

1 **Research article – Biotechnology Progress**

2 Improvements in single-use bioreactor film material composition leads
3 to robust and reliable Chinese hamster ovary cell performance

4

5 **Paul S Kelly^{1,5,†}, Noemi Dorival-García^{1,5,†}, Samantha Paré^{2,5}, Sara Carillo^{1,5}, Christine Ta^{1,5}, Antonio**
6 **Alarcon Miguez², Orla Coleman², Emma Harper⁴, Maeve Shannon⁴, Michael Henry², Lisa Connolly⁴,**
7 **Martin Clynes^{2,5}, Paula Meleady^{2,5}, Jonathan Bones^{1,5,†} and Niall Barron^{1,3,5,†,*}**

8

9 **¹ National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock,**
10 **Co. Dublin, Ireland.**

11 **² National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.**

12 **³ School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4.**

13 **⁴ Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern**
14 **Ireland, United Kingdom.**

15 **⁵ Synthesis and Solid State Pharmaceutical Centre, University of Limerick, Ireland.**

16

17 **†Authors contributed equally**

18 *** Corresponding author**

19

20 **Email: niall.barron@nibrt.ie**

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 Abstract

38 Single-use technologies, in particular disposable bioreactor bags, have become integral
39 within the biopharmaceutical community. However, safety concerns arose upon the
40 identification of toxic leachable compounds derived from the plastic materials. Although
41 the leachable bis(2,4-di-tert-butylphenyl)-phosphate (bDtBPP) has been previously
42 shown to inhibit CHO cell growth, it is critical to determine if other compounds like this
43 are still present in subsequent generations of films for industrial application. This study
44 compares the performance of CHO cells, CHO-K1 and CHO-DP12, cultured in media
45 conditioned in an older single-use bioreactor (SUB) film (F-1) and a newer generation
46 film (F-2) from the same vendor. CHO cells cultured in media conditioned for 7 days in
47 the F-1 film demonstrated significantly reduced growth and antibody productivity
48 profiles when compared to controls and media conditioned for the same time period in
49 the newer F-2 film. Proteomic profiling of CHO cells cultured in the F-1 conditioned
50 media identified differentially expressed proteins involved in oxidative stress response as
51 well as compromised ATP synthesis. These potentially metabolically compromised cells
52 exhibited reduced oxidative phosphorylation activity as well as lower glycolytic
53 metabolism, characteristic of slower growing cells. Non-volatile and metal leachables
54 analysis of film extracts by LC-MS revealed a reduction in the abundance of the analysed
55 leachates from F-2 films when compared to F-1 films including bDtBPP, potentially
56 explaining improved CHO cell growth in F-2 conditioned media. Furthermore, *in vitro*
57 endocrine disruptor testing of the known leachable revealed this molecule to possess the
58 potential to act as an androgen antagonist. This study demonstrates an improvement in
59 the materials composition used in modern generations of SUBs for safe application in the
60 bioprocess.

61

62 *Keywords:* Single-use bioreactors, Leachables, Chinese hamster ovary cells, Endocrine
63 disruptor, bDtBPP, Mitochondria, SeaHorse XF96

64

65

66

67

68

69 *1. Introduction*

70 With the emergence of novel bio-therapeutics, the advent of bio-similars and the increasing
71 number of lead molecules within the developmental pipelines, the notion of individual
72 manufacturing sites being constructed at a cost of ~€1 billion for every newly approved product
73 is not sustainable ¹. Increasing the flexibility of these manufacturing sites leading to the
74 introduction of multi-drug facilities has been accomplished in certain cases through the
75 implementation and integration of single-use disposable technology in place of or in parallel
76 with existing stainless steel, hard-piped production platforms. Applying single-use technology
77 to the bioprocessing pipeline carries with it a cohort of potential benefits including reduced
78 CapEx of up to 75%, elimination of clean-in-place/steam-in-place treatments, thereby reducing
79 operational costs, as well as minimising the environmental carbon footprint ^{2,3}. Although the
80 size limitations of SUBs (2,500L) does not compete with their stainless steel bioreactor
81 counterparts (10-25k L), continuous bioprocessing, perfusion-based continuous bioproduction,
82 upstream seed trains and mixed-use facilities in addition to buffer/media holding are all key
83 advantages supported by single-use systems ⁴.

84 The Chinese hamster ovary (CHO) cell is the predominant cell line used in the production of
85 recombinant therapeutic proteins for the last 3 decades ⁵. Advancements in the areas of cell line
86 development, bioprocess design and media composition has allowed for the multi-gram/L titres
87 that we routinely see today, opposed to the mg/L of the 1980s. Pragmatically, these low titres
88 have contributed to the requirement of large-scale fermenters that remain the standard unit of
89 operation today. Despite the limitation in SUB size, further boosting the g/L titres from CHO
90 cultures could mediate similar outputs from SUB batch cultures compared to large-scale SS
91 bioreactors thereby potentially making the implementation of these scale-down systems more
92 tangible ⁶. Of course with novel and more bespoke biologics being developed, difficult-to-
93 express proteins are a constant challenge to the industry and remain a driving force for the
94 generation of more sophisticated production CHO cell lines via approaches such as microRNA
95 engineering ⁷, genetic knockouts ⁸, removing unnecessary genomic burdens ⁹ and enhancing
96 promoter performance ¹⁰.

97 One major concern associated with SU technology within the biomanufacturing space is the
98 lack of clarity surrounding the leachable profiling from these predominantly polyethylene-
99 based plastics. Previous reports with regards to the interaction of these plastics with media
100 components such as cholesterol adsorption resulting in inhibited NS0 cell growth ¹¹ as well as

101 chemical transformations introducing potentially toxic leachables into the culture media raises
102 further concerns relating to any new material entering the bioprocessing pipeline. Routinely,
103 additives are required for efficient processing and manufacturing of the plastic films such as
104 the secondary anti-oxidant Irgafos® 168 which upon gamma-irradiation becomes oxidised and
105 subsequently breaks down to leach degradation products into the culture media ¹². The optimal
106 culture environment within the bioreactor is critical to CHO cell performance and can be
107 compromised by these leachable compounds that can be potentially toxic. For example, bis(2,4-
108 di-*tert*-butylphenyl)-phosphate or bDtBPP was initially reported by Hammond and colleagues
109 in 2013 ¹³. Originating from the secondary anti-oxidant Irgafos® 168 or tris(2,4-di-*tert*-
110 butylphenyl)-phosphite, bDtBPP was reported to inhibit cell growth in a variety of proprietary
111 CHO cell lines at concentrations ranging from 0.12-0.73 mg/L ¹⁴. More recently, studies from
112 our group found this leachate to be toxic at far lower concentrations than previously reported
113 (0.035-0.1 mg/L) ¹⁵ which fall within the concentration range that has been observed to leach
114 and accumulate under ambient conditions over a time period of 3-4 days (0.025-0.11 mg/L)
115 ¹⁴.

116 Leachable components such as bDtBPP have been reported to negatively impact cell culture
117 performance not only in terms of growth/viability, but also titre or product quality ¹⁶. Although
118 it would be advantageous to know the material composition so that potential causes may be
119 evaluated, this information is usually not completely available from manufacturers. Also, due
120 to the complexity of the bag manufacturing process, it is difficult to determine the exact
121 composition of most bag films. However, it is known that degradation of the polymers and
122 additives in SUBs occur most significantly during high-energy processes, namely sterilization
123 ¹⁷ and film extrusion ¹⁸, which may produce degradation products such as bDtBPP, whose
124 potential effects on cells maybe completely overlooked. This reality, combined with the low
125 concentrations reported to elicit negative effects on cell growth makes it paramount that the
126 appropriate solvent systems and analytical techniques for extractables and leachables (E&Ls)
127 screening are being implemented that are sensitive enough to detect both low abundant
128 leachates as well as capturing all leachables present ^{19,20}.

129 Increased understanding and characterisation of both the leachables profile from SUBs and
130 their effects on cells is needed. At present, there are some standardised cell culture tests
131 available ^{21,22} to assess the biocompatibility and safety of production cell lines ^{22,23}, which will
132 assist both bag manufacturers in developing and qualifying new bag films, and end-users to
133 proactively select bags to be used in their processes. However, considering that cell lines show

134 different sensitivities to leachables components ²², developing widely applicable cell culture
135 tests is not a trivial exercise, but it would, however, be desirable, so that vendors and users can
136 apply them with confidence and avoid unwanted false-positive results ²³.

137 In addition, besides cell culture tests, plastic films used in biomanufacturing should also report
138 leachables assessments in order to be considered fully characterised for their compatibility and
139 safety in relation to cell culture performance as the cocktail of potential leachates other than
140 bDtBPP could pose a problem. Although there is now a greater awareness of the use of single-
141 use components in biomanufacturing, a comprehensive characterisation at all levels, both
142 biological and chemical, should be an inevitable requirement for these SUBs to be available in
143 the market. A large-scale assessment of E&Ls from 34 single-use plastic films used in cell
144 cultivation has highlighted that the spectrum of E&Ls has changed due to the introduction of
145 new types of polymers as well as manufacturing changes ²⁰, whose potential biological effects
146 should be addressed. In view of this, new regulations and standardised guidelines should be
147 established by official institutions such as the Food and Drug Administration (FDA) and United
148 States Pharmacopeia (USP), working in collaboration with industry groups such as BioProcess
149 Systems Alliance (BPSA), the Parenteral Drug Association (PDA), the Product Quality
150 Research Institute (PQRI), Dechema and Biophorum Operation Group (BPOG) ²⁴.

151 In this study we performed a comprehensive examination of the impact of newer materials on
152 both the leachables profile as well as the influence these materials had on CHO cell growth.
153 Two generations of single-use films from the same vendor were chosen, a newer generation
154 film (F-2) that was designed with lower levels of Irgafos® 168 compared to one of its
155 predecessors (F-1). This strategy used by bag manufacturers would ultimately reduce the
156 amount of the toxic bDtBPP that could potentially leach into the contacting media. Culture
157 media was conditioned in each film as a means to capture the leachates derived from each
158 plastic with subsequent growth profiling of two CHO cell lines. Leachable profiling of these
159 two films in conjunction with cell-based assays using the same conditioned media afforded the
160 ability to directly compare cellular performance and leachables content with particular
161 emphasis on changes within the identified leachates, keeping known toxic leachables like
162 bDtBPP in mind. This work also provides information about other sensitive tests that might be
163 included with a view to the development of standardised culture cell tests that would enable
164 the early identification of non-satisfactory films for cultivation of CHO cell lines in chemically
165 defined media. We also demonstrate that leachables can potentially act as endocrine disruptors.

166 2. Materials and Methods

167 2.1 Single-use bioreactors (SUBs) used in this study

168 Materials from two model generations of the same brand of SUBs (F-1 and F-2) were evaluated.
169 These were multilayer films containing linear low density polyethylene as the fluid contact
170 layer and ethylene-vinyl acetate as the gas barrier and outer layers. The model F-1 is an old
171 version of this film while F-2 is a more recent version.

172

173 2.2 Conditioned media generation

174 F-1 and F-2 SUBs (10 L total volume) were incubated with 2 L of the chemically defined
175 BalanCD® CHO Growth A media (Irvine Scientific®) in the presence of 1%
176 penicillin/streptomycin solution (Sigma–Aldrich). Sealed bioreactors were incubated on a
177 Biostat® rocking motion incubator (Sartorius); temperature was set at 37 °C and the incubation
178 was carried out for a duration of 3 or 7 days. To ensure good mixing and complete contact with
179 bioreactors films, no inflation was used during the incubation and optimum speed and max
180 rotation angle were used thus minimizing foam formation. Negative controls were generated,
181 incubating 2 L of media in the presence of 1% penicillin/streptomycin in pre-rinsed and
182 autoclaved grade A glass bottles, using the same conditions for incubation. Additionally, the
183 same tubing was used to fill the bags as was used to fill the bottles for consistence purposes.
184 Incubation with SUBs was performed in triplicate using bags from the same production lot.
185 Negative controls were generated in triplicate as well. At the end of incubation time, all media
186 samples were stored in the original plastic bottles at 4 °C. The labile component L-glutamine
187 (Thermo Fisher Scientific) was added to the media after conditioning and just prior to setting
188 up cell cultures.

