation y is made i.e. through an inspection 

strategy, it is futile to compare )(yU posterior
 to the results of the original prior utility 

priorU , which only answers 

questions after the fact, such as ‘What was the least expensive maintenance strategy employed last year?’ The interest 

of this paper is in the VoI contained in y, before the imperfect information is received i.e. before a costly inspection 

strategy is implemented.  

 The expected value of imperfect information (EVII) is the expected value of the CVII with respect to all 

possible measurements outcomes. The information is modelled via a random vector Y, where the pre-posterior 

distribution )(yfY
 defines all measurement outcomes:  
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Substituting in values for priorU  and )(yU posterior  gives: 
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EVPI provides an upper bound for EVII and a rationally an inspection strategy, with a cost Cs is chosen if: 

 0− sCEVII              (16) 

The optimal inspection strategy Ss  will be the one that has the minimum cost: 
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3.0 Value of visual inspection information to an individual decision maker 

managing a single bridge 

3.1 VOI calculation 

For calculation of VoI, the Bridge_statei indicates the condition state of a (ith) bridge which takes three possible 

values: good (G), degraded (D) or poor (P). The Actioni variable consists of three maintenance actions: do nothing 

(DN), repair (R) and major rehabilitation (MR). The utility variable Costi measures the total cost in monetary terms 

and is related to Bridge_statei and Actioni. A condition rating is assigned based on the finding of a trained bridge 

inspector but human factors remain in variations of such rating. This imperfect observation is represented by CRi, 

which can take three possible values: CR1, CR2 or CR3, corresponding to ‘good’, ‘degraded’ or ‘poor’ state, 

respectively. The ‘degraded’ state is assumed to have a 15% probability of failure, the ‘poor’ state is assumed to lead 

to certain failure. The main cost values are as follows: cost of repair CR = €25,000, cost of major rehabilitation CMR = 

€50,000, and cost of bridge failure CF = €250,000. The values are chosen after considering a number of representative 

commercial cases available to the authors. The variables: Bridge_state, Action, Cost and Condition Rating (CR) are 

represented as X, A, C and Y, respectively. 



3.1.1 Prior analysis 

The prior probability is given as the vector    15.035.05.0)()()( =PPDPGP . The minimum expected cost in 

the prior case is given as: 
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which is an average cost value. The optimal action is to ‘major rehabilitation’ in the prior case, as it is the action with 

the minimum expected cost. 

3.1.2 Calculating the value of perfect information 
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The optimal strategies are as follows: i) ‘do nothing’ when the bridge is in the ‘good’ state; ii) ‘repair’ when the bridge 

is in the ‘degraded’ state and iii) ‘major rehabilitation’ when the bridge is in the ‘poor’ state with: 

75.33)( =−= xCCVOPI perfectprior           (25) 

which represents a €33,750 expected cost saving with perfect information. The actual value in terms of monetary units 

is subject to assumptions related to the original values on savings and how utility is converted to such monetary units. 

3.1.3 Calculating the value of imperfect information 

The value of imperfect information taking into account the test likelihood matrix in Table 2 is given as: 
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}50,718.156,75.152min{205.0}50,89.35,74.41min{31.0}50,975.31,15.13min{485.0)( ++=yCimperfect

              (27) 

754.27)( =yCimperfect             (28) 

The optimal strategies are as considered for perfect information: 

246.22)( =−= yCCVOII imperfectprior           (29) 

which represents a €22,246 expected cost saving with imperfect information. 

3.2 Graphical solution of the VoI  

The graphical computation of the VOPI and the VOII is solved via the LIMID algorithm using the Bayes Net Toolbox 

in MATLAB (Murphy, 2001). The VOII is the MEU of the prior case subtracted from the MEU of the pre-posterior 

case and the results are shown in Table 1.  For no information, the optimal strategy is to ‘do nothing’. In the case of 

perfect and imperfect information, the optimal strategy is to ‘do nothing’ when the bridge is in the ‘good’, ‘repair’ 

when the bridge is in the ‘degraded’ state and to carry out ‘major rehabilitation’ when the bridge is in the ‘poor’ state. 

