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Abstract

We propose a mathematical model to represent solid materials with discrete lattices
and to analyse their behaviour by calculus on discrete manifolds. Focus is given on
the mathematical derivation of the lattice elements by taking into account the stored
energy associated with them. We provide a matrix formulation of the non-linear
system describing elasticity with exact kinematics, known as finite strain elastic-
ity in continuum mechanics. This formulation is ready for software implementation,
and may also be used in atomic scale models as an alternative to existing empirical
approach with pair and cohesive potentials. An illustrative example, analysing a local
region of a node, is given to demonstrate the model performance.
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1 INTRODUCTION

Lattice models for deformation and fracture of solid materials were developed firstly for quasi-brittle materials, such as con-
cretes and rocks (1), (7), and extended recently for elastic-plastic materials, such as structural steels (2). The benefit of modelling
materials, treated as continua in classical mechanics, with discrete lattices is that the nucleation, growth and coalescence of dis-
continuities (cracks) become natural processes. As these are non-topological changes in the system, the classical solidmechanics,
being a thermodynamic bulk theory, does not work. Additional benefit of the discrete approach is the possibility for introducing
heterogeneities and local anisotropies in the modelled structure by appropriate spatial and directional variation of lattice proper-
ties, as well as natural and/or essential boundary conditions in what would be considered an interior in the continuum approach
(since each lattice vertex is a boundary).
A lattice, in the language of algebraic topology, is a 1-complex embedded inℝ2 orℝ3, i.e. a graph with nodes (sites) equipped

with Cartesian coordinates and edges (bonds) between some nodes. The first challenge is to ensure the elastic response of a graph
is equivalent to the continuum response measured experimentally, i.e. to derive a link between properties of lattice elements,
e.g. bond stiffness coefficients, and macroscopic properties. Isotropic materials, described by two macroscopic constants, can
be represented exactly by 2D graphs based on hexagonal structure, e.g. (3), (5), (9), and by 3D graphs based on truncated
octahedral structure (8), (12). Other regular 3D graphs can represent cubic elasticity, described by three macroscopic constants
(10). However, there is no general recipe for deriving properties of lattice elements of arbitrary non-regular graph, which is
required to represent closely given material microstructure, and all the existing representations with regular lattices are derived
for linearised kinematics (infinitesimal strain in continuum settings). One of the aims of this work is to develop an alternative
description of lattice behaviour, which makes arbitrary graphs represent macroscopic elasticity with exact kinematics (finite
strain in continuum settings).
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A mathematically rigorous analysis of graphs is based on discrete exterior calculus (DEC) (6). However, the analysis on
graphs developed in this reference is applicable to physical problems, where the nodal unknown (a 0-cochain) is a scalar, i.e.
temperature, pressure, concentration, etc, and its gradient is also a scalar over the edges (1-cochain). In mechanical problems the
nodal unknown is a vector, e.g. nodal displacements in linearised kinematics or nodal coordinates in exact kinematics, which
makes the problem critically different. One possibility for formulating elasticity is to use 3-complexes (11), which leads to a
complexity similar to the one discretising continuum problems with finite elements for example. The main aim of this work is
to investigate whether 1-complexes can still be used to describe elastic behaviour as computationally more efficient alternative
to 3-complexes.

2 THE MODEL WITH CALCULUS ON DISCRETE MANIFOLDS

Consider a tessellation of a 3D region into cells, e.g. a Voronoi tessellation around a given set of N points, representing a
particular material microstructure (2). The tessellation is a 3-complex denoted by V and containingN 3-cells (cells),N2 2-cells
(faces),N1 1-cells (edges) andN0 0-cells (nodes). We explore the possibility to replace V with two 1-complexes (graphs), basic
and complimentary, determined by V. The basic graph, denoted by G, has n = N nodes placed at 3-cells’ centres, and m = N2
edges connecting nodes whose 3-cells have common 2-cells. The connectivity of G is thus provided by the cell-face connectivity
of V. The complementary graph, denoted by G* has n∗ = m = N2 nodes, placed at 2-cells’s centres (which are also centres of
G edges), m∗ = N1 edges connecting nodes whose 2-cells have common 1-cells. The connectivity of G* is thus provided by the
face-edge connectivity of V.
To describe operations on G we introduce a matrix A = [aij]

j=1,2,...,n
i=1,2,...,m ∈ ℝm×n, and a matrix S = [sij]

j=1,2,...,n
i=1,2,...,m ∈ ℝm×n, where

aij =

⎧

⎪

⎨

⎪

⎩

0, if node j is not a node of edge i
1, if node j is the first node of edge i
−1, if node j is the second node of edge i