189

190 2.3 Cell Culture Conditions and Growth/toxicity assays

191 A parental non-producing CHO-K1 (ATCC® CCL-61™) and an IgG-producing CHO-DP12
192 (ATCC® CRL-12445™ Clone #1934) cell line was routinely cultured in chemically defined
193 media, BalanCD CHO Growth A, supplemented with 4 mM L-Glutamine and the anti-
194 clumping agent 2% polyvinyl alcohol. CHO-DP12 cells were maintained stable by pulsing,
195 every 3 passages, with 200 nM of methotrexate (Sigma-Aldrich). Cell assays were inoculated
196 at a starting cell density of 2 x 10⁵ cells/mL in a 5 mL volume in a 50 mL filtered-topped tube

197 (Helena BioSciences Europe) and maintained under ambient culture conditions of 37°C, 5%
198 CO₂ and 170 rpm. Viable cell density and cellular viability was assessed using a benchtop flow
199 cytometer, Guava EasyCyte 5HT system (Millipore, Billerica, MA) in combination with the
200 ViaCount assay (Millipore) as per manufacturer's specifications. Additionally, metal ion
201 screening was performed using the following metal salts; Lead Nitrate, Silver Nitrate,
202 Nickle(II) Chloride Hexadydrate, Sodium Molybdate dihydrate and Aluminium Chloride
203 (Sigma-Aldrich), all dissolved in water and screened at a concentration of 1 mg/mL based on
204 the molecular weight of the metal and not the salt.

205

206 *2.4 ELISA – IgG productivity assay*

207 CHO-DP12 culture supernatants were collected by centrifugation at 1,000 x g for 5 min, the
208 IgG containing supernatant was decanted and samples were diluted appropriately for each time
209 point in diluent buffer. The ELISA work-flow was carried out in accordance with the
210 manufacturer's specifications (Bethyl Laboratories).

211

212 *2.5 Leachable testing on conditioned media*

213 Non-targeted analyses were performed for identification of non-volatile leachables by LC-MS.
214 Extracts were treated using DLLME ²⁵ to remove surfactants and other matrix components
215 present in the media that could cause ion suppression. HRAM full-scan MS analyses was
216 performed on a Thermo Scientific™ UltiMate™ 3000 RS coupled to a Thermo Scientific™ Q
217 Exactive™ Plus mass spectrometer with HESI-II interface ²⁰. Resulting HRAM data were
218 processed with Compound Discoverer™ 2.0, followed by automatic online library search
219 against mzCloud.org advanced mass spectral database (HighChem) and ChemSpider (Royal
220 Society of Chemistry), as well as a local E&L compound database. Mass Frontier 7.0™
221 software was used to determine most probable structures if several options for components
222 were returned. For each proposed structure, the 'Fragments and Mechanisms' feature in Mass
223 Frontier was used to generate predicted 'fragments and mechanisms' through the HighChem
224 Fragmentation Library™ searching. A high degree of correlation between predicted and
225 experimental fragments was required to confirm the proposed structure.

226 A multi-element determination was also performed on the extracts by ICP-MS. Extracts were
227 acidified with a mixture of 2% (v/v) HNO₃ and 0.5% (v/v) HCl, in 1:9 sample/acid (v/v) prior

228 to analysis. All 30 analytes, ^{75}As , ^{111}Cd , ^{202}Hg , ^{208}Pb , ^7Li , ^{52}Cr , ^{60}Ni , ^{63}Cu , ^{118}Sn , ^{121}Sb , ^{137}Ba ,
229 ^{27}Al , ^{55}Mn , ^{56}Fe , ^{66}Zn , ^{51}V , ^{59}Co , ^{78}Se , ^{95}Mo , ^{101}Ru , ^{103}Rh , ^{105}Pd , ^{107}Ag , ^{189}Os , ^{193}Ir , ^{195}Pt , ^{197}Au ,
230 ^{205}Tl , ^{88}Sr , and ^{209}Bi , were measured with a Thermo Scientific™ iCAP™ RQ ICP-MS,
231 according to a previous study ²⁰. Elemental concentration was determined using calibration
232 curves from multi-elemental standards.

233

234 *2.6 Endocrine disruptor testing of bDtBPP*

235 *2.6.1 Cell culture*

236 All cell lines were grown in 75 cm² tissue culture flasks (Nunc, Roskilde, Denmark) at 37°C
237 with 5% CO₂ and 95% humidity. The human adrenal carcinoma (H295R, ATCC) cell line was
238 routinely cultured in H295R cell culture medium containing Dulbecco's modified Eagle
239 medium (DMEM, Life Technologies) with Ham's F-12 nutrient mixture (1:1) supplemented
240 with 1% ITS + Premix (BD Biosciences) and 2.5% NuSerum (BD Biosciences). The H295R
241 cells were seeded in H295R assay media composed of DMEM with Ham's F-12 nutrient
242 mixture (1:1) supplemented with 1% ITS + Premix and 2.5% charcoal stripped serum (Sigma-
243 Aldrich).

244

245 *2.6.2 Reporter gene assays (RGA's)*

246 Four reporter gene cell lines were previously developed by transforming human mammary
247 gland cell lines with the luciferase gene under the control of a steroid hormone inducible
248 promotor as described in Willemsen et al ²⁶. The TARM-Luc cell line is specific for the
249 detection of androgens and progestagens, MMV-Luc cell line for oestrogens, TM-Luc for
250 progestagens and TGRM-Luc for glucocorticoids and progestogens ²⁷. These transformed cell
251 lines were routinely cultured in cell culture medium containing DMEM and 10% foetal bovine
252 serum. DMEM without phenol red was used when culturing the MMV-Luc cell line. RGA's
253 were carried out in assay media composed of DMEM and 10% hormone depleted serum as
254 previously described by Frizzell et al. ²⁸. Briefly, cells were seeded at a concentration of 4×10^5
255 cells/mL, 100 µL/well into white walled, clear and flat bottomed 96-well plates (Greiner, Bio-
256 One, Frickenhausen, Germany) and incubated for 24 hours at 37 °C with 5% CO₂ and 95%
257 humidity.

258 After 24 hours, bDtBPP and the relevant steroid hormone standards dissolved in DMSO was
259 added to the cells at a final DMSO concentration of 0.1%. The final concentrations of bDtBPP
260 during cell exposure was 0.005, 0.025, 0.035, 0.05, 0.1 and 0.25 µg/mL. The positive controls
261 were: 1.36 ng/mL 17b-estradiol (MMV-Luc), 14.5 ng/ml testosterone (TARM-Luc), 157
262 ng/mL progesterone (TM-Luc) and 181 ng/mL cortisol (TGRM-Luc). A solvent control was
263 also included for each cell line (0.1% v:v DMSO in media). Antagonist tests were carried out
264 by incubating bDtBPP (0.005, 0.025, 0.035, 0.05, 0.1 and 0.25 µg/mL) with the relevant
265 positive control for the cell line being tested. The cells were incubated for 48 h, the supernatant
266 discarded and the cells washed once with 200 µl PBS. The cells were lysed by adding 25 µL
267 cell lysis buffer (Promega, Southampton, UK) to each well. Finally, 100 µl luciferase substrate
268 (Promega, Southampton, UK) was injected into each well. Luciferase activity was measured
269 using a Mithras Multimode Reader (Berthold, Other, Germany) and the response compared to
270 that of the solvent and positive controls. RGAs were performed in triplicate for each
271 experimental point and in three independent exposures. The MTT cell viability assay was also
272 performed on the treated RGA cells in parallel to this assay.

273

274 *2.6.3 H295R steroidogenesis assay*

275 The H295R cell line was obtained from the American Type Culture Collection LGC Standards.
276 The assay was carried out as described previously ²⁹. Briefly, the H295R cells were seeded at
277 a concentration of 3 x 10⁵ cells/mL, 1 mL/well, into 24-well cell culture plates (BD
278 Biosciences, Bedford, MA, USA). The cells were allowed to attach for 24 hours. Following
279 cell attachment, the media was replaced with fresh H295R assay media containing the test
280 compounds (bDtBPP 0.005, 0.025, 0.035, 0.05, 0.1 and 0.25 µg/mL) dissolved in DMSO at a
281 final concentration of 0.1% (v:v). Forskolin 10 µM (FSK10) was used as a positive control and
282 0.1%, v: v DMSO in media as a solvent control in triplicate. Forskolin has been shown to act
283 as general inducer of steroidogenesis in the H295R cell line via activation of cAMP pathways,
284 resulting in elevated levels of oestradiol, testosterone and progesterone ²⁹. After 48 hours of
285 exposure, media was collected from each well and stored at -20°C until hormone quantification
286 was carried out using highly specific ELISAs as outlined previously ²⁷. All experimental points
287 in the H295R assay were performed in triplicate and repeated in three independent exposures.
288 The AlamarBlue® cell viability assay was performed on the cells remaining in each well.

289 *2.6.4 Hormone detection and quantification*

290 The steroid hormones oestradiol, testosterone, progesterone and cortisol levels in the media
291 were quantified in duplicate by highly specific ELISA assays (DRG Diagnostics, Marburg,
292 Germany). These highly specific kits are based on the principle of competitive binding and are
293 intended for the quantitative *in vitro* diagnostic measurement of oestradiol (0-2000 pg/mL),
294 testosterone (0-16 ng/mL), progesterone (0-40 ng/mL) and cortisol (0-800 ng/mL), with
295 sensitivities of 10.60 pg/mL, 0.083 ng/mL, 0.045 ng/mL and 2.5 ng/mL respectively (DRG
296 Diagnostics, 2016; DRG Diagnostics, 2009; DRG Diagnostics, 2007; DRG Diagnostics, 2006).
297 In order to assess their suitability for measuring the steroid hormones, oestradiol, testosterone,
298 progesterone and cortisol standard curves were prepared in H295R cell cultures. The ELISA
299 was validated for measuring the steroid hormones in this culture medium. All other steps in the
300 ELISAs were carried out in accordance with the manufacturer's instructions (DRG Diagnostics,
301 2016; DRG Diagnostics, 2009; DRG Diagnostics, 2007; DRG Diagnostics, 2006). The intra-
302 assay coefficients of variation were less than 10%. Each ELISA plate contained a standard
303 curve, solvent control, positive control and the test compound bDtBPP concentrations. The
304 optical density was measured at 450 nm wavelength using a Sunrise spectrophotometer
305 (TECAN, Switzerland). The mean absorbance obtained from each standard was plotted against
306 its concentration using dose-response curves generated with GraphPad PRISM 5 software.

307

308 *2.6.5 Cell viability assays*

309 As well as visual inspection of the RGA and H295R cells under the microscope to evaluate cell
310 morphology and attachment, cell viability assays were performed in parallel to the assays to
311 check for any toxic effects of the concentrations of bDtBPP which the various cell lines were
312 exposed to. For the H295R and RGA cell lines, the AlamarBlue® assay³⁰ and MTT assay³¹,
313 respectively, was carried out as reported previously.

