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Abstract 

This paper presents the reliability analysis of a network of six bridges in Ireland, 

with a focus on the sensitivity analysis and the analysis of parameter importance 

measures. The basis of the analysis stems from the possibility of investigating 

similarities in various parameters, leading to the establishment of network-level 

indicators based on fully probabilistic assessments. Initially, deterministic 

assessments are carried out on these bridges to verify the limit-states, and a 

detailed probabilistic analysis is conducted, taking uncertainty in relation to the 

available information into account. Parametric importance measures are 

established across the network, and patterns identified from these studies suggest 

the potential for reliability-based network calibrations of bridge structures. This 

paper is expected to encourage a greater sharing of network-level information of 

the owners and managers of bridges. 
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List of Notation: 
CoV Coefficient of variation 

Pf Probability of failure 

u* Design point 

xi  Basic variable 

αi Mean-value sensitivity factor 

αi2 Parameter importance factors 

β  Reliability index 

γi Omission sensitivity factor 

θ  Parameter 

μi Mean-value of basic random variable 

Φ Standard normal cumulative distribution function 
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1 Introduction 

As bridge infrastructure networks age, it is often necessary to employ advanced techniques in 

the assessment of intervention options for deteriorating network assets to maintain an 

adequate level of safety throughout the network (Žnidaric et al., 2011). Probability concepts 

have been shown to have significant advantages in the design and assessment of engineering 

structures, specifically structural reliability methods (Ang and Tang, 2007). A reliability-based 

approach for quantifying the safety of structures enables a lifetime evaluation of both 

individual and networks of structures (Akgül and Frangopol, 2004a,b; Frangopol and Das, 

1999; Liu and Frangopol, 2006a,b; Frangopol and Liu, 2007a,b; Frangopol, 2011; Bocchini and 

Frangopol, 2011a,b,c; Saydam et al., 2013). While this method is commonly implemented at 

both a component and system level for an individual bridge in isolation (O'Connor and 

Enevoldsen, 2008; Estes and Frangopol, 2001), there are advantages to conducting a reliability 

analysis for a network of bridges (Frangopol and Bocchini, 2012); highlighting critical 

components and providing the stakeholders of bridge stock with comparable safety indices 

and sensitivity measures (O'Connor and Enevoldsen, 2007; Dong et al., 2014). 

The effective allocation of capital resources seeks to minimise the inherent risks 

associated with investments through the use of advanced methods (Mueller and Stewart, 

2011). Reliability methods are an effective tool for the monitoring of the asset base and, thus, 

allowing the prioritisation of intervention and investment requirements in a more careful and 

rational manner. Intervention can be focused to address the most important parameters that 

govern the safety of the bridges, as highlighted by the parametric sensitivity and parameter 

importance factors, which are beneficial by-products of reliability assessments. Conducting 

this analysis over a network allows for the comparison of different parameters and 

uncertainties in each bridge type, and investigates correlations that arise between them 

(Hanley and Pakrashi, 2014). This emphasizes the need of a network based calibration of the 

importance of certain critical parameters, and provides a framework for future assessments of 

the structures. 

The objective of this paper is to investigate how uncertainty in the parameters involved 

can affect this proposed framework and to assess the existence of a minimum level of 

confidence that is required in order to make a rational intervention decision. A brief 

introduction to reliability analysis is provided first. A network of bridges is described and 

results of a deterministic analysis are presented in order to identify the limit-states. The results 

of the reliability analysis are shown over the network and the parametric sensitivity studies are 

detailed, highlighting critical parameters that contribute to the violation of the established 

limit-states. Investigations are carried out to obtain common markers or patterns of 

information present in the bridge network described by the sensitivity studies and parameter 

importance measures. 
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2 Reliability Analysis: A Brief Review 

The reliability index β is defined as a probabilistic measure of safety which can be interpreted 

as the least distance to a limit-state failure surface in a probability preserving standard normal 

space (Shinozuka, 1983). The location of the point corresponding to this least distance on the 

failure surface is considered to be the design point u*, which is also the point in the space with 

the highest probability density or the most likely point of failure (Ditlevsen and Madsen, 1996; 