⎫

⎪

⎬

⎪

⎭

and sij =
{

0, if node j is not a node of edge i
0.5, if node j is a node of edge i

}

.

These reflect the cell-face connectivity of V: A is the standard incidence matrix, providing a co-boundary operator for nodes
(6), while S is an averaging operator over nodes. Similar operators can be defined for G*, of which we will need only the
co-boundary operator A∗ = [a∗ij]

j=1,2,...,n∗
i=1,2,...,m∗ ∈ ℝm∗×n∗ constructed similarly to A but reflecting face-edge connectivity of V.

Let

C =

⎡

⎢

⎢

⎢

⎢

⎣

C1
C2
⋮
Cn

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝn×3 and C∗ =

⎡

⎢

⎢

⎢

⎢

⎣

C∗
1

C∗
2
⋮
C∗
n

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝn∗×3

denote discrete vector-valued functions over nodes of G and G*, respectively, where

Cj =
[

Cj1 Cj2 Cj3
]

∈ ℝ3, j = 1, 2, ..., n and C∗
j =

[

C∗
j1 C

∗
j2 C

∗
j3

]

∈ ℝ3, j = 1, 2, ..., n∗.

In order to apply A, S and A∗ on such functions we expand these operators by repetition of each raw and each column three
times, so that from now on we will use the resultant A ∈ ℝ3m×3n, S ∈ ℝ3m×3n and A∗ ∈ ℝ3m∗×3n∗ . When A and A∗ are applied
to C and C∗ they provide the gradient of these functions as vector-valued functions over edges of the respective graphs

AC = b =

⎡

⎢

⎢

⎢

⎢

⎣

b1
b2
⋮
bm

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝm×3 and A∗C∗ = b∗ =

⎡

⎢

⎢

⎢

⎢

⎣

b∗1
b∗2
⋮
b∗m

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝm∗×3

where
bi =

[

bi1 bi2 bi3
]

∈ ℝ3, i = 1, 2, ..., m and b∗i =
[

b∗i1 b
∗
i2 b

∗
i3

]

∈ ℝ3, i = 1, 2, ..., m∗.

For the purposes of developing exact kinematics, we associate C and C∗ with the nodal coordinates in G and G*, respectively,
in which case we note that C∗ = SC . Further b and b∗ represent coordinate differences associated with edges of G and G*,
respectively, which provide edge lengths via |bi|, i = 1, 2, ..., m, and |b∗i |, i = 1, 2, ..., m∗.
A boundary value problem is formulated by prescribing boundary conditions to the nodes of G. These can be either natural,

i.e. prescribed external forces, or essential, i.e. prescribed new coordinates due to nodal displacements. As a result of these
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conditions, the geometry of the whole structure changes, so that the nodes of G and G* have new coordinates

Xj =
[

Xj1 Xj2 j3
]

∈ ℝ3, j = 1, 2, ..., n and X∗
j =

[

X∗
j1 X

∗
j2 X

∗
j3

]

∈ ℝ3, j = 1, 2, ..., n∗,

which we assume to be related by X∗ = SX, i.e. the deformation of G* is induced by the deformation of G. This leads to new
edge lengths calculated as |yi|, i = 1, 2, ..., m, and |y∗i |, i = 1, 2, ..., m∗ from

y = AX =

⎡

⎢

⎢

⎢

⎢

⎣

y1
y2
⋮
ym

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝm×3 and y∗ = A∗X∗ = A∗SX =

⎡

⎢

⎢

⎢

⎢

⎣

y∗1
y∗2
⋮
y∗m∗

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝm∗×3. (1)

