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Abstract1

With the continued evolution of traffic loading specifications, safety classifications of bridge2

structures are subject to change, independent of the actual condition of the structures at3

that point in time. As investment decisions are often based on these safety classifications, a4

reclassification of safety level due to changing of traffic load definitions can lead to misinter-5

pretation of the actual state of the structure, and thus lead to a misallocation of resources.6

Should a reclassification of safety occur after a change in traffic load specification, the ques-7

tion as to whether modern design codes are producing more or less robust bridges than8

previous design codes is raised. To investigate this, three bridge structures were assessed for9

evolving definitions of traffic load. Using deterministic and probabilistic methods, critical10

limit-states were assessed and the associated reliability indices and parametric sensitivity11

factors were determined and compared across various code specifications. This comparison12

allowed for the evaluation as to how the evolution of traffic load over time influences the13

computed safety of bridge structures.14

1 Introduction15

Quantification of structural safety and redundancy for bridges is an important process in network16

maintenance management (Akgül and Frangopol, 2003; Frangopol and Nakib, 1991; Weninger-17
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Vycudil et al., 2015) and is strongly dependent on the effects of traffic loading (Nowak et al.,18

1993; Nowak, 1993). Markers of quantification have evolved from basic definitions of allowable19

stress indices, to limit-state design, and, eventually, to fully probabilistic reliability analysis20

(Ellingwood, 1996; O’Connor and Enevoldsen, 2007; Dawe, 2003). While new bridge structures21

conform to and benefit from the acknowledgement of epistemic and aleatory uncertainties (Ang22

and Tang, 2007) through normative documents (Cornell, 1969; Benjamin and Lind, 1969; Shah,23

1969; Lind, 1972; Rosenblueth and Esteva, 1972), much of the global bridge stock originate from24

a time when the design of structures was based on basic models and engineering judgement.25

The nature of these bridges has not fundamentally changed over time, except for the consid-26

eration of degradation. A review of the national bridge stock in six European countries showed27

that the majority of bridges were built in the post-war period of 1945–1965 (Žnidarič et al.,28

2011), while in the United States, the average age of the national bridge stock is 42 years,29

11% of which is said to be structurally deficient and 25% said to be “functionally obsolete”30

(ASCE, 2013). On the other hand, there has not been sufficient funds for owners of bridge31

stock to replace, intervene, or even prioritise investment (Ellingwood, 2005; Frangopol, 1999,32

2011; Frangopol and Liu, 2007; Pakrashi et al., 2011; Frangopol and Bocchini, 2012).33

Performance indicators are used as a significant decision tool when evaluating intervention34

options when structural safety and redundancy are of primary concern (Frangopol and Nakib,35

1991; Frangopol and Estes, 1997; Saydam and Frangopol, 2011; Frangopol and Saydam, 2014).36

Even after considering a full probabilistic regime, it is important to assess how the markers37

of safety, expressed as a reliability index β or other performance indices, have changed over38

time with changing benchmarks of traffic loading. The evolution of such indices over time,39

combined with degradation patterns and maintenance intervention is yet to be investigated.40

Site-specific traffic loading, related to extreme value distributions fitted to assumed or observed41

data, through weigh-in-motion (WIM) technology, has shown to have significant potential for42

assessing the effects of traffic loading (O’Connor et al., 2001; O’Connor and O’Brien, 2005;43

Caprani and O’Brien, 2010; O’Brien et al., 2015a,b). However, too often is the performance44

of bridges within a network, and thus economic decisions made regarding intervention options,45

determined using generalised normative descriptions of traffic loading that are subject to change46

over time. The use of such methods can thus misinform bridge managers and stakeholders by47
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significantly underestimating the true performance measure of the bridges within their networks.48

In this paper, a brief history of the major bridge design and assessment standards will be49

presented, and the effect of the various definitions of normative traffic loading will be shown on50

the performance indicators, in this case the reliability index β (Ditlevsen and Madsen, 1996;51

