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Abstract 5 

While the potential of offshore wind and wave energy devices is well 6 

established in terms of environmental impact, operations and maintenance 7 

issues are still not very well researched or understood. One of the important 8 

aspects in this regard is the lack of access to these devices since they are 9 

typically situated in high wind and wave conditions to generate more energy. 10 

Consequently, deployment of sensors for such devices is an important issue 11 

since they can measure the response of these devices in an as-deployed 12 

condition and assessments or intervention decisions may be made based on 13 

the fusion of data of such sensors and through the choice of intelligent 14 

markers or modelling. While scaled model testing of devices in ocean basin 15 

has gained popularity and wide acceptance over time, research in the 16 

direction of developing guidelines for sensor measurement or placement 17 

strategies are currently not in place. This paper addresses some specific 18 

aspects of sensor choice, measurement and placement. In this regard, the 19 

performances of the sensors are considered in terms of their receiver 20 

operating characteristics (ROC) and uncertainties related to measurements are 21 

addressed. The option of using multiple, cheaper sensors of seemingly 22 

inferior performance as opposed to the deployment of a small number of 23 
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expensive and accurate sensors is also explored.   Practical aspects of testing 24 

are addressed in terms of exposure conditions and the performance of 25 

different sensors. Tests have been carried out in an ocean wave basin and the 26 

sensor placement for these tests has been used as a case study. 27 
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1 Introduction 28 

Both offshore wind and wave energy technology has seen major advances in 29 

recent years. Wave energy in particular is growing in popularity (Falcão 30 

2010; Mccullen et al. 2002). Operations and maintenance (O&M) costs are a 31 

highly relevant factor in the overall financial assessment of such projects, all 32 

the more so in offshore projects due to lower availability of the device 33 

(O’Connor et al. 2013). This has pushed the need for reliable structural 34 

monitoring systems for accurate and reliable information about the health of 35 

these energy conversion devices. With a move in recent times towards 36 

offshore energy solutions, loss in ease of accessibility may lead to damage 37 

going undetected, and the increased risk of catastrophic failure (Swartz et al. 38 

2010). 39 

There is clear financial benefit to optimizing time between inspections and 40 

scheduled maintenance work, which affects the uptime of systems while also 41 

coming with their own costs- an unscheduled maintenance event is five times 42 

more costly than one that is scheduled (Adams et al. 2011). However, high 43 

costs related to some sensing systems outweigh the benefits to O&M cost 44 

savings so the value of expensive sensing systems must be evaluated.  45 

There are many forms of sensing systems, based on various technologies. 46 

Accelerometers have been successfully applied to identifying and locating the 47 

presence of structural damage in offshore structures (Mangal 2001), as well 48 

as motion cameras and load cells (V.JAKSIC; ref; ref) and Fiber Bragg 49 
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Grating (FBG) to measure strain. Cameras can even be employed in 50 

underwater situations to detect damage (O'Byrne et al. 2014) where marine 51 

growth exasperates fatigue damage. However, little is known of the relative 52 

merits of these technologies. 53 

Wireless sensor networks (WSN) are a promising technology which have in 54 

recent years gained much attention from academia and industry alike. The 55 

application of WSN technology to structural health monitoring (SHM) has 56 

the potential to provide a substantial and quantifiable improvement to 57 

existing monitoring solutions for civil infrastructure (Boyle et al. 2011) 58 

.While wired SHM systems would require more maintenance and more 59 

frequent site visits as wires can be damaged over time, wireless SHM systems 60 

offer flexibility, even on difficult to access structures, and significantly 61 

reduced costs of installation and maintenance.  62 

However, some of the existing wireless systems for SHM still have high 63 

power consumption. The high power consumption and the limited power 64 

budget make these systems unsuitable for long-term installation on a structure 65 

and requires frequent site visits for system maintenance.  66 

WSN nodes are battery powered and because of their limited energy source 67 

they are not suitable for long-term structural health monitoring applications. 68 