Upon deformation, the edges of G and G* store elastic energy dependent on the length changes |yi| − |bi|, i = 1, 2, ..., m and
|y∗i | − |b∗i |, i = 1, 2, ..., m∗, respectively. As a first approximation, we assume the edge energies to be quadratic functions of
length changes within specified length intervals as follows

Ui = Ki(|yi| − |bi|)2, a0i ≤ |yi| − |bi| ≤ a1i, i = 1, 2, ..., m and (2)

U ∗
i = K∗

i (|y
∗
i | − |b∗i |)

2, a2i ≤ |y∗i | − |b∗i | ≤ a3i, i = 1, 2, ..., m∗, (3)

where Ki and K∗
i are material parameters associated with the edges of G and G*, respectively, and the intervals [a0i, a1i] and

[a2i, a3i] provide the limits for local physically linear behaviour. Taking into account that the deformation of G* is induced by
X∗ = SX, it is clear that the system unknowns (nodal coordinates) are associated with the nodes of G only and correspondingly
the system reaction (edge forces) need to be associated with the edges of G only. To achieve this, we associate the stored energy
of the system only with the edges of G, making the total energy of G-edge i equal to the sum of its internal energy, Ui, and half
of the energies in the G*-edges incident with the G*-node centred at G-edge i. This can be written as 1

2

∑

k U
∗
k , where the sum

is over the G*-edges incident with the G*-node. Thus, the total stored energy associated with each edge of G is given by

Wi = Ui +
1
2
∑

k
U ∗
k , i = 1, 2, ..., m. (4)

The gradient of the total energy with respect to the change of edge length, provides the magnitude of the force in the G-edge,
i.e. for |yi| ≠ |bi| we have

|Fi| =
Wi

|yi| − |bi|
, i = 1, 2, ..., m. (5)

Finally, we restrict our present consideration to materials with non-polar behaviour by constraining the forces in G-edges to act
along the edges in the deformed state, i.e. Fi||yi, i = 1, 2, ..., m. Hence, if Ti =

yi
|yi|

, i = 1, 2, ..., m are the unit vectors along edges
in G, the edge forces are calculated by

Fi = |Fi|Ti =
|Fi|
|yi|

yi, i = 1, 2, ..., m. (6)

This can be summarised for the whole G by

F = g(|y|)y, where g(|y|) = diag
{

|F1|

|y1|
,
|F2|

|y2|
,… .

|Fm|
|ym|

}

∈ ℝm×m. (7)

Let Bi=
[

Bi1 Bi2 Bi3
]

∈ ℝ3, i = 1, 2, ..., n, be the external forces at the nodes of G, either provided as natural boundary
conditions, or arising as reactions to essential boundary conditions. Since the balance of angular momentum is automatically
fulfilled at all nodes by Fi||yi, the equilibrium of the system with the boundary conditions is ensured by the balance of linear
momentum at all nodes. This is given by

ATF = B, (8)

where AT ∈ ℝn×m is the transpose of the incidence matrix A, a boundary operator on edges of G. By substituting (7) into (8),
we get

AT g(|y|)y = B, (9)

which incorporates the contribution of G* to the equilibrium via (4) and (5)). By substituting (1) into (9), we arrive at the general
description of the system elasticity in terms of positions and forces of nodes in G

[AT g(|AX|)A]X = B. (10)
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The application of boundary conditions to the system (10) requires a separation of the nodal coordinate directions into two
groups: directions with prescribed natural condition - a force component, which maybe zero (free boundary), and directions
with prescribed essential condition - a new coordinate value which also maybe zero (fixed boundary). This separation can be
represented by the following expressions for nodal positions and forces, and a correspondingly re-arranged incidence matrix

X =
[

XP

XQ

]

∈ ℝn×3 , B =
[

BP

BQ

]

∈ ℝn×3 and A =
[

AP

AQ

]

∈ ℝ3m×3n,

where XP ∈ ℝp and BP ∈ ℝp are vectors of the unknown coordinates and the known corresponding forces, XQ ∈ ℝq and
BQ ∈ ℝq are vectors of the known coordinates and the unknown corresponding forces, and p + q = 3n holds.

