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Abstract 

The increased size and flexibility of modern multi-Megawatt wind turbines has resulted in the 

dynamic behaviour of these structures becoming an important design consideration. The aim of 

this paper is to study the variation in natural frequency of wind turbine blades due to centrifugal 

stiffening, and the potential use of Semi-Active Tuned Mass Dampers (STMDs) in reducing 

vibrations in the flapwise direction with changing parameters in the turbine. The parameters 

considered were the rotational speed of the blades and the stiffness of the blades and nacelle. 

Two techniques have been employed to determine the natural frequency of a rotating blade. The 

first employs the Frobenius method to a rotating Bernoulli-Euler beam. These results are 

compared to the natural frequencies determined from an eigenvalue analysis of the dynamic 

model of the turbine including nacelle motion which is developed in this paper. The model 

derived considers the structural dynamics of the turbine and includes the dynamic coupling 



between the blades and tower. The semi-active control system developed employs a frequency 

tracking algorithm based on the Short Time Fourier Transform (STFT) technique. This is used to 

continually tune the dampers to the dominant frequencies of the system. Numerical simulations 

have been carried out to study the effectiveness of the STMDs in reducing flapwise vibrations in 

the system when variations occur in certain parameters of the turbine. Steady and turbulent wind 

loading has been considered. 

 

1 INTRODUCTION 

Wind turbines with outputs as large as 5MW are being constructed with tower heights and rotor 

diameters of over 80m and 120m respectively. As a result of the increasing size of the turbine 

components, the blades are becoming the limiting factor towards larger even more powerful 

turbines. Significant research has already been carried out into the dynamic behaviour of wind 

turbines. Rauh and Peinke (1) developed a model to study their dynamic response. Tavner et al. 

(2) performed a study into the reliability of large wind turbines. They noted that the installation 

of turbines in more remote locations, particularly offshore gives rise to the need for more 

accurate reliability analysis so that wind turbine availability and design life can be predicted.  

With the increased size of the turbine blades comes increased flexibility making it important to 

understand their dynamic behaviour. Sutherland (3) studied the fatigue properties of the different 

materials used in wind turbines from the steel in the tower to the composites used in blade 

design. Ahlstrom carried out research into the effect of increased flexibility in turbine blades and 

found that it can lead to a significant drop in the power output of the turbine (4). Significant 

research has been carried out into the area of blade design and their failure characteristics (5, 6, 

7). However, it is only over the last few years that research has started to focus on the dynamic 



behaviour of the turbine blades and the dynamic interaction that occurs between the blades and 

the tower. 

Two main types of vibration occur in wind turbine blades, flapwise and edgewise. Flapwise 

vibrations are vibrations occurring out of the plane of rotation of the blades while edgewise 

vibrations occur in the plane of rotation. Flapwise vibration is similar in nature to the 

phenomenon of fluttering in aircraft wings and in extreme cases has lead to the turbine blades 

colliding with the tower resulting in catastrophic failure of the structure. Ronold and Larsen (8) 

studied the failure of a wind turbine blade in flapwise bending during normal operating 

conditions of the turbine. Murtagh and Basu (9) studied the flapwise motion of wind turbine 

blades and included their dynamic interaction with the tower. They found that inclusion of the 

blade-tower interaction could lead to significant increases in the maximum blade tip 

displacement. 

Efforts to mitigate the increased vibration problems that are occurring in wind turbine blades 

have thus far concentrated on the actual design of the blades themselves. This has focussed on  

attempting to increase the structural damping present in them or alter their aerodynamic 

properties (10, 11). The possibility of using dampers in the blades to control their dynamic 

behaviour has not yet been investigated in detail. 

Vibration mitigating devices have been used in engineering systems for many decades; Tuned 

Mass Dampers (TMDs) being one of the first types. TMDs consist of a mass connected to the 

primary structure through the use of springs and dashpots. Passive TMDs have been used widely 

throughout civil engineering applications, particularly in tall buildings subjected to wind or 

earthquake loadings. One of the first buildings to have a TMD installed was the John Hancock 

Building in Boston. Extensive research has been carried out into the use of passive TMDs and 



their suitability for vibration control (12, 13, 14, 15). The non-linearity of nearly all engineering 

dynamical systems has raised the need for Semi-Active TMDs (STMDs) due to their ability to 

adjust their tuning to cater for changes in the behaviour of the primary system. Semi-active 

devices are more desirable than active as they require significantly less power and are therefore 

more cost effective. Pinkaew and Fujino (16) looked at the use of STMDs for vibration 

mitigation in structures excited by harmonic loads. Nagarajaiah and Varadarajan (17), and 

Nagarajaiah and Sonmez (18) applied Short Time Fourier Transform (STFT) techniques to track 

the dominant frequencies of the system being damped. This allowed the STMD to be continually 

tuned to the dominant frequency of the structure resulting in a more effective reduction in 

response. 