If a visual inspection strategy is implemented that yields imperfect information regarding the bridge state, the DM 

should expect to receive a cost saving of approximately €22,250. The VOPI of €33,750 represents the upper bound in 

the decision problem. A rational agent will decide to undertake a visual inspection strategy s, only if the cost of the 

strategy Cs is less than €22,250 i.e. 0− sCVOII . 

Case Optimal Strategy E[C]  (€) VoI (€) 

No Information (prior) Major rehabilitation -50,000 - 

Perfect Information Do nothing if in the good state; repair if in the degraded state; and 

major rehabilitation if in the poor state. 

-16,250 33,750 

Imperfect Information  Do nothing if in the good state; repair if in the degraded state; and 

major rehabilitation if in the poor state. 

-27,750 22,250 

Table 1. LIMID outputs for each case. 

The outcome of Equations (5), (9) and (15) depend on the specific values assigned to the prior probability of 

the bridge state; the likelihood of inspector assigned condition ratings; and the cost values of the action alternatives. 

Figures 1 and 2 outline two numerical examples to examine how the accuracy of condition rating data and the prior 

probability of the bridge state affect the value provided by visual inspection. In Figure 1, the accuracy of visual 

inspection is varied with the other parameters in the model remaining constant. As the accuracy increases, the 

expected cost of gathering condition rating data decreases. A visual inspection with 0% accuracy and 100% accuracy 

is identical to a visual inspection with no information and perfect information respectively. At an accuracy level of 

12%, the value of imperfect information equals the visual inspection cost (Figure 1b). 



 
Figure 1a. Expected cost of imperfect information conditional on the accuracy of visual inspection. 

 

Figure 1b. Expected value of imperfect information (VoII) conditional on the accuracy of visual inspection. 



In Figure 2, the prior probability of the ‘poor’ bridge state, which is the same as the prior probability of failure 

PF is varied from 0 to 1.0, with the other two bridge states, ‘good’ and ‘degraded’, fixed respectively. Three different 

scenarios (70% accuracy, 80% accuracy, and 90% accuracy) of visual inspection are suggested. 

 
Figure 2a. Expected cost conditional on the probability of failure, PF. 

As the prior probability of failure increases, the cost of inspection also increases. The expected cost of 

inspection is equivalent to the cost of major rehabilitation CMR for PF = 0.4, 0.6, and 0.7 for accuracies of 70%, 80% 

and 90%, respectively. This observation is reinforced in Figure 2b, where the expected VoI reduces to 0 for the above 

probabilities and inspection accuracy scenarios. In Figure 2b, the expected VoI peaks at PF = 0.2, which is due to the 

fact that in the case of ‘no information’, the optimal maintenance action is: ‘do nothing’ when 1.0FP , ‘repair’ when 

2.01.0  FP , and ‘major rehabilitation’ when 2.0FP . The shift of the expected cost of ‘no information’ between 

PF = 0.1 and PF = 0.2 results in a higher expected VoI at PF = 0.2.  



 
Figure 2b. Expected VoI conditional on the probability of failure, PF. 

This example indicates that a rational assessment of the VoI of visual inspection requires a full decision 

model, including an accurate assessment of the prior probability of the bridge states, the likelihood of inspector 

assigned condition ratings and the economic setting surrounding the maintenance action alternatives. If any of these 

elements are excluded from the decision model, an objective estimate of the VoI cannot be determined. The principal 

method of bridge inspection is carried out using visual means and determining the value it provides has the potential 

of widespread applications to infrastructure asset managers in optimising inspection practices within different BMS.  

 

4.0 Value of visual inspection to infrastructure asset managers  

The hierarchy of roads in the Republic of Ireland comprises Motorways, National roads, Regional roads, and Local 

roads. Non-national regional and local roads in Ireland account for 94% of the country’s roads and carry 

approximately 54% of all road traffic (DTTAS, 2016).  These roads provide mobility within and between local areas 

driving local economic activity. They also provide vital links to Ireland’s strategic national roads, ports, and airports, 

linking Ireland with the wider European economy. The maintenance of these infrastructure systems is essential from 

an economic, social and political perspective with €7.7million of state grants allocated to local authorities to carry out 

bridge rehabilitation works on regional and local roads in 2015 (O'Brien, 2015). 