Melchers, 1999). The probability of failure Pf is defined as the probability of violation of a limit 

state. It is related to β through the standard normal cumulative distribution function Φ, after 

converting all involved parameters into a multidimensional space typically through a 

Rosenblatt transformation (Rosenblatt, 1952) as: 

 ( )1

fP −= −   (1)  

where the generalised limit-state can be expressed as: 

 ( ) ( ) ( )0 , 0 0fP P R S P G R S P G X= −  =  =          (2) 

where R corresponds to the resistance variables and S to the load effect variables. First-Order 

Reliability Methods (FORM) and Second-Order Reliability Methods (SORM) are popular in 

terms of establishing or estimating β (Sarveswaran and Roberts, 1999); FORM calculates failure 

probabilities and reliability indices without correction for curvature of the limit state surface at 

the most central point, while SORM calculations include this correction (Breitung, 1984). These 

methods were favoured above simulation methods as they allow the computation of 

parametric sensitivities and importance factors. 

Sensitivity studies can be carried out within the framework of reliability analysis and it is 

helpful in identifying and quantifying errors in design, modelling and construction 

(Frangopol, 1985; Nowak and Carr, 1985). The importance of a variable to β is defined as the 

alpha-value αi, which measures the sensitivity of β to a small variation in the mean-value μi of 

a basic random variable (Hohenbichler and Rackwitz, 1986): 

 
i
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This parametric sensitivity factor αi for the reliability index β with respect to a parameter 

θ is defined (Madsen et al., 1986) and developed (Bjerager and Krenk, 1989) as the derivative 

∂β/∂θ.  This factor measures the relative change in β due to a variation in a parameter Δθ. For 

a specified or known value of Δθ, the adjusted reliability index β’ can now be expressed as: 

 


  



 = + 


  (4) 

With this expression, the magnitude of how much each parameter must change in order 

to satisfy a specified level of safety can be evaluated. For design, the parameters can be 

adjusted to obtain a target reliability index βT, and for assessment, the parameters can be 

monitored such that they do not degrade to a critical reliability index βMin. 
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It should be noted that the terms βT and βMin are often used interchangeably, and that the 

rest of this paper will use the term βT. 

As part of a sensitivity analysis, parameter importance factors αi2 can be determined, 

identifying which of the modelled parameters have the greatest impact on the reliability index, 

and thus, the safety of the structure. 
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These factors indicate through their ranking, expressed as a percentage, what parameters 

are important for monitoring within a system and to what extent they contribute to the 

probability of safety or failure. Also, for varying limit states or uncertainties, the ranking of 

these parameters within a system can change; emphasizing the fact that the contribution of a 

certain factor to a failure defined by a limit state is a function of the information available 

about the system and the associated confidence or accuracy of that information. 

The parameter importance factors allow for the computation of the omission sensitivity 

factor γi, which is the relative error of β when a stochastic variable is modelled as a 

deterministic parameter (Madsen, 1988). This factor for a basic variable xi is measured as the 

inverse ratio of β and an adjusted reliability index β’ when the random variable xi is replaced 

by a deterministic parameter, typically its median (Ditlevsen and Madsen, 1996). 
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3 Description of Network and Assessment Methodology 

An Irish bridge network consisting of both reinforced and prestressed concrete structures, of 

varying age and exposure conditions, was used for this assessment (Table 1). The bridges in 

the network were highlighted, through routine visual inspections, as being in various states of 

damage, and consequently the network underwent an extensive assessment campaign; 

including non-destructive testing and deterministic computational assessments, and 

intervention activities were conducted, accordingly, to restore the network to an acceptable 

level of safety. The bridges in the network were assessed for the ultimate limit-states of 

bending and shear at the critical locations on the primary structural elements. The limit-states 

and locations of assessment were established and verified through deterministic assessments 

using finite element methods (FEM) and load & resistance factor design (LRFD) calculations. 