3 MAIN RESULTS

System (10) is a non-linear system. This is because of the diagonal matrix g(|AX |) defined in (8). We provide the following
Theorem:

Theorem 1. Consider the non-linear system (10). Then

(a) An effective linearization of the system is given by
ÃX = B. (11)

Where Ã = AT K̃A with K̃ = diag[K̃i]1≤i≤m and for 0 < � << 1

K̃i =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Ki +
1
2

∑1
z=0

[

∑m∗
j=1[K

∗
i a

2
(z+2)i]

2a(1−z)i(a(1−z)i+|bi|)
− Ki|bi|

azi+|bi|

]

, a0i > 0, a2i ≥ 0

Ki +
1
2

∑1
z=0

[

∑m∗
j=1[K

∗
i a

2
(z+2)i]

a(1−z)i(a0i+a1i)
− Ki|bi|

azi+|bi|

]

, a0i > 0, a2i ≤ 0

Ki +
1
2

∑1
z=0

[

z
∑m∗
j=1[K

∗
i a

2
(z+2)i]

2a(1−z)i(a(1−z)i+|bi|)
− Ki|bi|

azi+|bi|

]

, a0i < 0, a2i ≥ 0

Ki +
1
2

∑1
z=0

[

z
∑m∗
j=1[K

∗
i a

2
(z+2)i]

a(1−z)i(a0i+a1i)
− Ki|bi|

azi+|bi|

]

, a0i < 0, a2i ≤ 0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

For |yi| = |bi|, i.e. a0i = 0 or a1i = 0, we have K̃i =
|Fi|
|bi|

.

(b) Let

Ã =
[

Ã11 Ã12
Ã21 Ã22

]

.

Where Ã11 ∈ ℝp×p, Ã12 ∈ ℝp×q , Ã21 ∈ ℝq×q , Ã22 ∈ ℝq×q . Then system (11) can be divided into the following subsystems

Ã11X
P = BP − Ã12X

Q (12)

and
BQ = Ã13X

P + Ã22X
Q. (13)

From the above systems only (12) has to be solved. Then XP can be replaced in (13) and BQ is easily computed.

Proof. For the proof of (a) we consider (8), (10) and will seek optimal bounds for |Fi|
|yi|

, ∀i = 1, 2, ..., m. From (5)

|Fi| =
Wi

|yi| − |bi|
, i = 1, 2, ..., m,

whereby replacing (4) into the above expression we get

|Fi| =
Ui +

1
2

∑m∗

j=1 U
∗
j

|yi| − |bi|
, i = 1, 2, ..., m.

By using (2) and (3) we have

|Fi| =
Ki(|yi| − |bi|)

2 + 1
2

∑m∗

j=1[K
∗
i (|y

∗
i | − |b∗i |)

2]

|yi| − |bi|
, i = 1, 2, ..., m,
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or, equivalently,

|Fi| = Ki(|yi| − |bi|) +
1
2

∑m∗

j=1[K
∗
i (|y

∗
i | − |b∗i |)

2]

|yi| − |bi|
, i = 1, 2, ..., m,

or, equivalently,
|Fi|
|yi|

= Ki(1 −
|bi|
|yi|

) + 1
2

∑m∗

j=1[K
∗
i (|y

∗
i | − |b∗i |)

2]

|yi|(|yi| − |bi|)
, i = 1, 2, ..., m. (14)

From (2) and (3) we have that

a0i ≤ |yi| − |bi| ≤ a1i, i = 1, 2, ..., m and a2i ≤ |y∗i | − |b∗i | ≤ a3i, i = 1, 2, ..., m∗.