Melchers, 1999; Pakrashi and Hanley, 2015), of three simply supported concrete bridges of the52

same span. These changes will be benchmarked against β from site-specific traffic loading,53

and the effect changing normative traffic loading has on the probabilistic model will be shown54

through parametric sensitivities and importance factors (Madsen et al., 1986). The type of55

bridges used in this assessment were chosen based on their proliferation within Europe and the56

UK (Žnidarič et al., 2011). An 80 year reliability assessment is also presented, showing how β57

can transition below a minimum acceptable threshold at a single point-in-time due to normative58

changes couple with typical degradation effects.59

2 Evolution of Normative Traffic Loading60

Prior to the latter 19th century, traffic loading on bridges was not of primary concern to the61

bridge builder, as this load was considered light relative to the self-weight of the structure itself62

(Henderson, 1954). It was due to the emergence of the traction engine that the effect of traffic63

loading on bridges became an important design criteria. The evolution of normative traffic load64

specifications in the UK and Ireland, from the suggestion of nominal wheel loads to a standard65

loading curve (SLC), is detailed at length by Dawe (2003) and is summarised in Table 1. While66

many minor changes to these normative documents have been made in the past century, the five67

major changes will be discussed in this paper; BS 153 (BSI, 1937), BS 5400 (BSI, 1978), BD68

21/84 (Highways Agency, 1984), BD 37/88 (Highways Agency, 1988), and the introduction of69

the Eurocode (CEN, 1994).70

2.1 BS 15371

BS 153–Standard specification for girder bridges (BSI, 1937) was developed by the British72

Standard Institution (BSI) in 1937 for the design and construction of girder bridges, part 3 of73

which dealt with the application of traffic loading. The standard recommended the use of a74

standard loading train (SLT) with a unit load of 1 ton/axle, and 15 units to be applied per 1075
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ft of lane width, and a 10 ft headway between vehicles. Additionally, it was specified to apply a76

uniformly distributed load (UDL) of 4.02 kN/m2 (84 lb/ft2) to account for pedestrians and light77

traffic. Further revisions of this standard introduced what is now known as ‘abnormal’ loading,78

with the previous loading being referred to as ‘normal’ loading, as well as the increase in applied79

units from 15 to 22 to account for general traffic increases. Furthermore, computational ease80

was improved with the introduction of a standard loading curve (SLC) to replace the standard81

loading train. The SLC specified a UDL as a function of span, with a higher UDL for shorter82

spans to account for the increased likelihood of a single span being fully loaded by trucks.83

Additionally, a knife-edge load was to be applied across the lane width of 39.4 kN/m (270084

lb/ft) at a location within the span to produce the worst shear force effect.85

2.2 BS 540086

The introduction of BS 5400–Steel, concrete, and composite bridges (BSI, 1978) in 1978 transi-87

tioned standards to the limit-state philosophy, whereby partial factors could be applied to both88

load and resistance variables (Allen, 1975). Part 2 of the standard dealt with the application of89

traffic loads, and recommended a 5% characteristic value for the ultimate traffic load; having a90

5% chance of occurring within the design life of the structure, set as 100 years. The limit-state91

philosophy is designed to allow for the benefit of statistical knowledge to more accurately model92

expected scenarios. However, at the introduction of BS 5400, such data was not available, and93

so nominal loading and partial factors were specified, based on engineering judgement at the94

time. The SLC from BS 153 was retained, except with a constant UDL of 30 kN/m/lane up95

to a span of 30 m. For simply supported spans, this resulted in a maximum midspan bending96

moment slightly less than that prescribed in BS 153, for which a divergence begins from the97