314

315 *2.6.6 Statistical analysis*

316 All experimental points in the H295R assay, RGAs and cell viability assays were performed in
317 triplicate and repeated in three independent exposures. All values shown are expressed as mean
318 ± standard error of the mean of the three independent exposures (n=3). Data were analysed
319 using Microsoft Excel and Graphpad PRISM 5.01 software. A one way analysis of variance

320 (ANOVA) and Dunnett's Multiple Comparison Test was used to determine significant
321 differences between the treatments and the corresponding controls. The mean concentrations
322 were tested for significant difference at the 95% confidence level. The criterion for significance
323 was considered as *p*-value of ≤ 0.05 , $p = \leq 0.05$ (*) ≤ 0.01 (**) ≤ 0.001 (***)
324

325 *2.7 Metabolic profiling using the SeaHorse Agilent Seahorse XF-96 extracellular Flux*
326 *Analyser*

327 Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured
328 using the cell metabolic analyser Seahorse XF96 (Agilent technologies) according to the
329 manufacturer's instructions. 2×10^5 cells were cultured in 5 mL of media conditioned in F-1, F-
330 2 and Control glass bottles and cultured for 96 hours at 37 °C. A Seahorse XF96 cell culture
331 plate was previously coated with Corning Cell-Tak cell and tissue adhesive (Corning™, 22.4
332 µg/mL) and incubated for 1 hour in a 37 °C non-CO₂ incubator. Conditioned media were
333 replaced by unbuffered Seahorse XF media for Phenotype assays and with Buffered Seahorse
334 XF media (without phenol red) for glycolytic rate assays. In both cases, Seahorse XF media
335 were supplemented with 10 mM glucose, 1 mM pyruvate and 2 mM glutamine and pH adjusted
336 to 7.4. Finally, 2×10^4 viable cells/well were pelleted, re-suspended in the corresponding
337 Seahorse XF media and plated into the previously coated plate (50µL containing 400 cells/µL
338 per well, 2×10^4 viable cells/well). Plates were centrifuged at 300 g for 1 minute, incubated at
339 37 °C in a CO₂-free incubator for 30 min and 150 µL of Seahorse media were carefully added
340 to each well, followed by a 30 minute incubation. Three real-time measurements of OCR and
341 ECAR were directly measured (basal readings) and after injection of different mitochondrial
342 inhibitors or glycolytic modulators. For phenotypic assays, the cells were treated with
343 optimized concentrations of oligomycin (1 µM), carbonyl cyanide p-[trifluoro-methoxy]-
344 phenyl-hydrazone (FCCP; 1 µM). For the glycolytic rate assays the cells were instead
345 sequentially treated with optimized concentration of rotenone + Antimycin A (0.5 µM) and 2-
346 deoxy-D-glucose (50 mM). Oligomycin, FCCP, rotenone + antimycin A and 2-deoxy-D-
347 glucose concentrations were optimized according to the manufacturer's instructions. The
348 corresponding assay, phenotype assay or glycolytic rate assay were run using the Seahorse XF-
349 96 analyser pre-programmed templates for these assays.

350

351

352 2.8 Quantitative Label-free LC-MS/MS Proteomic Analysis

353 Cell pellets from the CHO-K1 and CHO-DP12 cell lines treated with BalanCD® Growth A
354 media conditioned in both F-1 and F-2 films for 7 days as well as negative control media were
355 lysed in a buffer containing 7 M urea, 2M Thiourea, 4% CHAPS and 30 mM Tris at pH 8.5.
356 Protein concentration was determined using a QuickStart Bradford protein assay (Biorad) and
357 100 µg of each sample was prepared for quantitative proteomic analysis. Protein samples were
358 prepared as previously described using the Filter Aided Sample Prep (FASP) method and C18
359 peptide purification ^{32,33}. Nano LC-MS/MS was performed using a Dionex Ultimate 3000
360 nanoRSLC (Thermo Scientific) coupled in-line to an Orbitrap Fusion Tribrid mass
361 spectrometer (Thermo Scientific). LC-MS/MS methods were applied as previously described
362 ³⁴. Protein identification was achieved using Proteome Discoverer 2.2 with Sequest HT and
363 MASCOT algorithms. Data was searched against the NCBI Chinese Hamster Ovary
364 (*Cricetulus griseus*) protein database downloaded in November 2017 containing 24,906
365 sequences. Quantitative label-free data analysis was performed using Progenesis QI for
366 Proteomics (version 2.0, Nonlinear Dynamics, Waters) essentially as described by the
367 manufacturer. Protein identifications from Proteome Discoverer were imported into Progenesis
368 QI for Proteomics for differentially expressed proteins. Proteins were considered differentially
369 expressed if they passed the following criteria (i) a minimum of 2 peptides contributing to a
370 protein identification (ii) an ANOVA *p*-value score <0.05 between sample sets and (iii) a
371 minimum of 1.5-fold change in abundance between sample sets.

372

373

374

375

376

377

378

379

380

381 *Results*

382 *Cell compatibility testing of film conditioned growth media*

383 We performed biocompatibility profiling of two films sourced from the same vendor; one of
384 which was an older film (F-1) and one a more modern film (F-2) of the same design. To assess
385 the potential cellular toxicity of leachable compounds derived from newly developed materials
386 as opposed to single molecule screening, as in the case bDtBPP ¹⁵, we conditioned chemically
387 defined media using SUBs made of the two referred films, F-1 and F-2. The cocktail of other
388 leachates and the array of concentrations that each compound accumulates, could all play a role
389 in toxicity. These two films were chosen to determine, in an extreme case of a poor performing
390 SUB versus a good performing SUB, what the influence to CHO cell cultures was.

391 In keeping with our previous study ¹⁵, both the parental CHO-K1 and the monoclonal antibody
392 (mAb)-producing CHO-DP12 cell lines were evaluated for compatibility with both film-
393 conditioned media. Culture media was conditioned in both F-1 and F-2 films over a 7 day time
394 course to capture the full complement of potential plastic sub-components to leach into the
395 culture media and to do so at concentrations most likely to elicit toxic effects. Following on
396 from this, the same basal culture media was carried through an identical conditioning process
397 in both F-1 and F-2 films for a 3 day time course. This more modest conditioning time was
398 selected to reflect both previously published conditioning timelines ¹⁴ as well as to determine
399 the potential toxicity to cultures in the immediate stages of culture.

400 CHO-K1 cells cultured in media conditioned for 7 days in the F-1 film demonstrated
401 considerably reduced growth when compared to control cultures (**Fig. 1A**). This growth
402 inhibitory F-1 media did not appear to negatively impact CHO cell viability (**Fig. 1B**). In
403 contrast, CHO-K1 cells cultured in F-2 film conditioned media exhibited no adverse growth
404 effects when compared to controls (**Fig. 1C and D**). Similarly, when the mAb-producing CHO-
405 DP12 cell line was subjected to the same 7 day conditioned media, the F-1 film was observed
406 to reduce cell growth with no deleterious effects on culture viability when compared to controls
407 (**Fig. 1E and F**). A ~60% reduction in mAb production (**Fig. 1G**) was observed in the case of
408 F-1 cultured CHO-DP12 cells. As in the case of CHO-K1s, CHO-DP12 cells cultured in the F-
409 2 conditioned media behaved similar to the controls while maintaining similar antibody
410 productivity when cultured in the 7-day conditioned media (**Fig. 1 H-J**).

411 We next generated conditioned media using both F-1 and F-2 films for a time course of 3 days.
412 CHO-K1 cells cultured in conditioned media from both F-1 and F-2 films demonstrated

413 comparable growth and viability to control media (**Fig. 2A-D**). In the case of CHO-DP12 cells,
414 cell growth, viability and productivity remained similar to that of controls for both F-1 (**Fig.**
415 **2E-G**) and F-2 (**Fig. 2H-J**) films.

416

417 *Label-free LC-MS/MS profiling of the toxic versus compatible films*

418 From the cell toxicity data, it is evident that conditioned media generated from the F-1 film
419 over a 7-day time course is inhibitory to CHO cell growth and productivity when compared to
420 a more modern film conditioned for the same time. For this reason, we performed label-free
421 LC-MS/MS proteomic profiling on CHO-K1 and CHO-DP12 cells cultured in both films
422 conditioned for 7 days only.

423 Label-free LC-MS/MS on CHO-DP12 and CHO-K1 cells cultured in the toxic F-1 conditioned
424 media and sampled after 96 hours revealed 155 differentially expressed (DE) proteins in both
425 CHO-DP12 and CHO-K1 cells (**Sup. Table 1**) with 35 common across both cell lines (**Fig.**
426 **3A**). Qualitatively, 4667 and 5092 proteins were identified in CHO-DP12 and CHO-K1 cells,
427 respectively (**Sup. Table 2**), cultured in F-1 conditioned media with **Table 1** showing a subset
428 of the common DE proteins between both cell types.

429 One interesting group of proteins that were down-regulated in both CHO-DP12 and CHO-K1
430 cells exposed to F-1 film conditioned media were all components of the NADH dehydrogenase
431 enzyme (Complex I), *NDUFS2*, *NDUFS8*, *NDUFV1*, and *NDUFA10* of the mitochondrial
432 electron transport system (ETS). Given this observation, we assessed mitochondrial function
433 through the measurement of oxygen consumption rate (ECR) using a micro-plate based
434 measurement (Seahorse Bioscience XF Analyzer). The rate of oxygen consumption was
435 reduced in CHO cells cultured in F-1 conditioned media where as normal mitochondrial
436 activity was observed in cells cultured in F-2 conditioned media when compared to negative
437 controls (**Fig. 3B**). When extracellular acidification rate (ECAR) of the culture media was
438 determined, it was observed that slow growing CHO cultures from F-1 conditioned media
439 exhibited a reduced rate of extracellular media acidification when compared to F-2 conditioned
440 media and negative controls (**Fig. 3C**). Gene-ontology analysis based on DE proteins in CHO-
441 K1 and CHO-DP12 cells cultured in F-1 film conditioned media revealed the enrichment for
442 biological processes relating to oxidative stress and mitochondrial respiratory chain complexes
443 (**Table 2**). Up-regulation of the mitochondrial Lon Protease (*LONP1*) was identified in F-1
444 cultured CHO cells which is a protein responsible for responding to acute oxidative stress ³⁵.

445 When CHO-DP12 and CHO-K1 cells cultured in the non-toxic F-2 film conditioned media and
446 subjected to proteomic analysis, it was interesting to observe 108 and 268 proteins DE in CHO-
447 DP12 and CHO-K1 cells, respectively (**Sup. Table 3**). There were 19 DE proteins common to
448 both cell types with two proteins demonstrating contrary expression patterns, glutathione
449 synthetase and coatomer subunit alpha. When compared to the 35 common DE proteins from
450 cells cultured in the toxic F-1 conditioned media (**Table 1**), there was 1 protein found to overlap
451 between the non-toxic F-2 film and the toxic F-1 film, transferrin receptor protein 1 (*TFCR*),
452 (**Fig. 3A**). However, although this common DE protein was found to be decreased in its
453 expression in cells cultured in the toxic F-1 conditioned media, it was highest in its abundance
454 in CHO-DP12 and CHO-K1 cells cultured in F-2 conditioned media. It is apparent from this
455 study that media conditioned from a SUB film (F-2) that does not impact on CHO cell growth
456 does still influence the cells proteome. It is not surprising that differential protein expression
457 was observed for both films as leachables were present in both cases as the following analysis
458 will demonstrate.

459

460 *Leachable profiling of conditioned media*

461 Sixteen compounds with confirmed and confident identification from the media extracts by
462 LC-MS are listed in **Table 3**. Twelve of the 16 compounds (75%) were present at higher levels
463 in F-1 bags compared to F-2 (**Fig. 4A**), including 2 degradation products of Irgafos®168:
464 bDtBPP, which has negative effects on CHO cells, as indicated in previous sections, and
465 Irgafos® 168 oxidized form. The non-volatile compounds N,N-dimethyldecan-1-amine
466 (C₁₂H₂₇N) and *cis*-1,3-docosenic acid amide (Kemamide® E ultra) (C₂₂H₄₃NO) were detected
467 only in F-2 bags. **Figure 4B and C** shows LC chromatograms for F-1 and F-2 extracts, where
468 some leachables with higher concentrations in F-1 are highlighted, including bDtBPP as
469 mentioned previously.

470 In general terms, the identified non-volatile compounds belong to different chemical classes
471 and also perform different functions as components of plastic materials. Major extractable
472 compounds identified can be classified as antioxidants and their degradation products,
473 plasticisers, polymer-related compounds, as degradation products and building blocks, and
474 residues from the polymerisation process, such as initiators and catalysts. The groups of
475 compounds with specific functions that were identified in the samples are also reported in

476 **Table 3.** Several of these compounds were already reported previously³⁶⁻³⁸. Intact Irgafos®168
477 was not detected under any extraction condition.