Hence we have
a22i ≤ (|y∗i | − |b∗i |)

2 ≤ a23i, if a2i ≥ 0,

0 ≤ (|y∗i | − |b∗i |)
2 ≤ min{a22i, a

2
3i}, if a2i ≤ 0,

or, equivalently, by multiplying the above expressions by K∗
i

K∗
i a

2
2i ≤ K∗

i (|y
∗
i | − |b∗i |)

2 ≤ K∗
i a

2
3i, if a2i ≥ 0,

0 ≤ K∗
i (|y

∗
i | − |b∗i |)

2 ≤ K∗
i min{a

2
2i, a

2
3i}, if a2i ≤ 0.

or, equivalently, by summing
∑m∗

j=1[K
∗
i a

2
2i] ≤

∑m∗

j=1[K
∗
i (|y

∗
i | − |b∗i |)

2] ≤
∑m∗

j=1[K
∗
i a

2
3i], if a2i ≥ 0,

0 ≤
∑m∗

j=1[K
∗
i (|y

∗
i | − |b∗i |)

2] ≤
∑m∗

j=1[K
∗
i min{a

2
2i, a

2
3i}], if a2i ≤ 0.

(15)

Furthermore, we have
a0i + |bi| ≤ |yi| ≤ a1i + |bi|,

or, equivalently,
a0i + |bi|

|bi|
≤

|yi|
|bi|

≤
a1i + |bi|

|bi|
,

or, equivalently,
|bi|

a1i + |bi|
≤

|bi|
|yi|

≤
|bi|

a0i + |bi|
,

or, equivalently,

1 −
|bi|

a0i + |bi|
≤ 1 −

|bi|
|yi|

≤ 1 −
|bi|

a1i + |bi|
.

or, equivalently,

Ki(1 −
|bi|

a0i + |bi|
) ≤ Ki(1 −

|bi|
|yi|

) ≤ Ki(1 −
|bi|

a1i + |bi|
). (16)

Also from the above expressions
1

a1i + |bi|
≤ 1

|yi|
≤ 1
a0i + |bi|

. (17)

Finally
1
a1i

≤ 1
|yi|−|bi|

≤ 1
a0i
, if a0i > 0,

1
|yi|−|bi|

≅ 2
a0i+a1i

± �, if a0i < 0.
(18)

Hence, for a0i > 0 and a2i ≥ 0, from (15), (16), (17) and (18), we have

Ki(1 −
|bi|

a0i + |bi|
) +

∑m∗

j=1[K
∗
i a

2
2i]

2a1i(a1i + |bi|)
≤

|Fi|
|yi|

≤ Ki(1 −
|bi|

a1i + |bi|
) +

∑m∗

j=1[K
∗
i a

2
3i]

2a0i(a0i + |bi|)
,

or, equivalently,
|Fi|
|yi|

≅ Ki +
1
2

1
∑

z=0

⎡

⎢

⎢

⎣

∑m∗

j=1[K
∗
i a

2
(z+2)i]

2a(1−z)i(a(1−z)i + |bi|)
−

Ki|bi|
azi + |bi|

⎤

⎥

⎥

⎦

± �, i = 1, 2, ..., m.
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For a0i > 0 and a2i ≤ 0, from (15), (16), (17) and (18), we have

Ki(1 −
|bi|

a0i + |bi|
) +

∑m∗

j=1[K
∗
i a

2
2i]

a1i(a0i + a1i)
≤

|Fi|
|yi|

≤ Ki(1 −
|bi|

a1i + |bi|
) +

∑m∗

j=1[K
∗
i a

2
3i]

a0i(a0i + a1i)
,

or, equivalently,

|Fi|
|yi|

≅ Ki +
1
2

1
∑

z=0

⎡

⎢

⎢

⎣

∑m∗

j=1[K
∗
i a

2
(z+2)i]

a(1−z)i(a0i + a1i)
−

Ki|bi|
azi + |bi|

⎤

⎥

⎥

⎦

± �, i = 1, 2, ..., m.

For a0i < 0 and a2i ≥ 0, we have

Ki(1 −
|bi|

a0i + |bi|
) ≤

|Fi|
|yi|

≤ Ki(1 −
|bi|

a1i + |bi|
) +

∑m∗

j=1[K
∗
i a

2
3i]

2a0i(a0i + |bi|)
,

or, equivalently,

|Fi|
|yi|

≅ Ki +
1
2

1
∑

z=0

⎡

⎢

⎢

⎣

z

∑m∗

j=1[K
∗
i a

2
(z+2)i]

2a(1−z)i(a(1−z)i + |bi|)
−

Ki|bi|
azi + |bi|

⎤

⎥

⎥

⎦

± �, i = 1, 2, ..., m.