30–50 m span range (Figure 1).98

2.3 BD 21/8499

BD 21–The assessment of highway bridges and structures (Highways Agency, 1984) was intro-100

duced in 1984 revise some provisions of BS 5400 for shorter spans. Specifically, the furthest101

departure was the elimination of a constant UDL for spans under 30 m, to be replaced by a102

curve that was fully variant with span length, and defined by a single formula as a function of103
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Figure 1: Maximum bending moment with increasing spans for changing traffic load definitions

length. The apparent lifetime of a bridge was extended to 120 years, so whereby a 5% charac-104

teristic ultimate load over the design life resulted in a total return period for the ultimate load105

of 200,000 years. The development of this code involved a more rigorous calibration of partial106

factors using statistical methods than the previous standard employed. The SLC was developed107

under the assumption that shorter spans are more likely to be fully laden with convoys of large108

vehicles than larger spans, and thus envelopes were made of the worst load effects for a variety109

of spans, and a new single SLC was derived from the results. The effect of the elimination of110

a constant UDL for spans under 30 m can be seen through the deviation between maximum111

bending moments for BS 5400 and BD 21/84 in Figure 1.112

2.4 BD 37/88113

Due to the general expected increase in total weight of European vehicles, the SLC of BD114

21/84 was updated in BD 37–Loads for highway bridges (Highways Agency, 1988) to account115

for a 40 tonne gross weight vehicle, as opposed to that of BD 21/84 which accounted for 38116

tonnes. This code also featured a ‘composite’ version of BS 5400, which included specifications117

for railway loading. The effect of this code is scene in greater prominence for spans above 50118
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m, but produces a minimal change in flexural load effects from BD 21/84 (Figure 1).119

2.5 Eurocode120

The development of EN 1991-2: Eurocode 1: Actions on structures. Traffic loads on bridges121

(CEN, 1994) introduced four separate load models to account for the vertical load being applied122

to bridges, with Load Model 1 (LM1) corresponding to what has been referred to as normal123

loading, for spans between 5–200 m, and a carriageway width of up to 42 m. LM1 was derived124

from real European traffic data, and specified an ultimate load exceedence rate of 5% in 50 years,125

or a return period of 1000 years (Bruls et al., 1996). LM1 departed from previous representations126

of normal traffic loading by eliminating the SLC defined UDL and invariant KEL, and replacing127

them with a series of constant UDL, invariant with span length, in adjacent lanes and a tandem128

axle system of point loads. As can be seen from the comparison of bending moments in Figure129

1, LM1 of Eurocode results in the most onerous of load effects of the presented normative130

standards.131

3 Development of Bridge Models132

In the assessment of civil engineering structures, a true representation of the structural safety133

can only be obtained through probabilistic methods which can account for load, material, and134

model uncertainties. The reliability index β is a measure of structural safety, which is a function135

of the probability of failure Pf and can be expressed as:136

β = −Φ−1(Pf ) (1)

where Φ is the standard normal cumulative distribution function. The probability of failure137

Pf is the probability of violation of a specified limit-state g = 0, and for structural safety138

assessments can be expressed as:139

Pf = P (R− S ≤ 0) = P [g(R,S) ≤ 0] = P [g(X) ≤ 0] (2)

where R is the resistance/capacity of the element under consideration, and S represents the140

applied load. In this assessment, the flexural performance g was analysed, and so the flexural141
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Table 1: Development of traffic loading rules, abridged from Dawe (2003)

Date Event/publication Comment

End of
19th
century

Principal live loading on bridges deemed to be due to crowd
loading. UDL used for design of bridge decks, for example
4.8 kN/m2 for Hungerford Suspension Bridge

1904 Restriction on vehicle
weights

8 ton limit for single axle, 12 ton limit for gross vehicle
weight

1923 BS 153 Part 3: Loads and
stresses

Traffic live loading to be specified by the Engineer. Impact
factor inversely proportional to span.

1931 MoT Standard loading for
highway bridges

Standard Loading Curve. Deterministic approach using
equivalent UDL and KEL, with allowance for impact.
Heavy wheel load introduced for short span structures.

1937 BS 153 Part 3 (1st
revision)

Introduced Types A and B loading. Impact allowance
varied with span

1954 BS 153: Part 3A (2nd
revision)

Appendix A introduces Types HA and HB loading. HA
comprises deterministic formula loading based on 22-ton
vehicles, and an alternative wheel loading. HB loading with
axle number and spacing based on typical abnormal trailers
of the day; axle loads are heaviest allowed by law.
(metricated in 1972)

1973 DoE technical
memorandum (bridges)
BE 5/73, Standard
highway loadings

Loads applicable to all highway structures except steel box
girders. Required a minimum of 30 units of HB loading for
public roads. HA UDL capped at 31.5 kN for loaded
lengths up to 6.5 m. HA wheel load and HB loading
assumed to cover design of short spans.