The aim of this paper is to investigate the effectiveness of STMDs in the vibration control of 

wind turbine blades. Investigation into the natural frequencies of rotating blades is also 

considered for different rotational speeds. Two techniques have been employed for comparison. 

The first considers the natural frequencies of a rotating Bernoulli-Euler cantilever beam using 

the Frobenius method. This is then compared to the frequencies obtained from an eigenvalue 

analysis of the turbine model developed in this paper.   

The hollow nature of wind turbine blades makes them naturally suitable for the use of internal 

damping devices. However, thus far, little work has been done investigating this possibility. 

Most of the current research into the dynamic behaviour of wind turbine blades has focused on 

aerodynamic models of the blades themselves. The model developed in this paper looks purely at 

the structural dynamics of the turbine including the blade-tower interaction. Flapwise vibration 

only has been considered. 



The model presented consists of three rotating cantilever beams (representing the turbine blades) 

connected at their root to a large mass (which models the nacelle) allowing the inclusion of 

blade-tower interaction. The masses, lengths, natural frequencies etc. were chosen to replicate 

those of a real wind turbine to accurately capture the dynamic interaction between the blades and 

nacelle. An STMD was connected to each blade tip and to the nacelle. This gave the completed 

model including STMDs a total of 8 Degrees of Freedom (DOF). Steady and turbulent wind 

loading was applied to the model acting in the flapwise direction. 

 

2 ANALYSIS FOR CALCULATION OF NATURAL FREQUENCIES 

2.1 Determination of Blade Natural Frequencies Using Frobenius Method 

The governing differential equation for a rotating Euler Bernoulli beam with rigid support under 

flapwise vibration is 
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where  is the density of the beam, A is the cross sectional area, w is the relative displacement of 

a point with respect to its static deflected position, E is the Young’s modulus of elasticity of the 

material of the beam, I is the moment of inertia of the beam about its relevant axis, T is the 

centrifugal tension force on the beam at a point x with respect to the origin and f is the applied 

force per unit length on the beam. The cross sectional area, A, and bending rigidity, EI, are taken 

as constant along the length of the beam, x. Both w and f are dependent on the location on the 

beam with respect to the origin, x, and time, t. The centrifugal tension T is expressed as 
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where L is the length of the beam, r is the radius of the rigid hub to which the flexible beam is 

attached and  is the angular velocity of rotation of the beam, which is assumed to be constant. 

The effect of gravity on the rotation of the beam is assumed negligible compared to the 

centrifugal effect. 

The non-dimensional rotational speed parameter and natural frequency parameters are defined as 
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respectively where ω is the natural frequency of the beam. Setting  f(x,t) = 0 in equation 1 and 

substituting the non-dimensional parameters, the modeshape equation is obtained in a 

dimensionless form as 
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Employing the Frobenius method of series solution of differential equations as in (19) and 

considering ideal clamped-free boundary conditions for a cantilever, the natural frequency 

equation is obtained to be 
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the recurrence relation is obtained as 
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The normalised modeshape equation can be derived as 
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It is important to note that for an Euler Bernoulli rotating beam with double symmetric cross 

section, it can be shown that the in plane and out of plane vibrations are uncoupled and the 

respective natural frequencies differ by a constant equal to the square of the non-dimensional 

rotational speed. This paper considers only the out of plane or flapwise vibrations. The results 

obtained using the Frobenius technique are discussed later in the paper. The formulation does not 

consider the motion of the nacelle at the base of the blade. 

 

3 LAGRANGIAN FORMULATION 

3.1 Dynamic Model including Nacelle Motion 

The dynamic model was formulated using the Lagrangian formulation expressed in equation 12 

below 
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where: T = kinetic energy of the system, V = potential energy of the system, qi = displacement of 

the generalized degree of freedom i and Qi = generalized loading for degree of freedom i. The 

kinetic and potential energies of the model were first derived including the motion of the nacelle 

and are stated in equations 13a and 13b. These expressions were then substituted back into the 

Lagrangian formulation in equation 12 to allow the equations of motion to be determined. 