With the focus on enhancing the life time of a wireless sensor node, a popular 69 

is by complementing an energy harvesting technique with an efficient energy 70 

management algorithm (Sharma et al. 2010). This approach has the potential 71 
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to achieve self-sustainability of the node with harvesting energy from the 72 

environment and effectively managing the node activity (i.e. the sampling 73 

rate of the sensors) according to the energy levels and the dynamics of the 74 

phenomenon observed (Srbinovski et al. 2015unpublished)  75 

 76 

2 Experimental Model 77 

2.1 Model 78 

A scaled Tension Leg Platform (TLP), a truss like structure with a hexagonal 79 

base, was tested in this study. This device consists of a gravity base 80 

connected by six mooring tethers to the Buoyancy Ring and the Upper 81 

Structure and the Tower and Nacelle, all as shown in fig 1.  82 

 83 

Figure 1 TLP Model 84 
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2.2 Instrumentation and Testing 85 

The model was instrumented with 6 Tedea-Huntleigh stainless steel single 86 

ended bending beam load cells which were attached to the six mooring line 87 

cables and bolted to the gravity base. These measured the cable tension in 88 

Newtons (N). The instantaneous positions of 3 reflective markers, which 89 

were attached to the six corners of the hexagonal base, were monitored by 4 90 

Qualisys 3-Series Oqus Marker Tracking Cameras with a sampling frequency 91 

of 32Hz. A Laser Doppler Vibrometer (LDV) was also employed during 92 

testing to record the velocity of the TLP. This high resolution technology 93 

samples at a rate of 480 Hz. Displacements and velocities were recoded in the 94 

wave direction, as this was considered the most critical plane. 95 

The model was tested at the Hydraulics and Maritime Research Centre 96 

(HMRC), University College Cork (UCC), Ireland in its Ocean Wave Basin. 97 

A variety of periods and wave amplitudes were used and the Bret Schneider 98 

wave spectrum was chosen, to best represent a true sea state. 99 

  100 
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3 Results 101 

Displacement 102 

The camera recorded the position of the TLP at 3 different locations; the 103 

Inner Ring, the Outer Ring and the Middle Mast. The velocity of the structure 104 

as recorded by the LDV was used to find displacement values. 105 

Figure 2(a) shows the displacements recorded by the camera at the 3 tracked 106 

positions. Due to the far larger amplitude of displacement at the mid mast 107 

position, due to the flexible nature of the mast and its sensitivity, these 108 

readings were omitted from the average value shown in figure 2 (c), as they 109 

were viewed to be skewing the data (see figure 2 (b) ). 110 

 111 
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2(c) 

Figure 2 Displacment 112 

 113 

 114 

Velocity 115 

The LDV records velocity, and the displacement data recoded by the camera 116 

is used to derive its velocity. In figure 3, the RMS values of velocity for each 117 

test are shown for both the motion camera and the LDV. 118 
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 120 

Figure 3 RMS Velocity of Camera and LDV data 121 

 122 

Values recorded for the LDV are increasingly higher than those derived from 123 

the camera for each successive test of increased wave period. The camera’s 124 

data here is inaccurate in that it doesn’t increase proportionally with the 125 

increase wave loading. 126 

 127 

Frequency 128 

The displacement time series for the LDV and the motion camera were 129 

converted into the frequency domain with a Fourier Fast Transform (FFT). 130 

The dominant input to the series, the waves acting are the dominant 131 
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frequency in this output, seen as the largest peaks (Figure 4).132 

 133 

Figure 4 Fourier Fast Transform of Camera Displacement Time Series 134 

 135 

By comparing analysis outputs to known inputs for two different 136 

technologies, we can compare the retained accuracy of each. In Figure 4, the 137 

response of frequency of the output for the two different instruement is 138 

compared to the known frequency of the wave input to the system. The peak 139 

frequency of the velocity output of the LDV is, on average, 18.7% lower than 140 

the wave frequency of each particular test. Whereas the peak frequency of the 141 

camera’s displacement is an average of 31.9% higher than the same inputs. 142 

 143 

 144 

 145 

 146 
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 147 

Figure 5 Frequency comparison of input wave to frequency of LDV and camera 148 
displacement outputs 149 