1978 BS 5400 Part 2,
Specification for loads

Introduction of limit state design. HA loading based on
24-tonne vehicles. HA UDL capped at 30 kN/m for loading
lengths up to 30 m. Minimum UDL intensity now required
to be 9 kN/m. Minimum of 25 units of HB required for
public roads. HB loading (and HA wheel load) assumed to
cover design of short spans.

1982 DTp BD 14, Loads for
highway bridges

Implemented BS 5400: Part 2 for loaded lengths up to 40
m.

1984 DTp BD 21, The
assessment of highway
bridges and structures

HA loading re-derived for Construction and Use vehicles,
taking into account effects of overloading, lateral bunching
and impact factor of 1.8. Loading derived for a full range of
spans (i.e. no longer capped for short spans).

1988 DTp BD 37, Loads for
highway bridges
(composite version of BS
5400: Part 2).
Incorporated in DMRB in
2001

Revision of BS 5400: Part 2: 1972 containing revised HA
loading; short span based on BD 21/84, enhanced long span
derived statistically from live traffic data. Covers spans up
to 1600 m.

1994 CEN, ENV 1991-3.
Eurocode 1: Basis of
design and actions on
structures. Part 3:
Traffic loads on bridges

European pre-standard for traffic loads on bridges. Covers
spans up to 200 m. Constant UDL for all spans and
tandem axle systems. 3 m notional lanes. (Issued in 2000
together with UK NAD. Constant UDL for all lanes across
carriageway.)

capacity Mu was tested against the bending moment effects of the self-weight of the bridge142

MDL, the superimposed dead load of the road surface MSDL, and the various bending moments143
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produced by changing traffic load specifications MLL.144

g = R− S = Mu −MDL −MSDL −MLL (3)

For computational efficiency, the limit state equations are expressed in parametric form145

(Akgül and Frangopol, 2004a), whereby the random variables Xij and the deterministic param-146

eters Yij are decoupled, and groups of Yi are combined into deterministic constant coefficients147

Cij in the limit state equations. For the three bridges under consideration (RC slab, RC beam,148

PS beam), the limit state equation for flexural failure are defined as:149

gslab,m =

(
C01Asfyγmλd − C02

A2
sf

2
y γm

fc

)
− C03λc − C04λs − C05λLL (4)

150

gbeam,m =

(
C11Asfyγmλd − C12

A2
sf

2
y γm

fc

)
− C13λc − C14λs − C15λLL (5)

151

gprestressed,m =

(
C21Apsfpuγmλd − C22

A2
psf

2
puγm

fc

)
− C23λc − C24λs − C25λLL (6)

where the random variables Aps, As, fc, fpu, fy, and the uncertainty factors λx and γm are de-152

fined in Table 2, and the deterministic constant coefficients Cij are functions of the deterministic153

parameters defined in Table 3.154

The probabilistic load model used in this paper was developed by Chryssanthopoulos et al.155

(1997) and Cooper (1997), and was derived as a static load model with a uniformly distributed156

load (UDL) and two axle loads, factored by a statistically defined variable λProb with a Gumbel157

distribution; extrapolated from WIM data on motorway bridges in the UK.158

Sensitivity studies can be carried out within the framework of reliability analysis and it is159

helpful in identifying and quantifying errors in design, modelling and construction (Frangopol,160

1985a,b; Nowak and Carr, 1985). The importance of a variable to β is defined as the alpha-161

value αi, which measures the sensitivity of β to a small variation in the mean-value µi of a basic162

random variable (Hohenbichler and Rackwitz, 1986):163

αi =
∂β

∂µi
(7)

This parametric sensitivity factor αi for the reliability index β with respect to a parameter θ164
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Table 2: Random variables for all bridges (All RV’s have lognormal distributions, with the
exception of λProb, which has a Gumbel distribution)