478 The identified compounds were also structurally classified via Toxtree version 2.6.0³⁹ using
479 the Cramer rules with extensions. Based on quantitative structure-activity relationships
480 (QSARs), the Cramer classification is a rules-based process that sorts compounds into three
481 classes; Class 1 (low risk of toxicity), Class 2 (intermediate between 1 and 3), and Class 3
482 (either no basis to presume safety or suggest significant toxicity). Additionally, the entire
483 population of compounds was assessed by *in silico* QSAR analysis for their
484 mutagenic/carcinogenic potential using the Benigni/Bossa rule base. The Cramer
485 classifications and mutagenicity assessments were performed using the appropriate modules of
486 Toxtree software. Results indicated that most leachables (75%) are quite toxic, being classified
487 in Cramer Class 3 and only 25% were in Cramer Class 1. But nevertheless only 2 compounds
488 (13%) triggered an *in silico* alert for mutagenicity, which also belong to Cramer Class 3. The
489 referred compounds, 2,(4 or 6)-toluendiamine and 2,4-dimethyl-aniline, are residues from the
490 polymerization process, and have presumably the highest safety risks of the group.
491 Additionally, these compounds are also at higher levels in F-1 bags compared to F-2.

492 Regarding elemental analysis, only 9 elements of 30 were found in the samples (**Table 3**). As
493 shown in **Figure 4D**, 4 of the 9 elements (44%): Ni, Ag, Sn, and Ba were at higher
494 concentrations in F-1 bags, and the other 5 elements (56%): V, Mo, Cd, and Pb, showed the
495 highest levels in F-2 bags, while Cu levels were similar in both SUBs. V and Cd were found
496 only in F-2 bags, while Ba was only found in F-1 bags. The ICH Q3D guidelines⁴⁰ classify
497 elements in three classes based on their toxicity and likelihood of occurrence in the drug
498 product, and also specify both daily doses and concentration limits of metallic impurities in
499 pharmaceutical final products and in active pharmaceutical ingredients and excipients.
500 According to these guidelines, the highest levels of Pb and Cd, Class 1 elements and the most
501 toxic ones were found in F-2 films, followed by Mo and V that belong to Class 2A. Ag, also a
502 toxic element (Class 2B) is the only element of concern that was found at higher concentrations
503 in F-1 films (**Fig. 4E** and **Table 3**).

504 Interestingly, when a subset of metal ions (Ag, Pb and Ni) were screened in CHO-K1 and
505 CHO-DP12 cells at a high concentration of 1 mg/L, similar to previous screening studies^{13,15},
506 Ag was found to be the only metal to elicit toxic effects on growth of both CHO-K1 and CHO-
507 DP12 cells (**Fig. 5A** and **C**). Silver (Ag), previously categorised as a toxic element (Class 2B)

508 was observed to be at a higher abundance in F-1 films than F-2 films (**Fig. 4D**). However, when
509 lower concentrations of Ag were screened, the toxicity effects impacting CHO cell growth and
510 productivity, in the case of the CHO-DP12s, was not apparent (**Fig. 5B, D and E**). Surprisingly,
511 Pb (lead), despite being classed as Class 1 and highly toxic did not exhibit any negative effects
512 on CHO cell growth and viability when screened at 1 mg/L and appeared to be higher in
513 abundance in the non-toxic F-2 film compared to the F-1 film (**Fig. 5A and B**). As concentration
514 levels and the thresholds of toxicity would play a role in affecting cell growth, further
515 investigation is needed to determine whether metals such as silver contributed to the toxicity
516 of the F-1 conditioned media as well as determining the exact metal species present within the
517 conditioned media as opposed to the metal salt used during toxicity screening.

518

519 *bDtBPP endocrine disruption potential testing in vitro*

520 Lastly, leachable compounds from plastic materials have long been on the radar in relation to
521 their safety profiles to human health such as bisphenol A ⁴¹. Not only in the context of their
522 potential toxicity to the bioprocess itself, leachables from the final container closure system,
523 packaging components such as pre-filled syringes and/or processing equipment also pose a
524 threat to the patient ⁴² if present in the active biopharmaceutical ingredient. Using H295R cells,
525 a range of concentrations of bDtBPP previously observed to negatively impact CHO cell
526 growth ¹⁵, 0.005-0.25 µg/mL, was tested in relation to its capacity to disturb hormone
527 production or interact with a range of hormonal receptors. The production of a range of
528 hormones, testosterone, progesterone, estradiol and cortisol was not observed to be induced or
529 retarded by incubation with various concentrations of bDtBPP (**Sup. Fig. 1**). No agonism was
530 observed in the estrogen, androgen, glucocorticoid and progesterone receptors when tested by
531 reporter gene assays (RGA). However, when bDtBPP was screened by co-incubation with
532 various hormones, testosterone, estrogen, progesterone and cortisol, it was observed that
533 between 0.1-0.25 µg/mL of bDtBPP acts as an androgen antagonist (**Fig. 6B**), thereby
534 inhibiting the natural association of testosterone with its endogenous receptor.

535

536 *Discussion*

537 Shortly before the discovery of bDtBPP, a means of testing newly developed films for cell
538 culture compatibility was published by Genentech, which monitored the growth of cells in

539 media that had been stored in 13 different single-use bags ⁴³. This study highlighted 4 viable
540 bag film options, however, concluded that a “volatile or air-quenched compound, likely
541 generated by gamma irradiation of the problematic bag film” to be the source of their poor
542 performance in cell-based assays. Recently, Dorival-García *et al.*, reported a novel solvent
543 system for the optimised study of highly hydrophobic compounds of which bDtBPP falls under
544 for the identification of potentially non-satisfactory films for cultivation of CHO cell lines ⁴⁴.
545 Critically, these studies were performed under realistic possible conditions and determine the
546 milieu of leachables from SUBs that enter the growth media and potentially cause a threat to
547 cell growth. In this instance, in the absence of a benchmark for a “good” performing bag, cell
548 culture media were conditioned by incubation at 37°C in two SUBs made with different plastic
549 films as a means to capture the full leachable profile derived from each film under normal
550 processing conditions and compared to the corresponding control using glass bottles. Two
551 conditioning times were selected in advance; a 7 day time course to best capture the cocktail
552 of leachables derived from these two films in excessive concentrations and; a 3 day time course
553 to capture leachable content over a more modest culture time period.

554 It was evident that cell culture media conditioned in the older film (F-1) was toxic to CHO cell
555 growth with a negative impact on IgG productivity when incubated for 7 days prior to
556 inoculation. This level of toxicity was not observed in the case of media conditioned in the
557 more modern F-2 film for the same 7-day incubation with cultures performing similar to
558 negative controls and fresh media controls. This suggests that changes have been made in the
559 composition of the plastic materials going from F-1 to F-2 bag generations. Based on reported
560 data, the pre-requisite secondary anti-oxidant, Irgafos® 168, is the origin of the known toxic
561 leachable bDtBPP upon gamma irradiation ⁴⁵. Eliminating Irgafos® 168 as a material
562 component during the extrusion process (e.g. high temperature, shear etc.) can dramatically
563 affect polymer degradation ⁴⁶. However, minimizing the concentration of Irgafos® 168 and
564 thereby the amount of bDtBPP that can leach has been a proposed alternative for film
565 development and process control ⁴⁷, which is the case in these two films going from F-1 to F-
566 2. Leachable testing of both F-1 and F-2 film extracts demonstrated that the leachate bDtBPP
567 was present at far higher concentrations in the F-1 condition media compared to the more recent
568 F-2 film (**Fig. 4B and C**), potentially contributing to the cellular toxicity observed in the case
569 of F-1 cultured CHO cells. In relation to the abundance of its pre-requisite Irgafos® 168, this
570 was not detected under any extraction conditions preventing us from concluding that reduced
571 bDtBPP is a result of minimal Irgafos® 168 content. Evidence suggests that it may be degraded

572 during the incubation step due to oxidation at high temperature and the use of polar extraction
573 solvents⁴⁸⁻⁵⁰.

574 Previous studies have demonstrated bDtBPP to leach at concentrations ranging from 0.025-
575 0.11 mg/L in a panel of SUB films over a 4 day conditioning period¹⁴. Our data indicates that
576 a residency time period of 3 days may not be sufficient enough to leach toxic compounds such
577 as bDtBPP to levels comparable to 7-days. Proteomic profiling of CHO-K1 and CHO-DP12
578 cells exposed to the toxic F-1 7 day conditioned media revealed several biological processes
579 critical to bioprocess efficiency (**Table 1**). Reduced growth of both CHO cell lines in F-1
580 conditioned media exhibited a weakened capacity for ATP synthesis through diminished
581 electron transport through the mitochondrial electron transport system as well as an increased
582 response to oxidative stress. Gene ontology analysis of the DE proteins in both CHO-K1 and
583 CHO-DP12 cells cultured in F-1 conditioned media supported this observation with enrichment
584 for biological processes associated with oxidative stress and oxidative phosphorylation (**Table**
585 **2**). This weakened mitochondrial activity was highlighted through the reduction in expression
586 of a subset of proteins all involved in NADH dehydrogenase activity (*NDUFS2*, *NDUFS8*,
587 *NDUFV1* and *NDUFA10*)⁵¹. This complex, composed of 47 sub-units (7 mtDNA encoded/40
588 nDNA encoded), represents the main electron entry point of the ETS as well as contributing
589 substantially to the formation of the proton gradient across the inner mitochondrial membrane,
590 which drives ATP synthesis culminating in the consumption of oxygen and the generation of
591 water⁵¹. Interrogating this phenotype further determined that the oxygen consumption rate
592 (OCR) of cells cultured in F-1 conditioned media displayed a reduced OCR when compared to
593 negative controls and cells cultured in the non-toxic F-2 conditioned media. Previous studies
594 have demonstrated that CHO cells under a med-high fed-batch culture process exhibited a
595 reduce OCR in combination with a fast-growing phenotype when compare to controls⁵².
596 Furthermore, the extracellular acidification rate (ECAR) was also found to be reduced in F-1
597 cultured cells exhibiting impeded growth capacity when compared to F-2 cultured cells and
598 negative controls (**Fig. 3C**). Acidification of the culture media is a result of lactate production
599 through glycolytic metabolism and is a metabolic pathway associated with biomass
600 accumulation and exponential cell growth⁵².

601 Cells cultured in F-2 conditioned media maintained a similar glycolytic flux to negative control
602 cells suggesting that the underlying cellular architecture (19 DE proteins common to both
603 CHO-K1 and CHO-DP12s) that is influenced by the potential leachates derived from the F-2
604 film does not impact critical biological processes. Oxidative stress was another signature

605 biological process evident in F-1 conditioned media-exposed cells with proteins such as
606 *LONP1* and *VNN1* being increased in abundance. Previous spiking studies using bDtBPP alone
607 revealed oxidative stress through the expression of heme oxygenase 1 (*HMOX1*) further
608 supporting the presence of this leachate in F-1 film conditioned media ¹⁵, as shown by LC-MS.
609 The mechanism of action of bDtBPP negatively impacting CHO cell cultures is unknown other
610 than what is indicated through proteomic profiling. However, the chemical composition of
611 bDtBPP itself gives this molecule potentially a high affinity for oxygen therefore scavenging
612 dissolved oxygen within the media resulting in hypoxia, a biological process further
613 highlighted in previous work through the expression of hypoxia upregulated protein 1
614 (*HYOU1*). A simple spiking study of bDtBPP versus a DMSO control in media resulted in an
615 accelerated depletion of dissolved oxygen when monitored using the Oxygraph-2k
616 respirometer (Data not shown), indicating the potential for this leachable and by association
617 the F-1 conditioned media to induce hypoxia in cultured cells.