 

2
3

1 0

2

2

1

2

1
nacnac

i

L

bib qMdxvmT += 
=

     (13a) 



2
3

1 0

2

2

2

2

1

2

1
nacnac

i

L

i qKdx
x

q
EIV +













= 

= 


    (13b) 

 

where: mb = mass of blade, L = length of the blade (= 48m), vbi = velocity of blade tip ‘i’ 

including the nacelle motion that causes blade tip displacement, Mnac = mass of nacelle, E = 

Young’s Modulus for the blade, I = second moment of area of blade, Knac = stiffness of the 

nacelle, qi is the displacement of the blade i and qnac is the displacement of the nacelle. 

Each blade was modelled as a cantilever beam with uniformly distributed parameters as can be 

observed from the expressions for the kinetic and potential energies in equations 13a and 13b. 

They were assumed to be vibrating in their first mode with a quadratic modeshape. The 

cantilevers were attached at their root to a large mass representing the nacelle of the turbine. This 

allowed for the inclusion of the blade-tower interaction in the model. STMDs were attached to 

the system, modelled as mass-spring-dashpot systems whose tuning was controlled by the semi-

active algorithm outlined later in this paper. A schematic of the model is shown in figure 1. The 

degrees of freedom (dof) marked q1, q2, q3 and qnac represent the motion of the blades and 

nacelle and the STMD displacements are labelled as di, where i corresponds to the relevant dof. 

For simplicity just two STMDs are shown in the diagram. One attached to the nacelle and the 

other attached to the blade in the upright vertical position. 

The final model with STMDs attached consisted of a total of 8 dof (with a total of four dampers, 

one in each of the blades and one at the nacelle) expressed in the standard form as in equation 14 

below. 
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where [M], [C] and [K] are the mass, damping and stiffness matrices of the system respectively. 

q , q  and q are the acceleration, velocity and displacement vectors and Q is the loading. 

Centrifugal stiffening was added to the model as per the formula developed by Hansen (20). 

Structural damping included in the system was assumed to be in the form of stiffness 

proportional damping. 

 

3.2 Loading 

Two simple load cases were studied in this paper. The first loading scenario looked at the effect 

of a steady wind load that varied linearly with height. The rotation of the blades meant that the 

loading on each blade was time dependant as they moved through the wind field. Since a couple 

of harmonic terms arose in the loading it was simplified to just the first harmonic so the 

performance of the STMDs could be assessed for this simpler load case. Equation 15 shows the 

expression for the loading on blade 1. The loads on blades 2 and 3 are shifted by angles of 2π/3 

and 4π/3 respectively. 
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where: vnac = wind speed at nacelle height, vnac+L = wind speed at the maximum blade tip height, 

i.e. when blade is in upright vertical position. A = Area of blade, taken as 1 to normalize the 

load, with Ω as before equal to the rotational speed of the blade. The loading on the nacelle was 

assumed to be zero so that all motion of the nacelle was due to the forces transferred from the 

blades through the coupling present in the system. 



The second loading scenario considered the same load case as the first but with an added random 

component modelling turbulent wind. This turbulent velocity component was generated at a 

height equal to that of the nacelle using a Kaimal spectrum (21) defined by equations 16, 17 and 

18 below. Uniform turbulence was assumed for the blades. 
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where: H = nacelle height, Svv(H, f ) is the PSDF (Power Spectral Density Function) of the 

fluctuating wind velocity as a function of the hub elevation and frequency, *v  is the friction 

velocity from equation 17, and c is known as the Monin coordinate which comes from equation 

18. 
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where k is Von-Karman’s constant (typically around 0.4 (22)), z0 = 0.005 (the roughness length), 

and ( )Hv  is the mean wind speed. This results in a turbulence intensity of 0.115 in the generated 

spectrum. 

 

4 STFT BASED TRACKING ALGORITHM 



STFT is a commonly used method of identifying the time-frequency distribution of non-

stationary signals. It allows local frequencies to be picked up in the response of the system that 

may only exist for a short period of time. These local frequencies can be missed by normal Fast 

Fourier Transform (FFT) techniques. The STFT algorithm splits up the signal into shorter time 

segments and an FFT is performed on each segment to identify the dominant frequencies present 

in the system during the time period considered. Combining the frequency spectra of each of 

these short time segments results in the time frequency distribution of the system over the entire 

time history. 

The STFT algorithm developed in this study allows the STMDs to be tuned in real-time to the 

dominant frequencies in the system. Before each time segment is Fourier analyzed it is 

multiplied by a window function centred on the time of interest. In this case the time of interest 

is the current time of the response to allow for real-time tuning. A Hanning window function has 

been employed in this paper, emphasising the frequencies just before the current time. Once the 

weighted signal is obtained an FFT is performed and the frequency spectrum obtained. The 

dominant frequencies are then identified and the STMDs tuned to these frequencies. The 

algorithm is repeated every second allowing the tuning of the STMDs to be adjusted in real-time 

as the frequencies present in the system change. The amount the tuning of the STMD could vary 

from one call of the STFT algorithm to the next was limited to prevent the build up of transience 

in the system. This could lead to sudden increases in response amplitude. The semi-active 

algorithm is outlined in the flow chart shown in figure 2. 