For a0i < 0 and a2i ≤ 0, we have

Ki(1 −
|bi|

a0i + |bi|
) ≤

|Fi|
|yi|

≤ Ki(1 −
|bi|

a1i + |bi|
) +

∑m∗

j=1[K
∗
i a

2
3i]

a0i(a0i + a1i)
,

or, equivalently,

|Fi|
|yi|

≅ Ki +
1
2

1
∑

z=0

⎡

⎢

⎢

⎣

z

∑m∗

j=1[K
∗
i a

2
(z+2)i]

a(1−z)i(a0i + a1i)
−

Ki|bi|
azi + |bi|

⎤

⎥

⎥

⎦

± �, i = 1, 2, ..., m.

It is easy to observe that for |yi| = |bi|, i.e. a0i = 0 or a1i = 0, and from (8) we have K̃i =
|Fi|
|bi|

. The proof of (b) is trivial
and a similar one can be found in (2). The proof is completed.

For an alternative numerical method with iterations to solve the non-linear system (10), we provide the following Theorem.

Theorem 2. An iterative method for solving the non-linear system (10) is

GkXk+1 = Bk+1. (19)

Where

Xk =
[

XP
k

XQ

]

, Bk =
[

BP

BQk

]

.

Gk = AT g(|yi,k|)A

and

g(|yi,0|) = diag

[

Ki(1 −
2|bi|

2|bi| + a0i + a1i
) + 1

2

∑m∗

j=1[K
∗
i (a2i + a3i)

2]

(2|bi| + a0i + a1i)(a0i + a1i)

]

1≤i≤m

.

Furthermore let

Gk =
[

G11
k G12

k
G21
k G22

k

]

;

Then, a solution of (10) through a first iteration of (19) is given by

XP
1 = (G(11)

0 )†[BP − G(12)
0 XQ]

and
BQ1 = G(21)

0

[

(G(11)
0 )†[BP − G(12)

0 XQ]
]

+ G(22)
0 XQ.

(20)

If G(11)
0 is invertible then (G(11)

0 )† is its inverse and when G(11)
0 is singular then (G(11)

0 )† is its pseudoinverse.

Proof. We seek a method of solution for the non-linear system (10)

[AT g(|AX |)A]X = B.
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Based on the special structure of AT g(|AX |)A we may use the Picard method and construct the matrix difference equation

[AT g(|AXk|)A]Xk+1 = Bk+1
or, equivalently, by replacing yi,k = AXk

[AT g(|yi,k|)A]Xk+1 = Bk+1,
or, equivalently, for Gk = AT g(|yi,k|)A we arrive at (19). Note that

Xk =
[

XP
k

XQ

]

, Bk =
[

BP

BQk

]

,

because XQ, BP are considered known while XP , BQ are unknown. Since a0i ≤ |yi| − |bi| ≤ a1i for i = 1, 2, ..., m and
a2i ≤ |y∗i |− |b∗i | ≤ a3i for i = 1, 2, ..., m∗, we may use |yi,0| =

a0i+a1i−2|bi|
2

and |y∗i,0| =
a2i+a3i−2|b∗i |

2
as an initial approximation.

Then
G0 = AT g(|yi,0|)A,

where

g(|yi,0|) = diag

{

|Fi,k|
|yi,k|

}

i=1,2,...,m

.

or, equivalently

g(|yi,0|) = diag

{

Ki(1 −
|bi|
|yi|

) + 1
2

∑m∗

j=1[K
∗
i (|y

∗
i | − |b∗i |)

2]

|yi|(|yi| − |bi|)

}

i=1,2,...,m

.

or, equivalently
g(|yi,0|) =

diag

{

Ki(1 −
2|bi|

a0i + a1i − 2|bi|
) + 1

2

∑m∗

j=1[K
∗
i (a2i + a3i − 2|b∗i |)

2]

(a0i + a1i − 2|bi|)(a0i + a1i)

}

i=1,2,...,m

.