Bridge Tag Variable Description µ σ

Slab X01 As Area of flexural steel reinforcement (mm2) 6835.35 341.7675
X02 fcu Compressive strength of concrete (N/mm2) 50 7.5
X03 fy Yield strength of reinforcing steel (N/mm2) 500 50
X04 γm Model uncertainty for flexure 1 0.1
X05 λc Concrete weight uncertainty factor 1 0.1
X06 λs Surfacing weight uncertainty factor 1 0.25
X07 λd Effective depth uncertainty factor 1 0.02
X08 λLL Traffic live load uncertainty factor 1 0.2
X09 λProb Probabilistic load adjustment factor 0.4101 0.02466

Beam X11 As Area of flexural steel reinforcement (mm2) 5192.69 259.6345
X12 fcu Compressive strength of concrete (N/mm2) 50 7.5
X13 fy Yield strength of reinforcing steel (N/mm2) 500 50
X14 γm Model uncertainty for flexure 1 0.1
X15 λc Concrete weight uncertainty factor 1 0.1
X16 λs Surfacing weight uncertainty factor 1 0.25
X17 λd Effective depth uncertainty factor 1 0.02
X18 λLL Traffic live load uncertainty factor 1 0.2
X19 λProb Probabilistic load adjustment factor 0.4101 0.02466

Prestressed X21 Ap Area of prestressing steel (mm2) 3892 194.6
X22 fcu Compressive strength of concrete (N/mm2) 50 7.5
X23 fpu Prestressing steel strength (N/mm2) 1670 83.5
X24 γm Model uncertainty for flexure 1 0.1
X25 λc Concrete weight uncertainty factor 1 0.1
X26 λs Surfacing weight uncertainty factor 1 0.25
X27 λd Effective depth uncertainty factor 1 0.02
X28 λLL Traffic live load uncertainty factor 1 0.2
X29 λProb Probabilistic load adjustment factor 0.4101 0.02466

9



Table 3: Deterministic parameters for all bridges

Bridge Tag Parameter Description Value

Slab Y01 b Width of section considered (mm) 1000
Y02 bL Notional lane width (m) 3.2
Y03 d Effective depth of section (mm) 724
Y04 L Span length (m) 16
Y05 hc Height of concrete slab (mm) 800
Y06 ts Thickness of road surface (mm) 100
Y07 ρc Self-weight on concrete (kN/m3) 25
Y08 ρs Self-weight of surface (kN/m3) 24

Beam Y11 beff Effective flange width (mm) 1200
Y12 bL Notional lane width (m) 3.2
Y13 bw Width of beam (mm) 300
Y14 d Effective depth of section (mm) 924
Y15 L Span length (m) 16
Y16 hc Overall height of concrete beam (mm) 1000
Y17 hf Thickness of concrete flange/slab (mm) 200
Y18 ts Thickness of road surface (mm) 100
Y19 ρc Self-weight on concrete (kN/m3) 25
Y110 ρs Self-weight of surface (kN/m3) 24

Prestressed Y21 Ab Area of precast section (mm2) 339882
Y22 beff Effective flange width (mm) 1200
Y23 bL Notional lane width (m) 3.2
Y24 d Effective depth of section (mm) 818.571
Y25 L Span length (m) 16
Y26 hc Overall height of section (mm) 950
Y27 hf Thickness of concrete flange/slab (mm) 200
Y28 to Thickness of overlap (mm) 50
Y29 ts Thickness of road surface (mm) 100
Y210 ρc Self-weight on concrete (kN/m3) 25
Y211 ρs Self-weight of surface (kN/m3) 24
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is defined (Madsen et al., 1986) and developed (Bjerager and Krenk, 1989) as the derivative165

∂β/∂θ. Furthermore, as part of a sensitivity analysis, parameter importance factors α2
i can166

be determined, identifying which of the modelled parameters have the greatest impact on the167

reliability index, and thus, the safety of the structure.168

n∑
i=1

α2
i = 1 (8)