Condition Rating 

(CR) 

Description 

0 No or insignificant damage. 

1 Minor damage but no need of repair. 

2 Some damage, repair needed when convenient.  Component is still functioning as originally 

designed.  Observe the condition development. 

3 Significant damage, repair needed very soon. i.e. within next financial year 

4 Damage is critical and it is necessary to execute repair works at once, or to carry out a 

detailed inspection to determine whether any rehabilitation works are required. 

5 Ultimate damage. The component has failed or is in danger of total failure, possibly 

affecting the safety of traffic. It is necessary to implement emergency temporary repair work 

immediately or rehabilitation work without delay after the introduction of load limitation 

measures. 

Table 2. Condition rating descriptions (NRA, 2008). 

Data for 449 bridges on regional roads and 828 bridges on local roads in County Cork, Ireland was considered 

for this section of study. These bridges are managed by a local authority operating the Eirspan BMS (Duffy, 2004). 

Additionally, data for 85 bridges for a bridge stock around Dublin is also considered. For each bridge, a visual 

inspection was carried out by a trained bridge inspector and a general condition rating was assigned as per Table 2. 

The cost of maintenance and repair works undertaken on each bridge in relation to the condition rating assigned is also 

provided. The distribution of condition ratings for three separate regions from which the bridge stocks are selected, is 

shown in Table 3. It can be seen that 7%, 29% and 26% of bridges were assigned a condition rating of 3 and over for 

the South Dublin; Cork regional; and Cork local road area respectively, suggesting that the Cork region is in 

significant need of investment in terms of bridge rehabilitation works. 

  CR0 CR1 CR2 CR3 CR4 CR5 

South Dublin local and regional roads (n = 85) 0.11 0.54 0.28 0.06 0.01 0 

Cork regional roads (n = 449) 0.06 0.19 0.46 0.22 0.06 0.01 

Cork local roads (n = 828) 0.02 0.11 0.60 0.18 0.05 0.03 

Table 3. Distribution of condition ratings. 

The bridge condition state can take on six possible values, fixed by the BMS employed. The prior analysis 

will be based on a time-based maintenance strategy, whereby there is no information from inspections on the bridge 

state. A condition based maintenance strategy represents the pre-posterior case. The objective of a condition-based 

maintenance strategy is to provide information, in this case through visual inspection, regarding the condition state of 

a bridge. This information is combined with an existing prior belief on the degradation level of the bridge, to deliver a 

better estimate of the ‘true’ bridge state. The DM can then use this information to make informed decisions as set out 

in the BMS guidelines. The VoI provided by visual inspection is defined as the difference in the MEU of the 

condition-based maintenance strategy and the time-based maintenance strategy.  



It is a common perception that a condition-based maintenance strategy provides a greater value that a time-

based maintenance strategy, as a better estimate of the bridge state, should lead to improved maintenance decisions. 

However, the benefit that visual inspection information provides is heavily dependent on an accurate description of the 

model parameters. A measure on the merits that visual inspection provides to infrastructure asset managers operating a 

BMS is provided here. How this value is influenced by the accuracy and precision of inspector assigned condition 

ratings, the prior probability of the bridge state and uncertainties in the condition rating scale are also illustrated. The 

time-based and the condition-based maintenance strategy are specified as the prior case and the pre-posterior case, 

respectively.     

4. 1 Variables involved in the Model  

The IDs are solved using the LIMID algorithm. The conditional probability distribution of each node is given as a 

conditional probability table. The Cork regional road area is chosen for the ‘typical case’ in the analysis. 

4.1.1 Bridge state 

The change in bridge state over time is represented by },...,,{ 21 nxxxX = , where n is the number of possible 

condition states. The degradation over time is represented by the stochastic process ,...}2,1,0,{ =tX t , where Xt 

describes the state of the bridge at time t. It is assumed that a bridge deteriorates sequentially between the condition 

states, with 0 being the best state. The probability that the bridge is in state i at time t is represented by the following 

probability distribution: )Pr()( iXi tt == . The bridge state vector is defined as  )(),...,1(),0( Ntttt  = ; 

0)( it ; Ni ,...,1,0= ;  ==
N
i t i0 1)( , where t  describes the probability distribution of the bridge state at time t 

(Srinivasan & Kumar, 2013). At time 0=t , the DM’s belief 0  characterises the prior knowledge regarding the 

condition of the bridge before the beginning of the decision-making period. In this analysis, the condition rating data 

from the Cork regional road dataset is used to define a prior probability vector for the bridge state, given as, π = [0.063 

0.192 0.458 0.219 0.058 0.011]. 