618 Leachables analysis further highlighted a panel of compounds present at higher concentrations
619 in the F-1 film compared to F-2 film extracts again suggesting reduced primary raw materials
620 used in bag manufacturing such as in the case of Irgafos® 168 as indicated by the reduced
621 concentration of bDtBPP (**Fig. 3B and C**). From a panel of trace metals screened, silver (Ag)
622 was the only one found to be toxic to both CHO-K1 and CHO-DP12 cells at high concentrations
623 of 1 mg/L. Despite its toxicity at such high concentrations, silver elicited no growth inhibitory
624 effects at doses as high as 0.25 mg/L (**Fig. 5A and C**). Going from generation F-1 to generation
625 F-2, the levels of Ag within film extracts are reduced but still present (**Fig. 4D**). The poor
626 performance of CHO cells when cultured in F-1 conditioned media could be as a result of the
627 combined effects of toxic leachates such as bDtBPP and Ag, however, further investigation
628 would be required to examine the exact concentrations of leachables that enter the media after
629 7 days and if these concentrations are in line with cell toxicity assays. It is also important to
630 note that the metal salts used in this screen may not reflect the exact metal species that leaches
631 from these plastic films but remains indicative of potential toxicity with further investigation
632 being required.

633 Validating the safety profile of the F-2 film over its predecessor F-1 counterpart for CHO cell
634 culture is an important step forward in progressing the adoption of this technology for
635 recombinant protein drug manufacturing within the biopharmaceutical industry. However,
636 from the perspective of human health, most plastic products release estrogenic chemicals ⁴¹
637 highlighting the potential for endocrine disrupting leachates to be present within the media and

638 possibly persisting through purification processes. We have demonstrated that the well-known
639 leachate, bDtBPP, is considerably reduced in its abundance in the more recent film generation
640 (F-2) but is still present. Using this as an example, it was evident upon screening at a range of
641 concentrations (0.005-0.25 mg/L), as previously reported ¹⁵, that bDtBPP possessed the
642 capacity to act as an androgen receptor antagonist (**Fig. 6B**). It has previously been reported
643 that bDtBPP accumulates to levels ranging from 0.025-0.11 mg/L over 3-4 days incubation
644 under bioprocess-relevant conditions ¹⁴. Our data demonstrates that this leachate present in
645 modern generations of films can potentially act as an endocrine disruptor at concentrations
646 reported to leach and accumulate in media extracts. Leachable analysis in this present study
647 was qualitative, allowing for normalised abundances between F-1 and F-2 films and not exact
648 concentrations. Regardless, the potential for additional leachables from SUBs or single-use
649 technologies requires further investigation.

650

651 *Conclusion*

652 Single-use technologies, in particular SUBs, are gaining wide-spread acceptance within the
653 biomanufacturing space due to more recent generations of films being developed and a better
654 understanding on the safety concerns around leachable materials. We have demonstrated that
655 media conditioned in an older F-1 SUB film inhibited cell growth when compared to controls.
656 Contrary to this, cells cultured in media conditioned using a newer film generation, F-2,
657 reached similar cell densities to control cultures. Poor cell growth was associated with reduced
658 mitochondrial activity as well as glycolytic metabolism in addition to oxidative stress,
659 highlighted through proteomic analysis. Parallel leachable analysis on film extracts used for
660 cell culture assays demonstrated that the abundance of most leachates was reduced when going
661 from one generation to the next including the toxic compound bDtBPP as well as the potentially
662 toxic metal silver (Ag). Other compounds were identified that were unique to the more recent
663 film generation (F-2) which suggests that new material components are being used in film
664 manufacturing and therefore must be subjected to E&L analysis as well as toxicology
665 screening. As the pre-requisite component of bDtBPP, Irgafos[®] 168, was not detected in either
666 F-1 or F-2 extracts, we were unable to definitively conclude that the reduced levels of bDtBPP
667 leaching was due to reduced Irgafos[®] 168 starting material. Furthermore, in the case of the toxic
668 F-1 film, there appears to be a time-dependency which allows leachables to accumulate to toxic
669 levels in the case of 7 versus 3-day conditioning studies. This would suggest that older films

670 like F-1 could be suitable for use in short batch runs such as 48-72 hour seed trains used in
671 scale-up without compromising cell growth whereas longer fed-batch production processes
672 may be more suited to newer films. Finally, after evaluating the safety profile of a modern
673 single-use film for CHO cell culture, we demonstrated that leachables such as the well-known
674 bDtBPP possess the capacity to act as an endocrine disruptor, in particular, an androgen
675 antagonist. This would suggest that further studies should be performed to know, in more detail,
676 the effects such leachates have on the endocrine system and the potential threat to patient safety.
677 Studies such as this support the safe implementation of SUBs within the biopharmaceutical
678 industry and demonstrate that bag manufacturers are tailoring plastic formulations to address
679 past concerns over toxic leachables. Nevertheless, the lack of standardisation and regulation
680 emphasises the necessity to further develop a toolkit for assessing the safety and
681 biocompatibility of emerging films for use in biomanufacturing.

682

683 *Acknowledgements*

684 This work was supported by funding from Science Foundation Ireland (SFI) Grant number
685 13/SPSSPC/12893. The Orbitrap Fusion Tribrid mass spectrometer was funded under an SFI
686 Infrastructure Award to Dublin City University, grant number 16/RI/3701. The authors would
687 also like to acknowledge the contribution of the Irish Industry Technical Group (Allergan
688 Pharmaceuticals Ireland, BioMarin Manufacturing Ireland Ltd., Eli Lilly and Company,
689 Genzyme Ireland Ltd. A Sanofi Company, Janssen Biologics, MSD and Pfizer Ireland
690 Pharmaceuticals) throughout this work.

691

692 *Conflicts of Interest*

693 The authors declare no commercial or financial conflict of interest.

694

695 *Abbreviations*

696 bDtBPP - bis(2,4-di-*tert*-butylphenyl)-phosphate, CHO – Chinese hamster ovary, DE –
697 Differentially Expressed, E&Ls – Extractables and Leachables, mAb – Monoclonal antibody,
698 PEG – Polyethylene Glycol, SS – Stainless Steel, SUB – single-use bioreactor

699

700 *References*

- 701 1. Shukla AA, Gottschalk U. Single-use disposable technologies for biopharmaceutical
702 manufacturing. *Trends Biotechnol.* 2013;31(3):147-154.
703 doi:10.1016/j.tibtech.2012.10.004.
- 704 2. Rao G, Moreira A, Brorson K. Disposable bioprocessing: The future has arrived.
705 *Biotechnol Bioeng.* 2009;102(2):348-356. doi:10.1002/bit.22192.
- 706 3. Eibl R, Kaiser S, Lombriser R, Eibl D. Disposable bioreactors: The current state-of-
707 the-art and recommended applications in biotechnology. *Appl Microbiol Biotechnol.*
708 2010;86(1):41-49. doi:10.1007/s00253-009-2422-9.
- 709 4. Whitford WG, Pence BL. Impact of single-use technology on continuous
710 bioprocessing. *BMC Proc.* 2013;7(Suppl 6):P39. doi:10.1186/1753-6561-7-S6-P39.
- 711 5. Butler M, Meneses-Acosta A. Recent advances in technology supporting
712 biopharmaceutical production from mammalian cells. *Appl Microbiol Biotechnol.*
713 2012;96(4):885-894. doi:10.1007/s00253-012-4451-z.
- 714 6. Langer ES, Rader RA. Single-use technologies in biopharmaceutical manufacturing: A
715 10-year review of trends and the future. *Eng Life Sci.* 2014;14(3):238-243.
716 doi:10.1002/elsc.201300090.
- 717 7. Kelly PS, Clarke C, Clynes M, Barron N. Bioprocess engineering: micromanaging
718 Chinese hamster ovary cell phenotypes Chi. *Pharm Bioprocess.* 2014;2(4):323-337.
719 doi:10.4155/PBP.14.28.
- 720 8. Sun T, Li C, Han L, Jiang H, Xie Y, Zhang B, Qian X, Lu H, Zhu J. Functional
721 knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a
722 defucosylated antibody. *Eng Life Sci.* 2015;15(6):660-666.
723 doi:10.1002/elsc.201400218.
- 724 9. Kallehauge TB, Li S, Pedersen LE, Ha TK, Ley D, Andersen MR, Kildegaard HF, Lee
725 GM, Lewis NE. Ribosome profiling-guided depletion of an mRNA increases cell
726 growth rate and protein secretion. *Sci Rep.* 2017;7(January):40388.
727 doi:10.1038/srep40388.
- 728 10. Thaisuchat H, Baumann M, Pontiller J, Hesse F, Ernst W. Identification of a novel
729 temperature sensitive promoter in CHO cells. *BMC Biotechnol.* 2011;11(1):51.
730 doi:10.1186/1472-6750-11-51.
- 731 11. Kadarusman J, Bhatia R, McLaughlin J, Lin WLR. Growing cholesterol-dependent
732 NSO myeloma cell line in the wave bioreactor system: Overcoming cholesterol-
733 polymer interaction by using pretreated polymer or inert fluorinated ethylene
734 propylene. *Biotechnol Prog.* 2005;21(4):1341-1346. doi:10.1021/bp050091+.
- 735 12. Liu J, Kennedy JH, Ronk M, Marghitoiu L, Lee H, Nashed-Samuel Y. Ambient
736 analysis of leachable compounds from single-use bioreactors with desorption
737 electrospray ionization time-of-flight mass spectrometry. *Rapid Commun Mass
738 Spectrom.* 2014;28(21):2285-2291. doi:10.1002/rcm.7021.
- 739 13. Hammond M, Nunn H, Rogers G, Lee H, Marghitoiu A-L, Perez L, Nashed-Samuel Y,
740 Anderson C, Vandiver M, Kline S. Identification of a leachable compound detrimental
741 to cell growth in single-use bioprocess containers. *PDA J Pharm Sci Technol.*
742 2013;67(2):123-134. doi:10.5731/pdajpst.2013.00905.

743 14. Hammond M, Marghitoiu L, Lee H, Perez L, Rogers G, Nashed-Samuel Y, Nunn H,
744 Kline S. A cytotoxic leachable compound from single-use bioprocess equipment that
745 causes poor cell growth performance. *Biotechnol Prog.* 2014;30(2):332-337.
746 doi:10.1002/btpr.1869.

747 15. Kelly PS, McSweeney S, Coleman O, Carillo S, Henry M, Chandran D, Kellett A,
748 Bones J, Clynes M, Meleady P, Barron N. Process-relevant concentrations of the
749 leachable bDtBPP impact negatively on CHO cell production characteristics.
750 *Biotechnol Prog.* 2016;32(6):1547-1558. doi:10.1002/btpr.2345.

751 16. Min H, Teresa HS, Cindy Z, Satish SK. Impact of extractables/leachables from filters
752 on stability of protein formulations. *J Pharm Sci.* 2011;100(11):4617-4630.
753 doi:doi.org/10.1002/jps.22670.

754 17. Rainer B, Christian B, Klaus WB. Analysis of volatile radiolysis products in gamma-
755 irradiated LDPE and polypropylene films by thermal desorption-gas chromatography-
756 mass spectrometry. *Appl Radiat Isot.* 2000;52(2):251-269. doi:doi.org/10.1016/S0969-
757 8043(99)00125-6.

758 18. Andersson T, Nielsen T, Wessl??n B. Degradation of low density polyethylene during
759 extrusion. III. Volatile compounds in extruded films creating off-flavor. *J Appl Polym
760 Sci.* 2005;95(4):847-858. doi:10.1002/app.21278.

761 19. Dorival-García N, Bones J. Evaluation of solvent systems for optimized extractables
762 studies of single use bioprocessing solutions. *J Chromatogr A.* 2017;1513:69-77.
763 doi:10.1016/j.chroma.2017.06.066.

764 20. Dorival-Garcia N, Carillo S, Ta C, Roberts D, Comstock K, Lofthouse S, Ciceri E,
765 D'Silva K, Kierans G, Kaisermayer C, Bones J. Large-scale assessment of extractables
766 and leachables in single-use bags for biomanufacturing. *Anal Chem.* 2018.
767 doi:10.1021/acs.analchem.8b01208.

768 21. Eibl R, Steiger N, Fritz C, Eisenkrätzer D, Bär J, Müller D, Eibl D. Recommendation
769 for Leachables Studies Standardized cell culture test for the early identification of
770 critical films. *Dechema Workgr.* 2014:1-24.