Hence for

G0 =
[

G11
0 G12

0
G21

0 G22
0

]

,

a first iteration is given by
G0X1 = B1,

or, equivalently,
[

G11
0 G12

0
G21

0 G22
0

] [

XP
1

XQ

]

=
[

BP

BQ1

]

.

or, equivalently,
G(11)

0 XP
1 + G(12)

0 XQ = BP

G(21)
0

[

(G(11)
0 )†[BP − G(12)

0 XQ]
]

+ G(22)
0 XQ = BQ1

and from here we arrive easily at (20). The proof is completed.

For the non-linear system (10), let

AT g(|AX |)A = G(X) =
[

G11(X) G12(X)
G21(X) G22(X)

]

.

Then for
X =

[

XP

XQ

]

, B =
[

BP

BQ

]

,

we have

XP = (G(11)(X))†[BP − G(12)(X)XQ], BQ = G(21)(X)
[

(G(11)(X))†[BP − G(12)(X)XQ]
]

+ G(22)(X)XQ,

and consequently the iterative method (19) converges for
‖

‖

‖

∇
{

(G(11)(X))†[BP − G(12)(X)XQ]
}

‖

‖

‖

< 1, ‖

‖

‖

∇
{

G(21)(X)
[

(G(11)(X))†[BP − G(12)(X)XQ]
]

+ G(22)(X)XQ
}

‖

‖

‖

< 1.

With ‖⋅‖ we denote an induced norm. The numerical method (19) can be more efficient than the linearization in Theorem 1
if the above expressions hold, and only after many iterations. However, besides these restrictions, the method in Theorem 1 is
more useful because it has low memory requirements and avoids matrix factorizations.
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FIGURE 1 Numerical Example: On the left the graph with the initial positions and edges and on the right the graph with the final positions and edges

i Ci C∗
i bi |bi| b∗i |b∗i |

1 (0, 0,1) (-0.5,0,0.5) (1,0,1)
√

2 (-0.5,-0.5,0) 1∕
√

2
2 (1,0,0) (0,0.5,0.5) (0,-1,1)

√

2 (-0.5,0.5,0) 1∕
√

2
3 (0,-1,0) (0.5,0,0.5) (-1,0,1)

√

2 (0.5,0.5,0) 1∕
√

2
4 (-1,0,0) (0,-0.5,0.5) (0,1,1)

√

2 (0.5,-0.5,0) 1∕
√

2
5 (0,1,0) (-0.5,-0.5,0) (1,-1,0)

√

2 (0,0.5,0.5) 1∕
√

2
6 (0,0,-1) (-0.5,0.5,0) (-1,-1,0)

√

2 (0,-0.5,0.5) 1∕
√

2
7 (0.5,0.5,0) (-1,1,0)

√

2 (0.5,0,0.5) 1∕
√

2
8 (0.5,-0.5,0) (1,1,0)

√

2 (-0.5,0,0.5) 1∕
√

2
9 (-0.5,0,-0.5) (1,0,-1)

√

2 (0,-0.5,0.5) 1∕
√

2
10 (0,0.5,-0.5) (0,-1,-1)

√

2 (0,0.5,0.5) 1∕
√

2
11 (0.5,0,-0.5) (-1,0,-1)

√

2 (-0.5,0,0.5) 1∕
√

2
12 (0,-0.5,-0.5) (0,1,-1)

√

2 (0.5,0,0.5) 1∕
√

2
13 (0,-1,0) 1
14 (-1,0,0) 1
15 (0,1,0) 1
16 (1,0,0) 1
17 (-0.5,0,0.5) 1∕

√

2
18 (0,-0.5,0.5) 1∕

√

2
19 (0,0.5,0.5) 1∕

√

2
20 (-0.5,0,0.5) 1∕

√

2
21 (0.5,0,0.5) 1∕

√

2
22 (0,0.5,0.5) 1∕

√

2
23 (0,-0.5,0.5) 1∕

√

2
24 (0.5,0,0.5) 1∕

√

2
25 (-0.5,-0.5,0) 1∕

√

2
26 (-0.5,0.5,0) 1∕

√

2
27 (0.5,0.5,0) 1∕

√

2
28 (0.5,-0.5,0) 1∕

√

2
29 (-1,0,0) 1
30 (0,1,0) 1
31 (-1,0,0) 1
32 (0,1,0) 1
33 (0,0,1) 1
34 (0,0,1) 1
35 (0,0,1) 1
36 (0,0,1) 1

TABLE 1 Initial nodes, edges, and edge lengths.