The same comparison, but for the frequency of the LDV’s velocity output 150 

yielding a difference of only 7%, on average, from the wave input. 151 

Load  Cells 152 

Load cells were placed at Bow Port, Bow Starboard, Mid Starboard, Stern 153 

Starboard, Stern Port, Mid Port and were accordingly labelled White, Red, 154 

Yellow, Green, Brown and Blue. 155 

The average Peak and RMS load values for each load cell for 20 different 156 

tests are represented in Figure 6. The highest loads are recorded in the 157 

direction of the wave, at the bow and at the stern of the structure. Analysis of 158 

the effect of removing different load cells to the overall data was carried out, 159 

a sample of which is shown in Figure 7. 160 
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 161 

Figure 6 162 

 163 

Figure 7 164 
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Data obtained from the white cell at Bow Port was removed, and the estimate 165 

shown for loading at this position shows a loss in accuracy of the loading on 166 

the structure. 167 

4 Energy Aware Adaptive Sampling Algorithm for Energy 168 

Harvesting WSNs 169 

 170 

The development of WSNs technology is hindered by their limited energy 171 

supply. In the case of SHM applications, sensors are extremely expensive 172 

with respect to energy requirements. It is desirable to develop protocols that 173 

effectively manage the sensor power consumption while still meeting the 174 

requirements of the application. Adaptive sampling algorithms (ASA) are 175 

often used as a tool to minimize the communication between the sensor nodes 176 

within the network and at the same time to minimize the power consumed by 177 

the sensors by reducing the sampling rate according to the needs of the 178 

phenomenon observed.  179 

An ASA presented in (Alippi et al., 2010) was implemented in Matlab and 180 

evaluated using data collected with sensor for DISPLACEMENT as recorded 181 

by the motion cameras. 182 

 183 

The algorithm used evaluates the maximum frequency of the signal using 184 

FFT and then decides the sampling frequency by multiplying the maximum 185 

frequency with a constant which is ≥2 satisfying the Nyquist criterion. A 186 
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detailed description of the implemented algorithm with all relevant 187 

parameters explained can be found in (Alippi et al., 2010). 188 

 189 

Figure  8 Matlab ASA Implementation of Camera Displacement Data 190 

In figure 8, the sampling frequency according to the ASA and the maximum 191 

frequency of the signal are presented. The graph was generated by 192 

implementing ASA in Matlab with the following values for the relevant 193 

parameters: c = 2.1, h = 5, W = 50, δ = 0.1%. Details for each of these 194 

parameters are explicitly given in (Alippi et al., 2010). The time between 195 

successive frames was 0.3125, thus the starting sampling frequency was 196 

32Hz. As shown in figure X, using the ASA reduces the number of acquired 197 

samples with respect to the traditional fixed sampling rate approach and 198 

hence saves energy.  199 

 200 
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9 Discussions and Conclusions 201 

A comparison was made between high quality LDV data and lower quality 202 

motion camera data which recorded 3 different locations on the structure. It 203 

was initially thought that the multiple positions being tracked would increase 204 

accuracy, but due to physical characterists of the mid mast location, the extra 205 

data was misleading of the overall structure and reduced overall accuracy of 206 

results. Fewer, better placed markers which took into account physical set up 207 

of model would have been more effective.  However, for the load cells, a 208 

higher number of locations monitored leads to a better understanding of the 209 

structure under wave loading.  210 

Section 4 deals with the optimisation the number of acquired samples to save 211 

energy. In applications where a battery powered system is used to interface a 212 

power hungry sensor, reducing the sampling rate when possible will extend 213 

the life of the battery while still maintaining the application data 214 

requirements. Dynamically changing the sampling frequency according to the 215 

needs of the phenomenon under observation can also improve the data 216 

quality. Using fixed sampling rate can cause undersampling of the signal, 217 

hence introducing error in the measurement and difficulties in reconstructing 218 

the signal and this method helps to avoid this. 219 

 220 

 221 

222 
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