771 22. Evaluating the toxicity of bDtBPP on CHO-K1 cells for testing of single-use
772 bioprocessing systems.pdf.

773 23. Brian H, Liu TV, Weimin L, Xiao-Ping D, Kurt K, Frank G. A generic growth test
774 method for improving quality control of disposables in industrial cell culture.
775 *BioPharm Int.* 2013;26(6):34-41.

776 24. Ding W, Madsen G, Mahajan E, O'Connor S, Wong K. Standardized Extractables
777 Testing Protocol for Single-Use Systems in Biomanufacturing. *Pharm Eng.*
778 2014;34(6):1-11.

779 25. Dorival-García N, Bones J. Monitoring leachables from single-use bioreactor bags for
780 mammalian cell culture by dispersive liquid-liquid microextraction followed by ultra
781 high performance liquid chromatography quadrupole time of flight mass spectrometry.
782 *J Chromatogr A.* 2017;1512:51-60. doi:10.1016/j.chroma.2017.06.077.

783 26. Willemsen P, Scippo ML, Kausel G, Figueroa J, Maguin-Rogister G, Martial JA,
784 Muller M. Use of reporter cell lines for detection of endocrine-disrupter activity. *Anal
785 Bioanal Chem.* 2004;378(3):655-663. doi:10.1007/s00216-003-2217-2.

786 27. Frizzell C, Elliott CT, Connolly L. Effects of the mycotoxin patulin at the level of
787 nuclear receptor transcriptional activity and steroidogenesis in vitro. *Toxicol Lett.*
788 2014;229(2):366-373. doi:10.1016/j.toxlet.2014.06.847.

789 28. Frizzell C, Ndossi D, Kalayou S, Eriksen GS, Verhaegen S, Sørlie M, Elliott CT,
790 Ropstad E, Connolly L. An in vitro investigation of endocrine disrupting effects of the
791 mycotoxin alternariol. *Toxicol Appl Pharmacol.* 2013;271(1):64-71.
792 doi:10.1016/j.taap.2013.05.002.

793 29. Gracia T, Hilscherova K, Jones PD, Newsted JL, Zhang X, Hecker M, Higley EB,
794 Sanderson JT, Yu RMK, Wu RSS, Giesy JP. The H295R system for evaluation of
795 endocrine-disrupting effects. *Ecotoxicol Environ Saf.* 2006;65(3):293-305.
796 doi:10.1016/j.ecoenv.2006.06.012.

797 30. Kalayou S, Hamre AG, Ndossi D, Connolly L, Sørlie M, Ropstad E, Verhaegen S.
798 Using SILAC proteomics to investigate the effect of the mycotoxin, alternariol, in the
799 human H295R steroidogenesis model. *Cell Biol Toxicol.* 2014;30(6):361-376.
800 doi:10.1007/s10565-014-9290-5.

801 31. Fernández-Blanco C, Frizzell C, Shannon M, Ruiz MJ, Connolly L. An in vitro
802 investigation on the cytotoxic and nuclear receptor transcriptional activity of the
803 mycotoxins fumonisin B1 and beauvericin. *Toxicol Lett.* 2016;257:1-10.
804 doi:10.1016/j.toxlet.2016.05.021.

805 32. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation
806 method for proteome analysis. *Nat Methods.* 2009;6(5):359-362.
807 doi:10.1038/nmeth.1322.

808 33. Colemen O, Henry M, Clynes M, Meleady P. Filter-Aided Sample Preparation (FASP)
809 for Improved Proteome Analysis of Recombinant Chinese Hamster Ovary Cells. In:
810 *Heterologous Protein Production in CHO Cells.* ; 2017:187-194.
811 <https://link.springer.com/book/10.1007/978-1-4939-6972-2>.

812 34. Kaushik P, Henry M, Clynes M, Meleady P. The expression pattern of the
813 phosphoproteome is significantly changed during the growth phases of recombinant
814 CHO cell culture. *Biotechnol J.* 2018;1700221. doi:10.1002/biot.201700221.

815 35. Ngo JK, Pomatto LCD, Davies KJA. Upregulation of the mitochondrial Lon Protease
816 allows adaptation to acute oxidative stress but dysregulation is associated with chronic
817 stress, disease, and aging\$. *Redox Biol.* 2013;1(1):258-264.
818 doi:10.1016/j.redox.2013.01.015.

819 36. Jenke D, Castner J, Egert T, Feinberg T, Hendricker A, Houston C, Hunt DG, Lynch
820 M, Shaw A, Nicholas K, Norwood DL, Paskiet D, Ruberto M, Smith EJ, Holcomb F.
821 *Extractables Characterization for Five Materials of Construction Representative of*
822 *Packaging Systems Used for Parenteral and Ophthalmic Drug Products.* Vol 67.;
823 2013. doi:10.5731/pdajpst.2013.00933.

824 37. Marghitoiu, L., Liu, J., Lee, H., Perez, L., Fujimori, K., Ronk, M., Hammond, M.R.,
825 Nunn, H., Lower, A., Rogers, G., Nashed-Samuel Y. Extractables analysis of single-
826 use flexible plastic biocontainers. *PDA J Pharm Sci Technol.* 2015;69(1):49.58.

827 38. Pahl, I., Dorey, S., Barbaroux, M., Lagrange, B., Frankl H. Analysis and evaluation of
828 single-use bag extractables for validation in biopharmaceutical applications. *PDA J*
829 *Pharm Sci Technol.* 2014;68(5):456-471.

830 39. Toxtree (Estimation of toxic hazard - a decision tree approach).
831 <http://toxtree.sourceforge.net/>.

832 40. U. S. Food and Drug Administration/Center for Biologics Evaluation and Research,
833 Cder. Guidance for Industry Q3D Elemental Impurities. *Food Drug Adm.*
834 2015;(September):1-85.

835 41. Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD. Most plastic products release
836 estrogenic chemicals: A potential health problem that can be solved. *Environ Health
837 Perspect.* 2011;119(7):989-996. doi:10.1289/ehp.1003220.

838 42. Markovic I. Evaluation of safety and quality impact of extractable and leachable
839 substances in therapeutic biologic protein products: a risk-based perspective. *Expert
840 Opin Drug Saf.* 2007;6(5):487-491. doi:doi.org/10.1517/14740338.6.5.487.

841 43. Wood J, Mahajan E, Shiratori M. Strategy for selecting disposable bags for cell culture
842 media applications based on a root-cause investigation. *Biotechnol Prog.*
843 2013;29(6):1535-1549. doi:10.1002/btpr.1802.

844 44. Dorival-García N, Bones J. Evaluation of solvent systems for optimized extractables
845 studies of single use bioprocessing solutions. *J Chromatogr A.* 2017;1513:69-77.
846 doi:10.1016/j.chroma.2017.06.066.

847 45. Nunn H, Hammond M. Impact of a toxic single-use bio-process container film
848 leachable on Chinese hamster ovary cells. In: *Single-USE Technologies: Bridging
849 Polymer Science to Biotechnology Applications.* ; 2015.

850 46. Ruberto MA. Polymers and Additives Used in Fabrication of Disposable Bioprocess
851 Equipment. *Bioprocess Int.* 2010;(April):36-41.

852 47. Dorey S, Stedim S, Pahl I, Uettwiller I, Janvier S, Jurkiewicz E. 5 Limitation and
853 detection of bis(2,4-di-tert- butylphenyl)phosphate (bDtBPP) from bioprocess
854 container materials. In: *Engineering Conferences International ECI Digital Archives.* ;
855 2015. <http://dc.engconfintl.org/biopoly>.

856 48. Alin J, Hakkainen M. Microwave heating causes rapid degradation of antioxidants in
857 polypropylene packaging, leading to greatly increased specific migration to food
858 simulants as shown by ESI-MS and GC-MS. *J Agric Food Chem.* 2011;59(10):5418-
859 5427. doi:10.1021/jf1048639.

860 49. Farajzadeh MA, Bahram M, Jönsson JÅ. Dispersive liquid-liquid microextraction
861 followed by high-performance liquid chromatography-diode array detection as an
862 efficient and sensitive technique for determination of antioxidants. *Anal Chim Acta.*
863 2007;591(1 SPEC. ISS.):69-79. doi:10.1016/j.aca.2007.03.040.

864 50. El Mansouri H, Yagoubi N, Ferrier D. Extraction of polypropylene additives and their
865 analysis by HPLC. *Chromatographia.* 1998;48(7-8):491-496.
866 doi:10.1007/BF02466639.

867 51. Senkler J, Senkler M, Braun H-P. Structure and function of complex I in animals and
868 plants - a comparative view. *Physiol Plant.* 2017;161(1):6-15. doi:10.1111/ppl.12561.

869 52. Fernandez-Martell A, Johari YB, James DC. Metabolic phenotyping of CHO cells
870 varying in cellular biomass accumulation and maintenance during fed-batch culture.
871 *Biotechnol Bioeng.* 2018;115(3):645-660. doi:10.1002/bit.26485.

872 **Figure Legends**

873 **Figure 1: Impact of conditioned media from two single-use disposable bioreactor bags on**
874 **the bioprocess-relevant phenotypes of CHO-K1 and CHO-DP12 cells.** Cells were cultured
875 **in an 8-10 day batch process in chemically defined media (BalanCD CHO Growth A) and**
876 **analysed every 2 days for cell density and culture viability using the Guava ViaCount**
877 **Assay as well as for IgG production using ELISA.** CHO-K1 cells cultured in media
878 **conditioned in the older F-1 film (A and B) and newer F-2 film (C and D) for 7 days.**
879 **CHO-DP12 Cells cultured in same F-1 (E-G) and F-2 (H-I) media conditioned.** Control
880 **cells were cultured in media conditioned for the same 7 day timeframe but done so in**
881 **glass bottles.** An additional control “Fresh BalanCD” was included which compares
882 **culture media not subjected to the conditioning process.** (n = 9, *** P ≤ 0.001, * P ≤ 0.05).

883 **Figure 2: Impact of conditioned media from two single-use disposable bioreactor bags on**
884 **the bioprocess-relevant phenotypes of CHO-K1 and CHO-DP12 cells.** Cells were cultured
885 **in an 8-10 day batch process in chemically defined media (BalanCD CHO Growth A) and**
886 **analysed every 2 days for cell density and culture viability using the Guava ViaCount**
887 **Assay as well as for IgG production using ELISA.** CHO-K1 cells cultured in media
888 **conditioned in F-1 (A-B) and F-2 (C-D) films for 3 days.** CHO-DP12 cells cultured in
889 **media conditioned in F-1 (E-G) and F-2 (H-I) films for 3 days** Control cells were cultured
890 **in media conditioned for the same 3 day timeframe but done so in glass bottles.** An
891 **additional control “Fresh BalanCD” was included which compares culture media not**
892 **subjected to the conditioning process.** (n = 9, *** P ≤ 0.001, * P ≤ 0.05).

893 **Figure 3: The number of both common and unique differentially expressed proteins**
894 **identified through quantitative label-free LC-MS/MS proteomic analysis from CHO-K1**
895 **and CHO-DP12 cells cultured in 7 day F-1 and F-2 film conditioned media and harvested**
896 **96 hours into culture for proteomic analysis are represented in the Venn diagram (A).**
897 **Using the Seahorse FX96 analyser, CHO-K1 cells cultured in 7 day conditioned media in**
898 **both F-1 and F-2 films were assessed for mitochondrial/TCA cycle activity by monitoring**
899 **the oxygen consumption rate (OCR), B) as well as glycolytic metabolism through the**
900 **assessment of the extracellular acidification rate (ECAR), C).** Cells were harvested for
901 **analysis 96 hours into culture and compared to control negative media cultures.** (n = 3).

902 **Figure 4: A) Comparative chart for identified non-volatile leachables in both evaluated**
903 **SUB models. Comparative LC chromatograms from (B) F-1 and (C) F-2 films. Some**

904 compounds that demonstrated higher levels in F-1 are highlighted, including bDtBPP,
905 and details for these are shown in table 3. D) Comparative chart for identified elemental
906 leachables from both evaluate SUB models. E) Comparative chart for the identified
907 concentrations of elemental leachable in both evaluated SUB models.