4.1.2 Condition Rating 

A trained inspector conducts a visual inspection on a bridge and assigns a condition rating as per Table 4. This 

process is represented as  ,...2,1,0, =tCRt  with a finite observation space  mCR ,...,2,1= , where m is the number of 

condition states. In order to relate the information received from visual inspection to the state of the asset, an 

information matrix describing the error associated with visual inspection must be defined. Visual inspection is highly 

subjective and can lead to variable results that depend on multiple factors (Moore et al., 2001). To accurately define an 



information matrix, a study could be completed, in which multiple bridge inspectors inspect bridges of each condition 

rating, whereby the condition rating has previously been deterministically defined through an in-depth expert-level 

inspection. This data could then be used to accurately define probability distributions of assigning the correct 

condition rating given the ‘true’ bridge state (Moore et al., 2001). As this data is not available here and for most bridge 

stock under practical conditions, it is assumed that the probability of an inspector assigning a correct condition rating 

follows a normal distribution ),( N  with mean μ and unit standard deviation 1=  over the finite outcome space 

}5,4,3,2,1,0{=CR  (Graybeal et al., 2002).  

This normal distribution describes the error (area underneath the curve) in the ability of an inspector to assign 

the correct condition rating. On the basis of this, an mn  information matrix, ][ ikyY = , mk , ni , is assigned, 

where yik represents the conditional probability of receiving condition rating k, given that the current state is i, i.e.,

)|Pr( iXKCRy ttik === (Srinivasan & Kumar, 2013). The information matrix is given as: 

Y =  

 

 

and is based on limited and existing information on the topic. From the early days of treating uncertainties around 

human effects on decisions on infrastructure in a systematic manner (Stewart, 1992) to date (Malings & Pozzi, 2016), 

the importance of field data and the lack of it have been highlighted, At this stage, most databases available to the 

authors are not mature enough to develop benchmarked information matrices, although over time this situation is 

expected to be improved. 

4.1.3 Decision alternatives 

The decision space for the decision node Di is defined first. Let  ,...2,1,0, =tDt  be the decision process to 

control the evolution of the bridge state, where tDd  indicates the maintenance decision made at time t. For the 

BMS in this study, },,,,,{ 543210 ddddddD = , where d0 = ‘do nothing’, d1 = ‘minor remedial works’, d2 = ‘minor 

repair works’, d3 = ‘minor repairs and preventative measures’, d4 = ‘extensive repairs’, and d5 = 

‘replacement/extensive rehabilitation’.  

0.3989 0.242 0.054 0.0044 0.0001 0 

0.242 0.3989 0.242 0.054 0.0044 0.0001 

0.054 0.242 0.3989 0.242 0.054 0.0044 

0.0044 0.054 0.242 0.3989 0.242 0.054 

0.0001 0.0044 0.054 0.242 0.3989 0.242 

0 0.0001 0.0044 0.054 0.242 0.3989 



4.1.4 Cost matrix 

The utility node is represented in terms of cost, which is a function of the bridge state and the decision 

alternative chosen. The cost function ),( diC  represents the cost incurred when the asset is in state i and the decision d 

is taken. Given prior πt the expected immediate cost incurred at time t is = =
N
i t diCidC 1 ),()()(  . The cost matrix is 

defined based on the following assumptions: 

− The cost of each decision alternative is defined as the mean repair cost conditional on the condition rating 

assigned, i.e. if a bridge is assigned a condition rating of CR2, the mean repair cost is €11,690. 

− The probability of bridge failure for each bridge state is given by the following vector PF = [0 0.1 0.2 0.5 0.75 

1]. Thus, if a bridge is defined as being in the worst state x5, it is assumed to lead to sure failure. This 

probability assignment is for demonstrative purposes only. 

− The cost of bridge failure is €250,000. 

− The cost of a visual inspection strategy is €500/bridge. 