These limit states were analysed for combinations of dead and traffic loading; the traffic load 

models considered were normal (HA) and abnormal (HB), in accordance with BD 21 

(Highways Agency, 2001), the assessment loading code. Normal (HA) loading is said to 

represent the worst-case occurrence of typical traffic loading over the lifetime of the bridge, 

and is specified by a standard loading curve derived from the bunching of trucks in a notional 
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lane (Henderson, 1954). This is most onerous for shorter spans as this bunching can more 

reasonably be expected to occur, and is less onerous for longer spans where such an occurrence 

is less likely. It is modelled as a uniformly distributed load, along with a knife-edge load for 

shear effects, and has a 5% probability of occurring during the design life (120 years) of a 

bridge, for a return period of 200,000 years (Dawe, 2003). Abnormal (HB) loading is used to 

design and assess for the effects of untypical traffic loading, in the guise of multi-axle special 

vehicles carrying heavy loads. It has its foundation in post- war reconstruction to account for 

the transportation of heavy infrastructure, such as electricity generators (Dawe, 2003). It is 

modelled as a series of point loads to represent the application of the multiple axles. The 

section capacities for the resistance of bending moment and shear force were determined in 

accordance with BD 44 (Highways Agency, 1995) and BS 5400-4 (BSI, 1990). 

Probabilistic traffic-load models have been developed for the application of the reliability 

method to bridge structures (Nowak, 1993; O'Connor and Enevoldsen, 2009; O'Connor and 

O'Brien, 2005), which focus on the modelling of multiple presence or meeting events for 

ordinary and heavy transport trucks in both design and assessment. However, in the absence 

of site-specific data, the application of these methods was deemed inappropriate for this 

assessment. Thus, the applied traffic loads were derived from the deterministic worst-case HA 

and HB loading. However, as these values are functions of the bridge geometry and 

deterministic, code-defined axle loading, the load-effects were modelled functions of the basic 

variables. The overall effect of the traffic loading was represented by the coefficient j in the 

probabilistic model. The sensitivity of β to a change in the total applied traffic load is shown in 

the results for this coefficient, which was modelled as being equal to unity in the following 

assessment. Without site-specific probabilistic traffic load models, the reliability indices must 

be seen as a relative measure; however, sensitivity measures remain unaffected, in this regard. 

The effects of bending moment and shear force were evaluated for the critical 

superstructure elements in each bridge in the network, as identified in the deterministic 

assessment. In each case, the primary load-carrying beams were identified as the critical 

elements. The applied loads S and the characteristic resistance R were established, and a 

performance index was defined as the ratio S/R. A performance index less than or equal to one 

indicates compliance with safety standards and a performance index exceeding one indicates 

non-compliance with the standards. While a commonly used method in the design and 

assessment of structures, this method can only give a generalised indication of the level of 

safety present, and does not necessarily correspond to the true safety level of a structure 

(Allen, 1975; Ellingwood, 1996). Marginal violation does not immediately imply failure, but 

rather emphasizes the importance of a reliability analysis to be carried out since the normative 

standards often tend to be conservative (O'Connor and Enevoldsen, 2007). 

It can be seen that the performance index has exceeded unity in a number of cases (Table 

4). For PS2, it can be seen that bending and shear are both critical under normal traffic loading, 

while the limit-state is satisfied under abnormal loading. This is due to the bridge's short span, 

from which normal loading is most onerous for shorter spans becomes less so as the span 
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approaches 50m (Dawe, 2003). This is also seen for the short span of RC1. For RC2, the 

abnormal traffic load is most critical, as span is large enough to experience the full effect of an 

abnormal traffic load vehicle. For all the RC bridges in the network, shear was observed to be a 

critical limit-state. 

Following the deterministic analysis, a probabilistic analysis framework was developed. 