These factors indicate through their ranking, expressed as a percentage, what parameters are169

important for monitoring within a system and to what extent they contribute to the probability170

of safety or failure. Also, for varying limit states or uncertainties, the ranking of these parameters171

within a system can change; emphasizing the fact that the contribution of a certain factor to a172

failure defined by a limit state is a function of the information available about the system and173

the associated confidence or accuracy of that information (Hanley and Pakrashi, 2015).174

The corrosion model used in the lifetime assessment of the bridges was based on a uniform175

reduction in flexural steel area, assumed here to be caused by chloride only (Akgül and Fran-176

gopol, 2005a). The time to initiation of corrosion Ti is commonly obtained using Fick’s 2nd law177

of diffusion (Akgül and Frangopol, 2004b, 2005b; Kenshel and O’Connor, 2009):178

Ti =
C2

4Dc

[
erf−1

(
Cs − Ccr

Cs

)]−2

(9)

where C is the concrete cover to flexural reinforcement (mm); Ccr is the critical chloride concen-179

tration (%); Cs is the surface chloride concentration (%); Dc is the chloride diffusion coefficient180

(mm2/year); and erf is the error function. In this analysis, Ccr, Cs, andDc are treated as random181

variables with a lognormal distribution; with values (µ, σ) of (0.037,0.0056), (0.15,0.015), and182

(110,12.1), respectively (Enright and Frangopol, 1998). Once the time to corrosion initiation is183

determined, time-variant flexural steel As(t) area can be found as:184

As(t) =
π

4

n∑
j=1

[D0,j −∆Dj(t)]
2 , ∆Dj(t) = rcorr (t− Ti) (10)

where D0,j is the initial diameter of the steel bars and strands; ∆Dj(t) is the amount of section185

lost after time t; n is the number of bars; and rcorr is the rate of corrosion of the flexural186
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steel. While rcorr is a function of the constant rate in time icorr and the corrosion coefficient187

value Ccorr, here rcorr (mm/year) is modelled as random variable with a lognormal distribution,188

with a mean µ and standard deviation σ of 0.0762 and 0.0223 for the RC bridges (Akgül and189

Frangopol, 2005b), and 0.0571 and 0.017 for the PC bridge (Akgül and Frangopol, 2004b).190

4 Results191

4.1 Reliability Assessment of Undamaged Bridges192

An initial reliability assessment was conducted on the three bridges under consideration to193

determine the relative change in β for each variation in normative traffic loading, not considering194

degradation (Figure 2). As can be seen, despite an increase in β from BS 153 to BS 5400, there195

is a consistent decrease in β with more recent normative traffic loading. Additionally, with more196

recent normative loads, the disparity between β for specified loading and the probabilistic load197

model is increased. As the return periods for the normative loading is quite high, this disparity198

between specified loading and site-specific probabilistic loading is expected; and so with greater199

disparity, more conservative structures are being designed, and thus the probability of the limit200

state being violated under regular use is lowered. This, however, can not be said to be the201

case for BS 153 to BS 5400, which have much closer β’s to the probabilistic load model. This202

would suggest that the load effects produced by the ultimate traffic load in these early codes are203

actually more representative of that produced by the typical traffic load from the probabilistic204

model. This is problematic, as these ultimate loads are not expected to occur within the205

reasonable life-cycle of the bridge structure. The low relative value of β under Eurocode is206

expected given that it produces the most adverse bending moment of the presented standards207

(Figure 1). However, the discrepancy between this β and that for the site-specific loading208

suggests that it is perhaps too onerous for the purposes of assessment for existing structures,209

but designing new bridges to this requirement will produce more robust structures.210

4.2 Parametric Sensitivity & Importance Factors211

The importance factors α2
i were determined to highlight the random variables that have the212

greatest influence on β, for each iteration of normative traffic loading (Figure 3). The importance213

factors which demonstrate the biggest variation for every code iteration are for the random214
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Figure 2: Change in reliability index with changes in code definitions, not considering structural
degradation

variables X5 and X8, which correspond to the uncertainty factors for concrete λc and live load215