The cost matrix for the analysis is given as: 

C =  

 PF = 0 PF = 0.1 PF = 0.2 PF = 0.5 PF = 0.75 PF = 1 

x0 2030 27030 52030 127030 189530 250000 

x1 4480 4480 544800 129480 191980 250000 

x2 11690 11690 11690 136690 199190 250000 

x3 16480 16480 16480 16480 203980 250000 

x4 31530 31530 31530 31530 31530 250000 

x5 50760 50760 50760 50760 50760 50760 

       

Indirect costs can vary significantly (Pakrashi et al., 2011) and thus a consideration of such variation can make the 

comparison for inspection uninterpretable. Under such circumstances, for this example, the relative contributions of 

indirect costs are assumed to be of similar level. 

4.2 Results 

The results for the typical case using the Cork regional road data are given in Table 6. As anticipated, a 

perfect inspection has the lowest expected cost of €12,339. An inspection strategy is only worth undertaking if it costs 

less than its VoI and in this case, the estimated value is  €6,876, which is related to the case of imperfect information. 

Case Optimal Strategy E[C] (€) VoI (€) 

No Information (prior) d3 29,972 - 

Perfect Information  (x0, d0), (x1, d1), (x2, d2), (x3, d3), (x4, d4), (x5, d5) 12,339 17,633 

Imperfect Information  

 

(x0, d2), (x1, d3), (x2, d3), (x3, d3), (x4, d4), (x5, d4) 23,096 6,876 

Table 4. LIMID outputs. 



In the case of no information the strategy with the minimum expected cost is d3. With perfect information 

regarding the condition state, the optimal strategy takes the form of an identity matrix (Table 6). Imperfect information 

via visual inspection deduces a change in the above identity matrix, with the following strategy DImperfect_information = [(x0, 

d2), (x1, d3), (x2, d3), (x3, d3), (x4, d4), (x5, d4)] giving the lowest expected cost. As a result, visual inspection may not be 

suitable for certain databases and conditions, which will be investigated in the next section. These ratings can be 

improved in real situations by sharing more databases, which has started gaining popularity. Such information can be 

also be related to capacities and this allows clustering of bridges (Hanley & Pakrashi, 2015) or transition of ratings 

over time (Reale & O’Connor, 2011), both of which are signatures of the collective performance of a bridge stock. 

 

4.3 Factors influencing the value provided by visual inspection 

4.3.1 Condition Rating Accuracy and Precision 

Accuracy is a measure of how close an assigned condition rating value is to the actual ‘true’ bridge state. One 

of the key challenges with visual inspection is that bridge inspectors grade the degradation differently based on their 

perception of the level of degradation. For example, one inspector may have an optimistic perception and grade a 

bridge as CR3, while another may be more pessimistic and grade the same bridge as CR4. In order to understand the 

impact of accuracy, the parameter CR was varied, from a pessimistic view to an optimistic view by varying the mean 

of the normal distribution with constant unit standard deviation over the finite outcome space }5,4,3,2,1,0{=CR . The 

mean is shifted from the true value, in both the positive and negative direction, characterising, to varying degrees, a 

pessimistic and optimistic inspector, respectively.  

The amount of the shift represents the accuracy of the measurement. For example, in the analysis, a 

pessimistic inspector would assign a condition rating to a bridge in state x1 as )1,9.1(N in the worst case of pessimism, 

where N is a normal distribution with mean and standard deviation as the two arguments respectively. Figure 3 

estimates VoI as a function of visual inspection accuracy. As the inspector becomes more pessimistic, the expected 

VoI decreases linearly. In the most optimistic case the expected VoI is € 8,375, which decreases to €6,876 for a 

neutral inspector and further decreases to €5,071 in the most pessimistic case. For the most optimistic inspector the 

optimal strategy Doptimistic = [(x0, d2), (x1, d2), (x2, d3), (x3, d3), (x4, d3), (x5, d4)] is risk-seeking while the optimal 

strategy for a pessimistic inspector is more risk-adverse, corresponding to Dpesimistic = [(x0, d3), (x1, d3), (x2, d3), (x3, d4), 

(x4, d5), (x5, d5)]. 



 

Figure 3. Investigation of the VoI as a function of visual inspection accuracy. 