 

5 RESULTS  

5.1 Natural frequency estimation 



The natural frequency was first calculated using the Frobenius method for a stationary Bernoulli 

Euler beam, i.e. Ω = 0. This value was then used in the Lagrangian dynamic model with the 

effect of centrifugal stiffening added in, which is dependent on the rotational speed, Ω. Natural 

frequencies for 3 other rotational speeds were then obtained. The Frobenius method results for 

the Bernoulli Euler beam were compared to two different cases from Lagrangian analysis. The 

first was a single rotating uniform cantilever beam assuming the nacelle motion to be zero. The 

second was a 3 blade turbine model which included blade tower interaction. A 14th term 

expansion was deemed sufficient for the Frobenius results. All natural frequencies calculated are 

for the first mode of vibration. Higher modes can be calculated easily using the Frobenius 

technique. The results for the first mode are shown in Table 1. It can be seen that there is a good 

agreement between the Frobenius results and the Lagrangian single blade model. For the full 3 

blade model including nacelle coupling all three blade natural frequencies are listed. As can be 

seen two of these are in good agreement with the Frobenius results while the third is 

significantly different. This is a result of the interaction between the blades and nacelle. 

Omission of the nacelle coupling results in 3 identical natural frequencies for the blades which 

are in close agreement with the Lagrangian single blade and Frobenius results. 

 

5.2 Dynamic control – Steady wind load 

The following section looks at the results of the STMD system for the steady wind loading 

described above in section 2.3. The model was run with all parameters constant (Ω, ωb and ωnac) 

so the response of the system could be observed under normal operating conditions of the 

turbine. Figure 3a and 3b shows the frequency content of the blade and the nacelle respectively.  

  



Vary Ω, rotational speed of the blades 

The first parameter varied was the rotational speed of the blades, Ω. The variation considered the 

blades slowing down linearly over 180 seconds from 3.14 rads/s to 1.57 rads/s. The natural 

frequency of the blades and nacelle were kept constant. Figure 4a shows the undamped and 

damped response of one of the blades with figure 4b showing the corresponding STMD 

behaviour by plotting the blade displacement, STMD displacement and STMD tuning all with 

respect to time. This allows an insight into the behaviour of the semi-active algorithm. As can be 

seen in figure 4a a significant reduction is achieved in the response of the blade. The behaviour 

of the STMD in figure 4b clearly shows the semi-active behaviour kicking in at t = 41 seconds 

and the tuning of the STMD changing with respect to time. 

The nacelle response and STMD behaviour is illustrated in figures 5a and 5b. A large reduction 

is again achieved when the STMD kicks in at t = 41 seconds.  

 

Vary ωb1, the natural frequency of blade 1 

The natural frequency of blade 1 was varied from 1.5588 Hz (9.79 rads/s) to 1.2398 Hz (7.79 

rads/s) at t = 100 seconds. This loss of blade stiffness simulates damage occurring in the blade. 

The other two blades were assumed to remain unchanged.  

Figure 6a plots the displacement response of blade 1. As can be observed at t = 100 seconds the 

behaviour of the blade changes due to the change in its natural frequency. The tuning of the 

STMD adapts for this as can be seen in figure 6b. This results in an effective reduction in the 

response of the blade before and after the change in natural frequency, as can be observed in 

figure 6a. 



The corresponding nacelle plots are shown in figures 7a and 7b. Again the algorithm identifies 

the shift in system behaviour and takes this into account, thus achieving a response reduction 

before and after the change in the natural frequency of blade 1. 

 

Vary ωnac, the natural frequency of the nacelle 

The natural frequency of the nacelle was then varied from 0.5675 Hz (3.566 rads/s) to 0.4775 Hz 

(3 rads/s) at t = 100 seconds, simulating damage to the tower of the turbine. 

The displacement response of blade 1 is plotted in figure 8a with the corresponding STMD 

behaviour shown in figure 8b. No real shift in blade behaviour is seen at t =100 seconds. This 

suggests that the frequency of the tower doesn’t have a large bearing on the blade response. 

However, this could also be a result of the fact that no load is considered to act on the nacelle. A 

good reduction is again seen in the blade with the STMD. 