λLL. This would suggest a diminishing role of the self-weight of the bridges as the traffic216

loading becomes more onerous. For RC and PC beam bridges, λLL has the highest importance217

factor across all the codes, with a lower bound value of 30.3% and 31.7% for BS 5400, and an218

upper bound value of 45.3% and 51.4% for Eurocode, respectively. However, for the RC slab219

bridge, it can be seen that the importance factors for these random variables occupy the same220

range throughout the changing codes, except for an almost inverse relationship between the221

self-weight and the live load. For BS 5400, the importance factors for λc and λLL are 34.2%222

and 11.8%, respectively; whereas, for Eurocode, they are 15.6% and 30.7%, respectively. The223

greater influence of the self-weight is expected for the slab bridge, due to its inherent form of224

mass concrete, as opposed to the RC and PC beam bridges, which are lighter in nature. It225

can be seen that the importance factors for each of these variables are somewhat equal for BD226

21/84 and BD 37/88, before the more onerous traffic loading of Eurocode becomes the most227

dominant importance factor.228

The parametric sensitivity αi was demonstrated by assessing the effect on β of a 10% per-229
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Figure 3: Importance factors of the random variables for each code specification

turbation in the mean value of the random variables (Figure 4). It is evident that the most230

favourable random variables across the three bridges are X1, X3, X4, and X7, corresponding231

with As,p, fy,pu, γm, and λd. The only random variable which exhibits any significant variation232

with changing normative codes is the model uncertainty for flexure γm, with the remaining233

favourable random variables maintaining their relative sensitivities. However, the variation re-234

mains only slight, but is indicative of how the normative traffic loading becomes more onerous235

and, thus, more dominant in the probabilistic model. It is noteworthy how, for the PC beam236

bridge, the grade of prestressing steel fpu has low stochastic importance (Figure 3), yet is in line237

with the grade of reinforcing steel fy for the parametric sensitivity, even when fy is stochasti-238

cally more important. This can be attributed to the coefficients of variation (CoV) for the two239

random variables; with fpu having a lower CoV (5%) than fy (10%), due to the more controlled240

nature of manufacturing process of precast PC beams, as opposed to in-situ cast RC slabs and241

beams.242

For the unfavourable random variables, X5 (λc), X6(λs), and X8 (λLL), it can be seen that243

the uncertainty factor related to concrete self-weight λc displays the greatest negative relative244

change in β for a 10% perturbation. Additionally, λc for the RC slab bridge has the greatest245
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Figure 4: Parametric sensitivity of β for a 10% perturbation in the random variables

parametric sensitivity, which is consistent with the established importance factors (Figure 3).246

While the sensitivity of λc across the normative code variations remains the highest for the RC247

slab bridge, it can be seen that the relative ranking of sensitivities is switched between that for248

λc and λLL for the RC and PC beam bridges. This is more prevalent for the RC beam bridge,249

where the relative change in β for λc and λLL under BS 5400 is -0.29 and -0.17, and under250

Eurocode is -0.20 and -0.26, respectively. This shows the same somewhat inverted relationship251

between these two codes as has already been seen earlier. For the PC beam bridge, these two252

variables have a relative change in β of -0.36 and -0.16 under BS 5400, and then converge to253

-0.26 and -0.27 under Eurocode, respectively.254

The percentage change in each of the random variables at the design point u*, being the255

most likely point of failure, can be seen in Figure 5. It is apparent that, under Eurocode, the256

variables require the least amount of deviation from the mean value to reach u*, whereas for257

BS 5400, the variables require the largest deviation. This variation between the two codes258

is most pronounced for λLL, and is consistent with the relationship seen for the importance259

factors (Figure 3). Again, this further emphasises the more onerous nature of the more recent260

normative codes, over the earlier models.261
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Figure 5: Relative change in the random variables at the design point for each code specification

4.3 Life-Cycle Reliability Assessment262

The life-cycle assessment was conducted through a time-variant reliability analysis, considering263

the time-variant degradation of flexural steel area due to the uniform corrosion model. Using264

equation 9, the time to corrosion initiation Ti was evaluated using a Monte Carlo simulation of265

50,000 samples, and fitting a lognormal distribution as a good estimate (Enright and Frangopol,266