The load and resistance variables, S and R respectively, are expressed as: 

 ,App AppS M V=   (8) 

 
,Cap CapR M V=

  (9) 

 App DL SDL LLM M M M= + +
  (10) 

 App DL SDL LLV V V V= + +
  (11) 

where M and V represent the bending and shear limit-states, and the subscripts App and Cap 

represent the load applies and the section capacities at these limit-states, respectively. The 

subscripts DL, SDL, and LL refer to dead load, superimposed dead load, and traffic (live) load, 

respectively, and are functions of the basic variables described in Tables 2 & 3.  

4 Probabilistic Assessment 

4.1 Reliability Indices of Bridges within the Network 

The reliability indices β for the bridges within the network were determined using FORM and 

were then checked for non-linearity using SORM. The high correlation between βFORM and βSORM 

suggested that the failure surfaces were highly linear. The results for prestressed concrete (PS) 

structures and the reinforced concrete (RC) structures were grouped together to determine if a 

relationship existed for β between common bridge materials, and to what degree uncertainty, 

with regard to the random variables, affected the results of a safety classification based on β. 

The uncertainty in the random variables is represented by the coefficient of variation (CoV), 

which is a relative measure of dispersion within the probability density function (PDF). It is 

proposed that a high level of certainty for the value of a random variable would, as much as 

practicable, manifest itself as a PDF with a narrow dispersion. For bridge structures, this can be 

seen to occur in material strengths where a variation is present, and the level of variation 

across the structure can be known or unknown, based on the level of information obtained 

from, say, non-destructive testing (NDT) or structural health monitoring (SHM) (Frangopol, 

2011; Frangopol and Bocchini, 2012). As they can be measured with a high degree of accuracy, 

the basic variables related to the bridge geometry are considered deterministic (Table 3), and 

those related to material properties were modelled stochastically (Table 2). 

A target reliability index βT of 3.8 was established as being the lowest acceptable index, 

as specified in the Eurocodes (CEN, 2002; González et al., 2005). For the prestressed concrete 

bridges in the network (Figure 1), it can be seen that this βT is satisfied in most cases for a CoV 

of 0.1. This target is not satisfied in the bridge PS2 for the bending limit-state under both 

normal and abnormal traffic loading. This result correlates with those presented for the 



7 
 

deterministic performance indices (Table 4), which showed that PS2 also violated the limit-

state for bending in both load cases. 

The remaining initial values for β were seen to be bunched in the β ≈ 6 → 8 range, with 

the results for the shear limit-state showing the smallest variation across bridges and load 

cases. This bunching of β was not as apparent in the results for the reinforced concrete bridges 

in the network (Figure 2), with a much higher variation being present. A possible explanation 

for this is the general disparate nature of the three RC bridges, as opposed to the somewhat 

homogeneous nature of the PS bridges, which all possess the same basic form. The RC bridges, 

on the other hand, comprise a slab bridge (RC1) and two slab/girder bridges; one in the 

longitudinal direction (RC2), the other in the transverse direction (RC3). Additionally, the 

variation in the effective span LEff will govern significant changes in the applied traffic loading; 

with short spans being critical for normal loading, and long spans being critical under 

abnormal loading. 

It is expected and observed that β decreases with increasing CoV. It can be seen that this 

decrease occurs almost asymptotically from a CoV of 0.1 to 0.2, 0.3, and 0.4 at an approximate 

rate of 1/2, 1/3, and 1/4, respectively. This demonstrates the importance of limiting uncertainty 

within the probabilistic model, as the greatest decrease occurs in the CoV increase from 0.1 to 

0.2, after which it is observed that β has fallen below βT in most cases. In fact, it can be seen that 

for βT at a CoV of 0.2, the initial β at CoV of 0.1 must be greater than twice that of βT. In this 

case, only those cases where initial β > 7.6 will still satisfy minimum requirements for a CoV of 

0.2. Consequently, for higher levels of uncertainty, the lack of information governs the 

estimated risk of failure and this also explains the lack of variability of different bridges at 

higher levels of uncertainty. This builds the basis for assessing the relative importance of the 

basic variables in the failure surface.  