908 **Figure 5: Impact of various elemental leachables on the bioprocess-relevant phenotypes**
909 **of CHO-K1 and the antibody-producing CHO-DP12 cell lines.** Cells were cultured in
910 chemically defined (BalanCD CHO Growth A) media spiked on day 0 with the various
911 elemental metal (Al, Pb, Ni, Ag and Na) and harvested 96 hours into culture for growth
912 and viability analysis using the Guava ViaCount Assay and IgG production using ELISA.
913 Metals were dissolved in water and spiked at a concentration of 1 mg/L in both CHO-K1
914 (A) and CHO-DP12 (C) cells on day 0 of culture and assessed for growth and viability.
915 Various concentrations of silver (Ag) ranging from 0.001-2 mg/L was spiked at day 0 in
916 CHO-K1 (B) and CHO-DP12 (D) cultures and assessed for growth and viability.
917 Additionally, in the case of CHO-DP12 cells, IgG productivity was assessed (E). (n = 3,
918 *** P ≤ 0.001, * P ≤ 0.05).

919 **Figure 6: Antagonist effects of bDtBPP (0.005 - 0.25 µg/ml) in the androgen and**
920 **progestagen responsive TARM-Luc cell line.** The responses measured are compared to
921 the solvent control (0.2% DMSO) and the positive control (testosterone 288 ng/ml).
922 Percentage responses are expressed as ±SEM for three independent exposures in
923 triplicate (n=3), P = <0.001 (***).

924

925 **Supplementary Figure Legends**

926 **Supplementary Figure 1: Using ELISA based methods, the average production of the**
927 **respective steroid hormone A) Testosterone, B) Progesterone, C) Estradiol and D)**
928 **Cortisol was determined upon incubation bDtBPP over a range of concentrations. (n =**
929 **3).**