1998). The mean value of Ti for both RC bridges was 24.1 years, and for the PC bridge is 15.4267

years for the first layer of steel and 51.8 years for the second layer of steel. The loss of cross-268

sectional area of flexural steel was determined using equation 10 and plotted for each bridge269

over an 80 year period (Figure 7).270

The effect of corrosion on β for the three bridges can be seen in Figures 8–10. Additionally,271

the lifetime reliability is presented for both a probabilistic load assessment, and an assessment272

based on normative loading; including ‘jumps’ in β that account for the changing normative273

specifications over time. For the RC slab bridge (Figure 8), the initial reliability index under274

normative loading (BS 153 ) βn and under probabilistic loading βp is 3.28 and 3.68, respectively.275

There is a slight jump in βn with the introduction of BS 5400, but a significant drop in βn to276

below 2 with the introduction of BD 21/84. The next significant drop in βn occurs with the277
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Figure 6: Probability density function of corrosion initiation time for each bridge with lognormal
distribution and Monte Carlo Simulation

Figure 7: Deterioration of steel area on RC and prestressed bridges
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Figure 8: Life-cycle reliability index for RC slab bridge with adjustments for changing normative
codes

Eurocode, to finish the 80 year period with a βn of 0.43, compared to βp of 2.05. These β profiles278

are similar for the RC and PC beam bridges (Figures 9 & 10). For the RC beam bridge, the279

initial values of βn and βp are 3.96 and 4.79, respectively, whereas the final values are 0.20 and280

2.29; a significant difference. Similarly, for the PC beam bridge, the initial values of βn and βp281

are 4.09 and 4.92, respectively, whereas the final values again show a big difference at 0.93 and282

3.51.283

These end variations are expected based on the initial β values determined earlier (Figure 2).284

However, it is interesting that during a 20 year period in the second half of the total assessment285

period, there are two significant ‘overnight’ drops in βn, each departing further away from βp.286

Additionally, after the full 80 year period, βp for each bridge never drops below βn assessed287

under BD 21/84 loading; first computed approximately 30 years prior. As maintenance and288

intervention decisions are often based on performance indicators such as β, the decision to289

intervene structurally on a bridge can be taken too hastily when normative loading is used290

instead of probabilistic loading, and lead to the misallocation of budgetary resources.291
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Figure 9: Life-cycle reliability index for RC beam bridge with adjustments for changing norma-
tive codes

Figure 10: Life-cycle reliability index for prestressed concrete bridge with adjustments for chang-
ing normative codes
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5 Conclusions292

A structural reliability analysis was conducted on three bridges to assess the effect of changing293

definitions of normative traffic loading on safety classifications of the structures. These results294

were compared with those for site-specific probabilistic loading to determine how representative295

the safety classification for a bridge assessed under specified loading was against a more realistic296

loading scenario. It was observed that earlier codes produced less onerous flexural load effects297

and, as such, resulted in reliability indices closer to that determined under the probabilistic load298

model. This, however, results in a situation where bridges designed and assessed under these299

early codes are regularly being subjected to close to their ultimate loads. As these normative300

loads were said to have a large return period, such proximity between the ‘typical’ and ‘ultimate’301

loading is not an expected or desirable scenario.302

Given the disparity between β for the probabilistic load model and the more recent normative303

codes, it is evident that bridge structures designed and constructed according to these standards304

should have a higher resistance capacity than seen in bridges designed to the extent of the305

earlier standards. It can thus be suggested that bridges designed to the extent of the modern306

standards will perform better in β when assessed against a probabilistic load, and it has been307

shown that bridges designed to the more onerous load conditions can result in a reduction in308

the life-cycle cost (Hanley et al., 2016). However, the apparent disconnect between modern and309

probabilistic loading suggests that the use of normative loading in the assessment of existing310

bridge structures is not best practice for an economical life-cycle asset management, and thus311

the use of probabilistic load modelling through site-specific weigh-in-motion (WIM) in reliability312

analyses yields a more accurate assessment of the true safety of a bridge.313
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