The same is seen for the nacelle results in figures 9a and 9b. As expected the semi-active 

algorithm achieves a good reduction in response. A slight change can be seen in the tuning of the 

nacelle STMD due to the shift in natural frequency but clearly this shift is not enough to cause a 

noticeable change in the nacelle’s behaviour. 

 

5.3 Dynamic control –Turbulent wind load 

Response of the model to the turbulent wind load described in section 2.3 was also investigated. 

This turbulent loading considered the same steady wind speed at the nacelle but with an added 

turbulent component modelled by a Kaimal spectrum. The same parametric variations were 

considered as for the steady wind load. 

 



Vary Ω, the rotational speed of the blades 

Figures 10a and 10b plot the displacement response of blade 1 and the corresponding STMD 

behaviour. The semi-active algorithm again caters well for the turbulent loading achieving a 

significant reduction in response. The nacelle results are shown in figures 11a and 11b. Again a 

good reduction is seen in the response of the turbine. The tuning of the nacelle STMD can be 

seen in figure 11b. 

 

Vary ωb1, the natural frequency of blade 1 

Good reduction is again seen in the blade response both before and after the change in natural 

frequency which occurs at t = 70 seconds. This can be observed in figure 12a. The STMD 

behaviour can be seen in figure 12b. A large reduction is also achieved in the nacelle 

displacement before and after the change in the natural frequency of blade 1, as can be seen in 

figure 13a. The behaviour of the nacelle STMD is plotted in figure 13b. 

 

Vary ωnac, the natural frequency of the nacelle 

Finally, the nacelle natural frequency was varied as before, again at t = 70 seconds for the 

turbulent wind load. Figures 14a and 15a show the STMD achieving a reduction in both the 

blade and nacelle responses. Similar to the steady wind load results, no real change is seen in the 

model’s behaviour after the change in nacelle natural frequency. This can again be attributed to 

the fact that a greater change in nacelle natural frequency is needed to alter the behaviour of the 

system. The tuning of the blade and nacelle STMDs can be seen in figures 14b and 15b 

respectively. 

 



6 CONCLUSIONS 

In this study, the use of STMDs to control wind turbine blades in flapwise bending has been 

investigated. An STFT based algorithm has been used for semi-active tuning. The model 

developed in this paper focussed only on the structural dynamics of the turbine including the 

interaction between the blades and the tower. The natural frequency of the rotating blades for 

different rotational speeds, Ω, were calculated using a Lagrangian model by performing an 

eigenvalue analysis on the system. These results were compared to those obtained by applying 

the Frobenius method to a rotating Bernoulli Euler beam with the same stationary natural 

frequency. Good agreement was seen between the models and the methods used. 

Four STMDs were added to the model, one at each blade tip and one at the nacelle to control the 

response of each component. The displacement response of the system was controlled in real 

time by processing a previous window of 40 seconds and feeding back the information into the 

semi-active algorithm. This 40 second window allowed a frequency of 0.025Hz to be captured 

which is the incremental frequency for retuning of the STMDs. This ensures no mistuning of the 

dampers. The windowed time segment was then Fourier analysed to determine the dominant 

frequencies in the system at the current time. The STMDs were then repeatedly tuned every 

second in real-time according to this algorithm. A Hanning window function was employed.  

Numerical simulations were carried out to ascertain the effectiveness of the STMDs in 

mitigating flapwise vibrations in the model when variations were considered in three of the 

system parameters. The parameters varied were the rotational speed, Ω, the natural frequency of 

blade 1, ωb1, and the natural frequency of the nacelle, ωnac. This allowed the simulations to take 

account of changes in system parameters during operational conditions of the turbine due to 

environmental changes, or damage in the blades and nacelle which may occur during the life 



cycle of the turbine. Significant reduction was achieved by the semi-active algorithm for both 

steady and turbulent wind loading highlighting the viability of STMDs in controlling flapwise 

vibrations in wind turbines. Further studies by the authors into the investigation and control of 

edgewise vibrations in the blades are currently being undertaken. 
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Table 1 Natural frequency estimates 

 

 

 

 

Ω (Revs/min) 

 

Bernoulli-Euler  

Frobenius results (Hz) 

Lagrangian 

1-blade (no coupling) 

Eigenvalues (Hz) 

Lagrangian 

3-blades (nacelle coupled) 

Eigenvalues (Hz) 

0 1.5588 1.5588 1.5588, 1.5588, 1.5588 

10 1.5703 1.5700 1.5700, 1.5700, 1.9207 

60 1.9274 1.9399 1.9394, 1.9394, 2.3649 

120 2.8010 2.7863 2.7859, 2.7859, 3.3867 

 

Table 1 