930

931

932

933

Figure 1



Figure 2

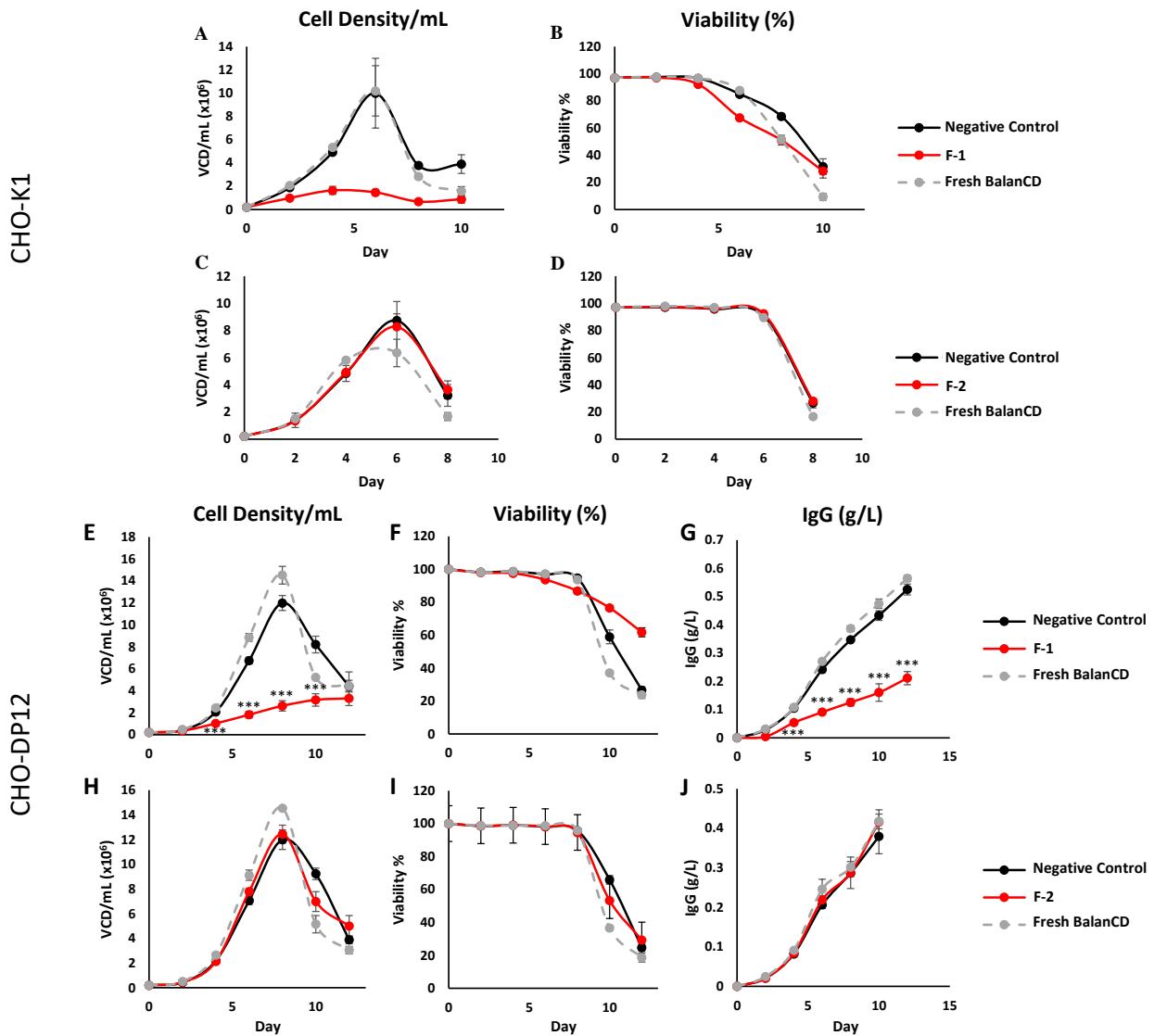


Figure 3

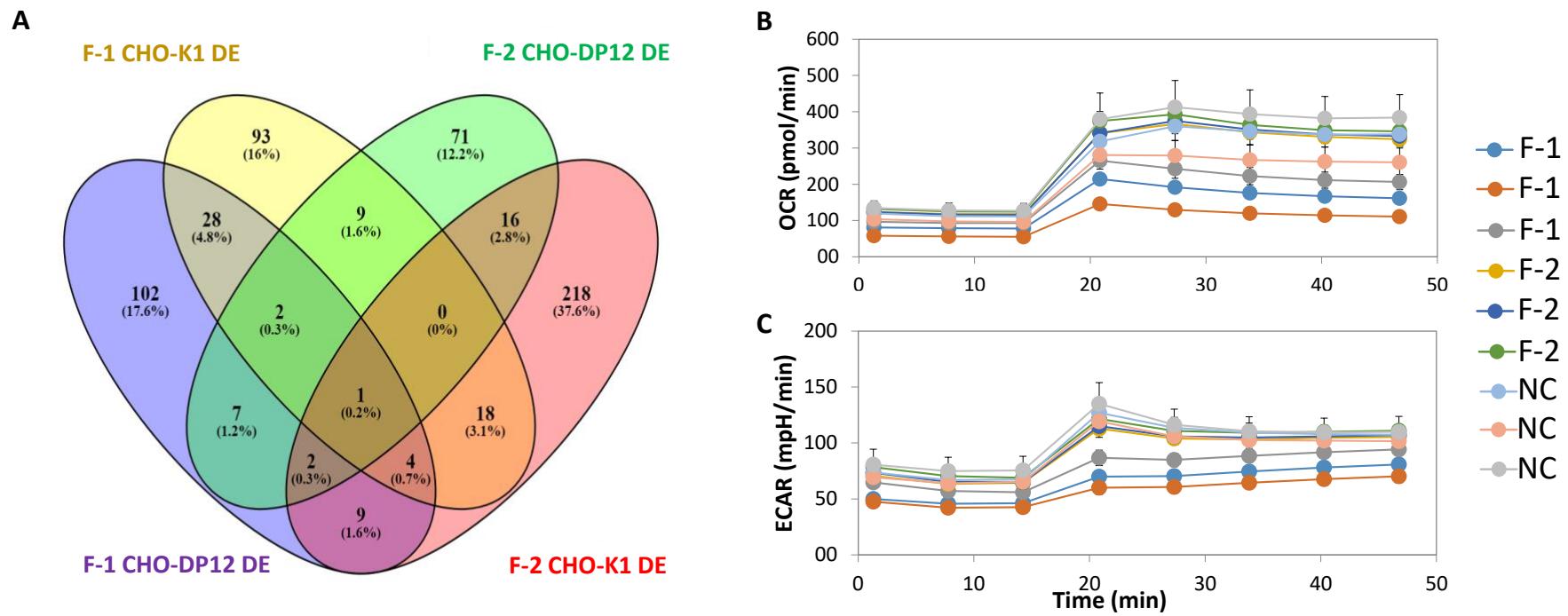


Figure 4

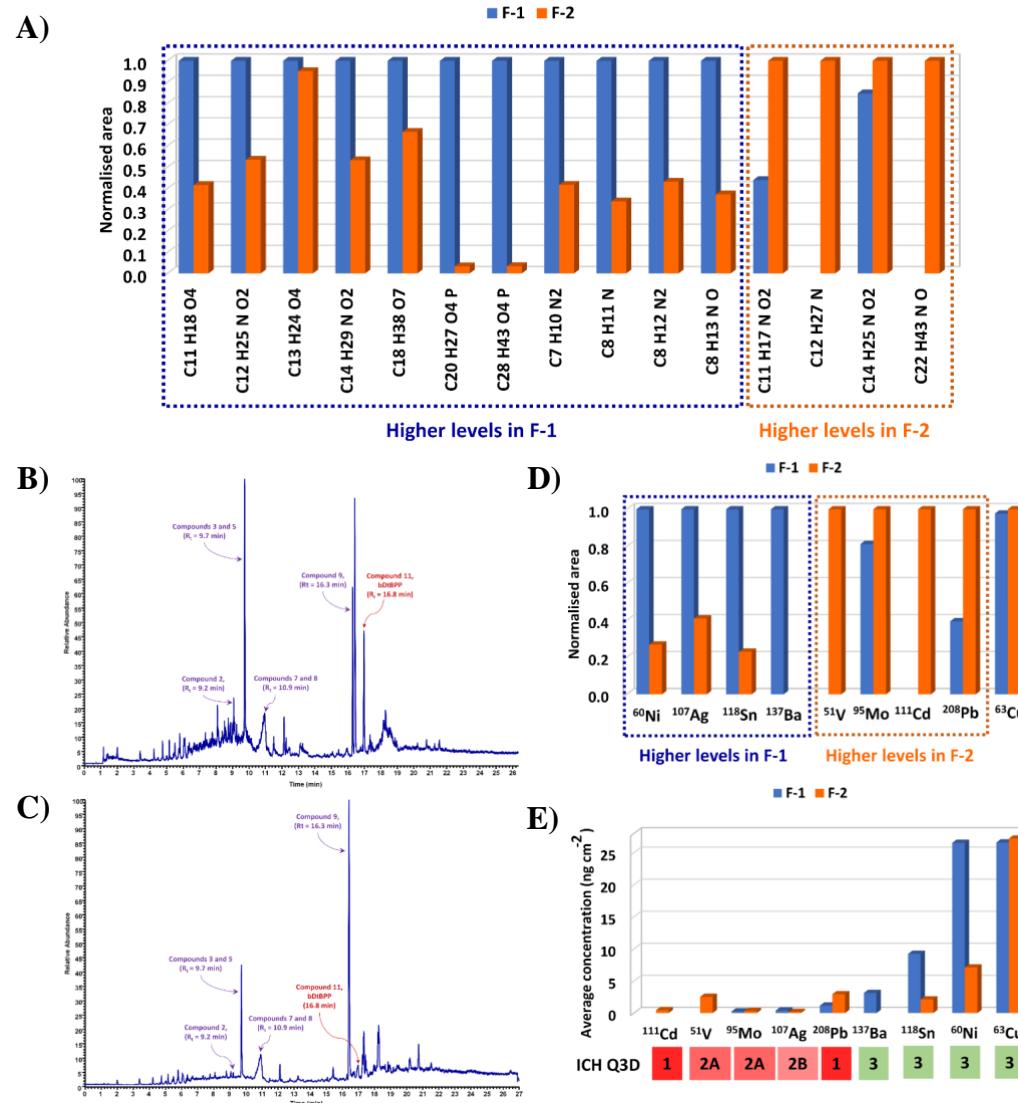


Figure 5

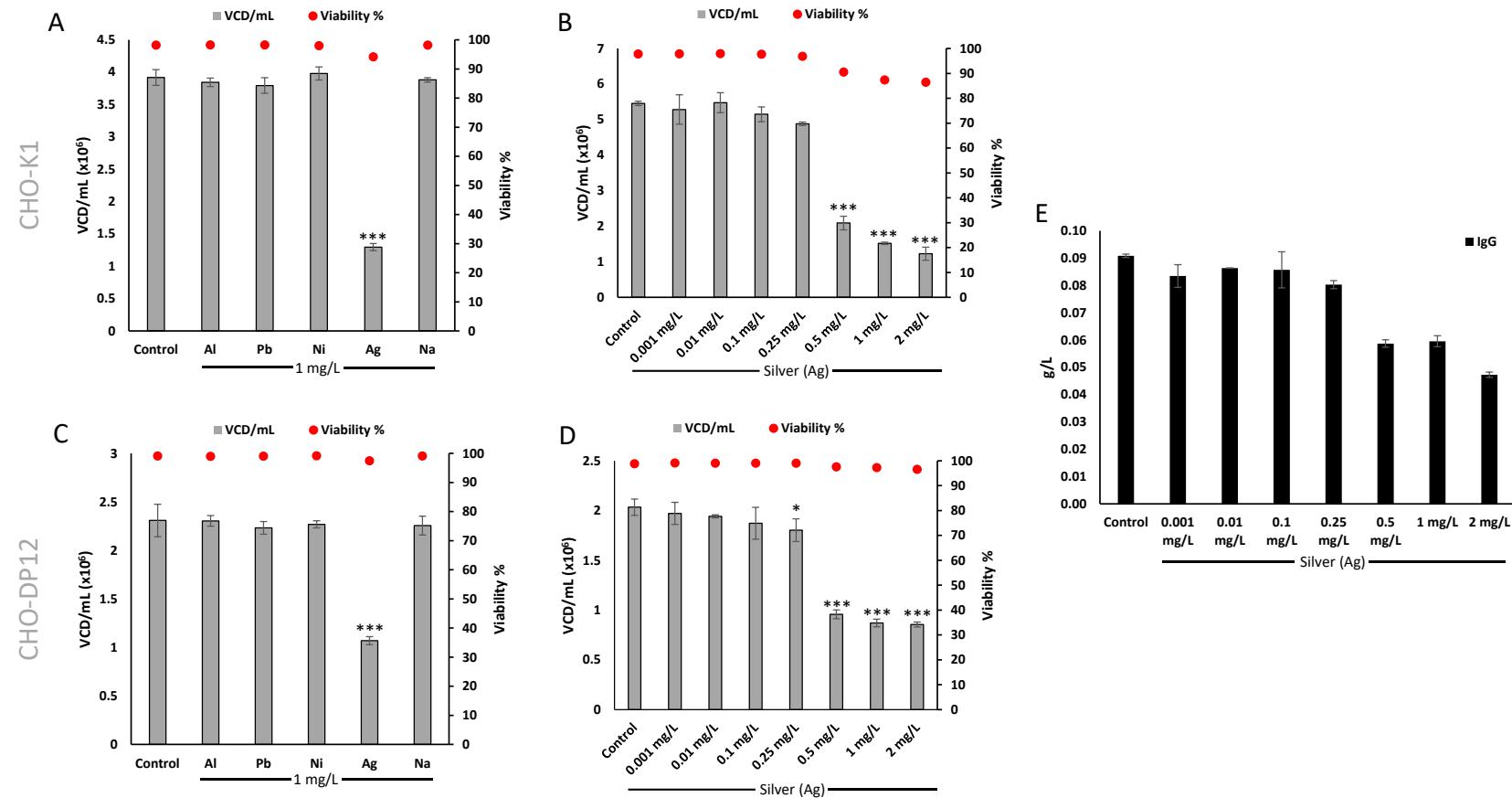
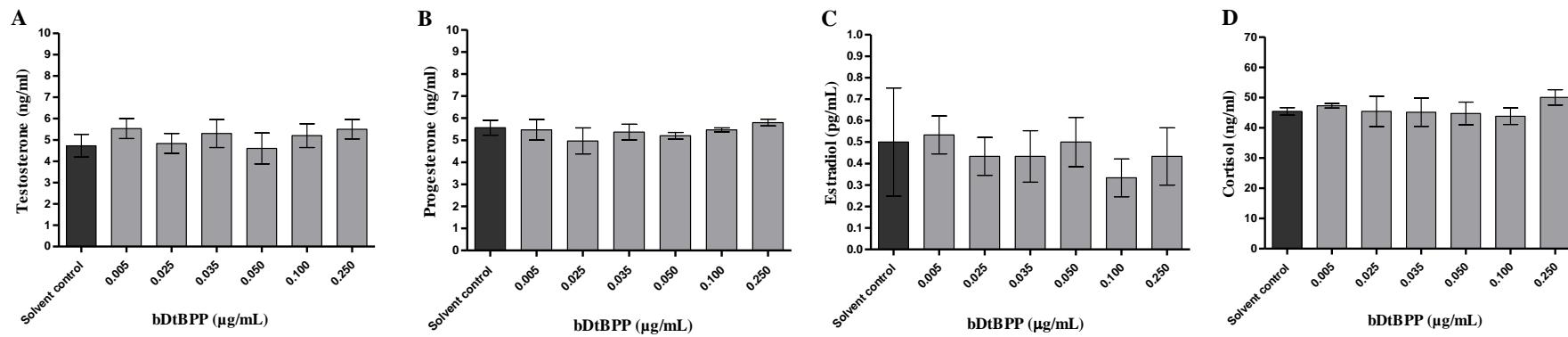



Figure 6

Table 1: Common Differentially Expressed proteins in CHO cells incubated in F-1 film conditioned media

Gene I.D.	UR/DR	FC ^{CHO-DP12}	FC ^{CHO-K1}	Biological Process
NDUFS2	DR	4.17	1.51	ATP synthesis
NDUFS9	DR	2.55	1.70	Electron transport
NDUFV1	DR	2.30	1.66	ATP synthesis
NDUFA10	DR	2.17	1.68	Electron transport
PCK1	UR	1.59	2.04	Glucose metabolism
LONP1	UR	1.79	2.14	Oxidative stress
VNN1	UR	1.51	1.62	Oxidative stress
CHCHD1	UR	1.64	1.75	Mitochondrial translation elongation

Abbreviations: **CHCHD1** – Coiled-coil-helix-coiled-coil-helix domain-containing protein 2, **DR** – Downregulated, **FC** – Fold Change, **LONP1** – Lon protease-like, **NDUFS2** – NADH dehydrogenase iron-sulfur protein 2, **NDUFA10** – NADH dehydrogenase 1 alpha sub-complex subunit 10, **NDUFS9** – NADH dehydrogenase iron-sulfur protein 9, **NDUFV1** – NADH dehydrogenase flavoprotein 1, **PCK1** – Phosphoenolpyruvate carboxykinase, **UR** – Upregulated, **VNN1** - Pantetheinase

Table 2: Gene Ontology Analysis for Differentially Expressed proteins from CHO-K1/DP12 F-1 conditioned media

GO Term	GO	P-Value
Oxidation-Reduction process	BP	4.6E-11
Response to oxidative stress	BP	5.2E-5
Mitochondrial respiratory chain complex I	CC	2.0E-13
Mitochondrion	CC	1.1E-9
Oxidative Phosphorylation	KEGG	1.1E-9

Abbreviations: **BP** – Biological Process, **CC** – Cellular Component, **GO** – Gene Ontology

Table 3
Summary of identified leachables by LC-MS.

	Compound name	Formula	Molecular Weight	Annotation	ΔMass [ppm]	Tentative function	Cramer class	Carcinogenicity alerts		
								In silico ⁽¹⁾		
								A	B	
1	N,N-di(2-hydroxyethyl)-p-toluidine	C ₁₁ H ₁₇ NO ₂	195.12611	3077-12-1	0.92	Photopolymerization/adhesive	3	NO	NO	
2	1,4-dioxacyclotridecane-5,13-dione	C ₁₁ H ₁₈ O ₄	214.12025	4471-27-6	1.20	Adhesive for multilayer materials		1	NO	NO
	3,3-Dimethyl-1,5-dioxacycloundecane-6,11-dione			94113-47-0		Contamination formed in polyolefin containers		1	NO	NO
	1,2-amidododecanoic acid	C ₁₂ H ₂₅ NO ₂	215.18841	693-57-2	0.56	Residue from production	1	NO	NO	
4	N,N-dimethyldecan-1-amine	C ₁₂ H ₂₇ N	185.21452	1120-24-7	0.90	Catalyst degradation product	1	NO	NO	
5	Ethylmalonic acid dibutyl ester	C ₁₃ H ₂₄ O ₄	244.16699	1113-92-4	1.93	Propylene copolymer, residue from production		1	NO	YES
	Diethyl azelate			624-17-9		Plasticizer		1	NO	NO
6	2-Propenoic acid 2-methyl- 1,2,2,6,6-pentamethyl-4-piperidinyl ester	C ₁₄ H ₂₅ NO ₂	239.18838	68548-08-3	0.62	UV stabilizer	3	NO	NO	
7	N-(2-hydroxyethyl)-dodecanamide	C ₁₄ H ₂₉ NO ₂	243.21957	142-78-9	1.07	Antistatic agent	3	NO	NO	
8	PPG n6	C ₁₈ H ₃₈ O ₇	366.26130	25322-69-4	1.23	Polymer block degradation product	3	NO	NO	
9	2-Ethylhexyldiphenyl phosphate (Santicizer®)	C ₂₀ H ₂₇ O ₄ P	362.16400	1241-94-7	1.93	Flame retardant, plasticizer	3	NO	YES	
10	cis-1,3-docosenic acid amide (Kemamide® E ultra)	C ₂₂ H ₄₃ NO	337.33386	112-84-5	1.78	Slip agent	3	NO	NO	
11	bis(2,4-di-tert-butylphenyl)phosphate (bDtBPP)	C ₂₈ H ₄₃ O ₄ P	474.28925	69284-93-1	1.37	Antioxidant degradation product	3	NO	NO	
12	2,6-Toluenediamine	C ₇ H ₁₀ N ₂	122.08440	823-40-5	0.05	Polyurethane intermediate	3	YES	NO	
	2,4-Toluenediamine			95-80-7		Polyurethane intermediate	3	YES	NO	
13	5-Ethyl-2-methyl-pyridine	C ₈ H ₁₁ N	121.08917	104-90-5	0.18	Vinyl acetate catalyst/olefin epoxidation catalyst / solvent for polycarbonate polymerisation		3	NO	NO
	2,4-Dimethyl-aniline			95-68-1		Catalyst degradation product		3	YES	NO
14	1,3-Bis(aminomethyl)benzene	C ₈ H ₁₂ N ₂	136.10023	1477-55-0	1.34	Polyamide modification agent	3	NO	NO	
	Tetramethyl succinonitrile			3333-52-6		Polymerization initiator degradation product		3	NO	NO
15	1-ethenylazepan-2-one	C ₈ H ₁₃ NO	139.09981	2235-00-9	0.67	Coating	3	NO	NO	
16	Tris(2,4-di-tert-butylphenyl)phosphate	C ₄₂ H ₆₃ O ₄ P	662.44640	95906-11-9	1.22	Antioxidant degradation product	3	NA ⁽²⁾	NA ⁽²⁾	

⁽¹⁾ From Toxtree using Benigni/Biossa rulebase. A = considering genotoxic effects, B = considering non-genotoxic effects. ⁽²⁾ NA = Not available.