4.2 Sensitivity Studies 

Sensitivity assessments were carried out by considering a 10% perturbation in the various 

parameters involved in the assessment, which demonstrate the relative contribution each basic 

variable makes to β. The results are presented by grouping prestressed concrete bridges 

(Figure 3) and reinforced concrete bridges (Figure 4) for each failure mode for a CoV of 0.1. 

The relationship of the sensitivities between the increasing CoV is the same as that for β, and 

thus only sensitivities for CoV of 0.1 are presented. 

For the PS bridges in the network (Figure 3), it can be seen that the basic variables that 

have the greatest positive contribution to the reliability index for bending moment βM are the: 

mean value μ of the area of prestressing tendons Aps, notional lane width bL, effective depth d, 

and μ of the prestressing tendon strength fpu. The positive contribution of Aps(μ), d, and fpu(μ) 

are expected due to their inherent nature as resistance variables; however the positive 

contribution of bL is borne by its effect on the applied normal traffic loading, with a wider 

notional lane resulting in a lower effective applied uniformly distributed load (UDL) and 

knife-edge load (KEL) (Highways Agency, 2001). The upper and lower bounds (represented by 
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the 'whiskers' extending away from the mean) display the variation in these values across the 

three bridges. The close proximity of these bounds to the mean values indicate a high degree of 

correlation amongst the different network assets. These basic variables remain favourable for 

the reliability index for the shear limit-state βV, with the exclusion of Aps and the inclusion of 

overall depth of the section h. The larger spread between the upper and lower bound values 

for h can be attributed to the variable's individual contribution to the normal and abnormal 

traffic loading; the variable has very little effect for normal loading, whereas it is prominent in 

abnormal loading, due to the individual wheel loads being dispersed through the depth of the 

section to the neutral-axis. Thus, for a greater section depth, the wheel load experiences a 

larger dispersion, and individual beam elements are subjected to reduced loading from the 

individual wheels. 

For βM, the variables that are most unfavourable are: the width of the section b, the 

effective span LEff, as well as the CoV for the favourable variables Aps and fpu. For the 

deterministic parameters b and LEff, there is very little variation across the network, while there 

exists some variation between Aps(CoV) and fpu(CoV). However, this can be expected based on 

the in basic variables, with upper and lower bounds. relationships observed in Figures 1 & 2. It 

can also be seen that the deterministic parameter h has a mean unfavourable effect on βM, but 

exhibits a significant spread between its upper and lower bound values; even behaving as a 

favourable variable at its upper-bound value. This is explained as before, with h being 

unfavourable for normal traffic loading, and favourable for abnormal traffic loading; with the 

unfavourable effect outweighing the favourable effect. The same is observed to be true in βV for 

the deterministic parameter LEff. It can also be seen from the results for the coefficient of traffic 

loading j, that a 10% increase in the overall applied traffic load would result in a reduction in 

βM,V of approximately 0.5. 

For the RC bridges in the network, a much higher variation is present in the upper and 

lower bound values for the basic variables (Figure 4). This is expected based on the results 

obtained for βRC (Figure 2), and the disparate nature of the geometric forms, as compared to 

those for the PS bridges in the network. Thus, a relatively clear pattern emerges for each basic 

variable when similar bridge types of closely related geometry and structural material are 

considered together, and such a pattern is less apparent when the geometry is less closely 

related, even with the same structural material. 

However, while a 10% increase in the basic variables has been examined to identify those 

most critical, their overall effect on the violation of the limit-state has not been shown. For 

existing structures, a change in the deterministic parameters is not expected, and so it must be 

examined how much a random variable must deviate from its mean value to constitute limit- 

state violation. This can be evaluated at the design point u*, the most likely point of failure, to 

see the extent to which random variables have moved from their mean values μ into the tail of 

their distributions (O'Brien et al., 2015). This has the practical application of establishing how 

much a material property must deteriorate to reach a critical point. It can be seen (Figures 5 & 

6) that the mean values and the upper and lower bounds of the relative change in the random 
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variables exhibit a similar relationship to the initial spread of β (Figures 1 & 2), whereby the 

greatest level of bunching was observed for βV for the PS bridges, and the most significant 

spread occurred for the RC bridges, as is reflected by the wide bounds for the design 

point u*. 