 Precision refers to the closeness of two or more measurements to each other. In relation to visual inspection, 

precision is a measure of the repeatability of inspection. Poor precision results from random errors which results in 

poor repeatability. Precision is independent of accuracy and can be described by varying the standard deviation of the 

distribution for each condition rating. The standard deviation defines the width of the distribution, describing how 

much variation can occur between successive measurements. Figure 4 describes the estimated VoI as a function of 

visual inspection precision σ. The trend is monotonic but not linear, indicating that the worse the precision the lower 

the VoI. A high value of €17,633 is associated to the value of perfect information, whereby maintenance decisions are 

made with perfect information on the condition state of the asset, and diminishes towards zero as the precision of 

visual inspection degrades to σ = 9.5. The optimum precision occurs at σ = 4.7 (Figure 4).  

 Only a visual inspection strategy presenting a VoI higher than the cost of visual inspection (€500) is rationally 

suitable for implementation. However, given the significantly high values related to lack of precision at which the VoI 

becomes less than the cost indicates that in this case an inspection is almost always beneficial. This may not be 

necessarily at the same level for other bridge stocks and the VoI may be lower than the visual inspection cost for 

particularly challenging set of bridges with access and equipment aspects, where the design of inspection programme 

will be of importance. For practical applications, very high standard deviation will not be expected from inspections 

and consequently the comparison will be relevant within the sharply decreasing part of the bar-chart of Figure 4.  
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Figure 4. Investigation of the VoI as a function of visual inspection precision. 

 

4.3.2 Prior Bridge State 

Depending on the prior condition state of a bridge stock, visual inspection may give rise to different results for 

VoI. To examine the effect that the prior bridge state has on the VoI of visual inspection, the analysis was run whereby 

the prior state took on each possible distribution in Table 5. The likelihood of assigned condition ratings and the cost 

matrix were kept constant. 

  CR0 CR1 CR2 CR3 CR4 CR5 

Prior state probability distribution over the 

finite outcome space CR = {0, 1, 2, 3, 4, 5} N (0, 1) N (1,1) N (2,1) N (3,1) N (4, 1) N (5,1) 

Table 5. Probability distributions for prior bridge state. 
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Figure 5. Impact of the prior bridge state on the VoI. 

It is observed from Figure 5, that visual inspection provides the greatest VoI for CR3. The VoI is lowest for 

CR5 as the cost of perfect information Cperfect_information_CR5 = €41,208 converges to the cost of major rehabilitation 

CMajor_rehabilitation = €50,760.  Bridge stocks, in reality, exhibit different prior state probability distributions depending on 

the type of road, bridge age, exposure conditions, state investment in bridge rehabilitation works, etc. The analysis 

was repeated using prior probability distributions for four different road types as outlined in Table 6. For this purpose, 

a significantly larger stock with 32250 bridges in Portugal was considered with real distributions of bridge conditions. 

  CR0 CR1 CR2 CR3 CR4 CR5 

Cork regional roads (n = 449) 0.06 0.19 0.46 0.22 0.06 0.01 

Cork local roads (n = 828) 0.02 0.11 0.60 0.18 0.05 0.03 

South Dublin local and regional roads (n = 85) 0.11 0.54 0.28 0.06 0.01 0 

Portuguese roads (n = 32250) 0.08 0.56 0.30 0.05 0.01 0.001 

Table 6. Distribution of condition ratings for different road types. 

Figure 6 indicates the value that visual inspection provides is heavily dependent on the prior probability 

distribution of the bridge stock. Visual inspection provides the greatest benefit for bridge stocks with a high proportion 

of bridges with a CR2 rating such as the Cork regional and local roads. The VoI for the Dublin and Portuguese roads, 

which both had a high proportion of bridges with a CR1 rating was significantly lower, but still economically viable 

for a visual inspection strategy at a cost of €500. It also indicates how the proposed method can be applied to different 

bridge stocks of disparate sizes and how they can be compared in terms of the estimated value of their visual 

information. 
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Figure 6. Effect of the prior bridge state of on the estimates of VoI  for different bridge stocks. 