4.3 Importance Factors 

Importance factors αi2 were determined to allow the relative ranking of random variables to 

aid the assessment process. These factors highlight those random variables which have the 

greatest influence on β, and thus which variables it would be beneficial to reduce the level of 

uncertainty. Random variables with low importance factors can afford to be modelled as 

deterministic parameters, without significant change in the computed β. Those with high 

importance factors should be prioritised when more detailed material assessments are deemed 

necessary. 

For the PS bridges in the network, it is apparent that the combination of Aps and fpu 

represent more than 90% of the stochastic importance for βM, while fpu alone represents 

approximately 90% of the stochastic importance for βV (Figure 7). For both βM and βV, fcu has 

very little importance, and can afford to modelled deterministically without any significant 

loss to the probabilistic model. This would suggest that any chemical inspections or non-

destructive testing of these bridge types should focus entirely on evaluating an accurate model 

for the PDF of Aps and fpu, and it would be considered unnecessary to establish anything more 

than basic knowledge of the properties of fcu, or the bulk densities of concrete or road 

surfacing, ρC and ρS, respectively. Again, little variation was observed between the upper and 

lower bounds of the results for the PS bridges in the network. 

Similarly to βM for the PS bridges in the network, the most stochastically important 

variables in the RC bridges in the network those that relate to the reinforcement in the section; 

in this case the area and the yield strength of the reinforcement As and fy, respectively (Figure 

8). These two variables account for approx. 98% of the stochastic importance for βM, and 

highlight the relative unimportance of the contribution of the compressive strength of concrete 

fcu to flexural resistance. For βV, fy is seen to be unimportant while fcu now accounts for 

approximately 39% of the stochastic importance. This increased significance of fcu in βV is 

expected given its understood contribution to shear resistance, and its absence as an important 

variable for RC structures would question the accuracy of the limit-state models. It should also 

be noted that the bulk density of concrete ρC, the principal variable accounting for dead load, 

has a mean importance of 22%, with a wide spread between the upper and lower bound 

values. This can be explained by the greater geometric variance in the RC bridges than is 

present in the PS bridges in the network as, in practice, the typical value for ρC is observed to 

be 24-25 kN/m3.  

The effect on β of modelling these variables as deterministic parameters rather than 

stochastic variables can be determined from the omission sensitivity factor γi which is a 

function of αi2 (Eqn. 7). This factor ratio of the β' and β, and shows the relative error of 
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replacing a stochastic variable with a deterministic parameter a probabilistic assessment (Table 

5). 

It should be noted that due to the asymptotic nature of γi,  there will be rapid increases in 

this ratio for any importance factor αi2 ≳ 85%. 

5 Conclusions 

A structural reliability analysis was conducted on six bridges in a network in Ireland. These 

bridges were assessed for the limit-states of bending and shear, under code-defined normal 

and abnormal traffic loading. A deterministic analysis was conducted in advance of the 

reliability analysis, in order to identify the limit-states and the associated input parameters. 

The computed estimates of the reliability indices were presented, along with associated 

parametric sensitivity and importance measures. It was observed that bridges of similar 

structural material and form are clustered in terms of sensitivity or parametric importance 

studies. The levels of existing correlations for the parameters across the bridge types, and how 

their influences on the reliability under varying degrees of uncertainty indicates the 

importance of a calibrated framework for the assessment of bridges at a network level. The 

network-level calibration is observed to be strongly dependent on the availability and the 

quality of information of the bridges within the network and, consequently, it can be stated 

that structural reliability analysis refers more to our state of knowledge of the structure than to 

the actual state of the structure itself. This emphasizes the need for data-sharing for such 

structures by the managers and owners of bridge networks for the most reasonable and cost-

effective interventions to be carried out. Further work is encouraged on a wider range of 

bridges under improved probabilistic information, in order to establish if baseline safety 

classifications can be established for specific bridge types. 
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