 

 

4.3.3 Uncertainty in the Condition Rating Scale 

Due to the nature of bridges in Ireland, a trend emerges in terms of the distribution of bridge condition states 

for local and regional roads. Ireland has an aging bridge stock and limited investment is available for bridge 

rehabilitation. As a result, the majority of bridges fall into the category of CR1, CR2 and CR3. It is investigated in 

Figure 7 if value is added to a visual inspection strategy where there is a finer resolution in the condition rating scale 

for various combinations of CR1, CR2, CR3 and CR4. For each application, the prior bridge state has equal 

probability of being in each state along the condition rating scale. i.e. for the typical case πt = [0.167 0.167 0.167 0.167 

0.167 0.167]. The cost matrix is altered based on the precision level achieved in visual inspection. The likelihood of 

inspector assigned condition ratings follows the same format as outlined in this paper but the matrix is contracted or 

expanded based on the precision level of the condition rating scale.  
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Figure 7. Effect of condition rating scale on VoI. 

A negative impact on value was observed when CR1 was removed from the condition rating scale. A small 

drop in value was also observed when an additional rating was added between CR3 and CR4. The value improved 

from the typical case for all other cases with the greatest improvement in value observed when two additional rating 

were added between CR1 and CR2. This coincides with Figure 6, whereby the greatest VoI was shown for bridge 

stocks with a high proportion of bridges in the CR2 category. In addition to assessing the actual effect on the condition 

rating scale on VoI, this study also provides demonstrative evidence to adapt the proposed method for practical 

assessment and integration of varied bridge stocks with different inspection ratings. 

5.0 Conclusions 

The value of implementing a visual inspection strategy in a BMS was estimated employing the VoI 

methodology and several insights into visual inspection based decision making for bridge maintenance were 

investigated through analysis of various scenarios. Several real bridge stocks and related data were used in this regard. 

The estimated VoIs of no information, perfect information and imperfect information were calculated with county 

Cork in Republic of Ireland as a case study. The change in the optimal strategy based on perfect information and 

imperfect information from the prior state was also illustrated. The analysis is dependent on the characterisation of the 

parameters in the model, including the assumed probabilistic models of the prior bridge state, the likelihood of 

inspector assigned condition ratings and the economic setting surrounding the cost matrix for maintenance decision 
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alternatives. The effect that the underlying uncertainties of the parameters have on the benefit provided by visual 

inspection was highlighted through numerical investigations. It was found that an optimistic inspection results in a 

higher VoI than a pessimistic inspection and more optimistic inspections lead to relatively more risk-seeking optimal 

maintenance strategies. As an inspector becomes more pessimistic, the VoI reduces and the optimal maintenance 

strategy becomes more risk-adverse. The additional information must have enough accuracy to alter that belief, else 

the decision maker has the potential to make wrong choices or will be better off with a preventive maintenance 

strategy. The prior perception of an inspector on the degradation of an asset significantly affects the value provided 

and information from multiple inspectors inspecting the same bridge could offer value in terms of reducing bias.  

Analysing the impact of precision of visual inspection with regard to the value provided, it was found that as precision 

decreases the value delivered by visual inspection decreases monotonically, but in a nonlinear fashion.  

A visual inspection strategy presenting a VoI higher than the cost of visual inspection is rationally suitable for 

implementation in a BMS. Analyses on the prior state distribution indicate that the greatest value is provided for 

bridge stocks with specific priors, given the rating method is known. By analysing real bridge stocks, it was observed 

that the greatest benefit was provided for bridges in local and regional roads, which had a high proportion of bridges in 

the CR2 condition state. In contrast, a lower value was seen for the Dublin and Portuguese datasets, whose prior 

distribution had the majority of bridges in the CR1 state.  Where a high proportion of bridges are in the CR3 or CR2 

condition state, the benefit is observed to be greatest by adopting a visual inspection strategy. This was investigated 

further by investigating if value is added to visual inspection if the condition rating scale is presented in a different 

resolution. A negative impact on value was shown when the condition rating scale was narrowed by removing CR1. 

The highest increase in value was observed when two additional ratings were added in between CR1 and CR2, where 

the VoI increased significantly from the typical scenario. The applicability of VoI for visual inspections of bridges 

depend on the input parameters like the prior degradation model, the prior bridge state distribution, the likelihood of 

inspector assigned condition ratings and the economic setting surrounding the cost values of the maintenance action 

alternatives. Accurate determination of these parameters obtained from several bridge stocks over an appropriately 

representative length of time can provide better estimates and stabilities around such values. 
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