Numerical example
Figure 1 illustrates a three-dimensional representation of the system modelled for demonstration purposes. In this example, we
assume a lattice of a set of n = 6 nodes which are connected through m = 12 edges. A second set of n∗ = m = 12 nodes are
placed at the centres of the 12 primary edges and these secondary nodes are connected by m∗ = 36 secondary edges. Table
1 provides coordinate values for nodes i.e., Ci, C∗

i , and vector values for edges, i.e., bi, b
∗
i . We then assume that a force F is

applied to the primary edges. The forces, Fi, the material coefficients, i.e., Ki, K
∗
i , and the bounds of (2) and (3), i.e., a0i, a1i,

a3i, a4i, are given in Table 2. We solve the non-linear system (10) numerically by implementing the results of Theorem 1 in
MATLAB, and this yields: the new coordinate values for the primary and secondary nodes, and vector values for the primary
and secondary edges, i.e., Xi, X

∗
i , and yi, y

∗
i , respectively (all of these values are provided in Table 3).

The script used to generate this numerical example is available for use under an open source licence (4).We note that, although
this script (more specifically, the method used to solve (12)) performs well for the numerical example in this paper, it is not
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i a0,i a1,i a2,i a3,i Ki × 104 K∗
i × 104 Fi

1 0.2121 7.0711 0.1061 3.5355
√

2 1∕
√

2 (0,0,0.1586)
2 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2 (0.1760,0,0)
3 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2 (0,-0.1954,0)
4 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2 (-0.2169,0,0)
5 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2 (0,0.2407,0)
6 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
7 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
8 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
9 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
10 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
11 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
12 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
13 0.1500 5 1
14 0.1500 5 1
15 0.1500 5 1
16 0.1500 5 1
17 0.1061 3.5355 1∕

√

2
18 0.1061 3.5355 1∕

√

2
19 0.1061 3.5355 1∕

√

2
20 0.1061 3.5355 1∕

√

2
21 0.1061 3.5355 1∕

√

2
22 0.1061 3.5355 1∕

√

2
23 0.1061 3.5355 1∕

√

2
24 0.1061 3.5355 1∕

√

2
25 0.1061 3.5355 1∕

√

2
26 0.1061 3.5355 1∕

√

2
27 0.1061 3.5355 1∕

√

2
28 0.1061 3.5355 1∕

√

2
29 0.15 5 1
30 0.15 5 1
31 0.15 5 1
32 0.15 5 1
33 0.15 5 1
34 0.15 5 1
35 0.15 5 1
36 0.15 5 1

TABLE 2 Given forces on nodes and material properties.

i Xi X∗
i yi |yi| y∗i |y∗i |

1 (-0.3652,0.4054,1.835) (-3.5361,0.3588,1.1262) (6.3418,0.0931,1.4175) 6.4990 (-3.2129,-1.0293,0) 3.3737
2 (5.0234,0.3122,0.4175) (-0.3232,1.3881,1.1262) (-0.0839,-1.9656,1.4175) 2.4248 (-2.6523,1.0293,0) 2.8451
3 (-0.2813,-1.5274,0.4175) (2.3291,0.3588,1.1262) (-5.3886,0.0931,1.4175) 5.5727 (2.6523,0.9198,0) 2.8073
4 (-6.707,0.3122,0.4175) (-0.3232,-0.5610,1.1262) (-0.0839,1.9328,1.4175) 2.3983 (3.2129,-0.9198,0) 3.3419
5 (-0.2813,2.3709,0.4175) (-3.4941,-0.6076,0.4175) (6.4257,-1.8396,0) 6.6839 (-0.042,0.9664,0.7087) 1.1992
6 (0,0,-1) (-3.4941,1.3416,0.4175) (-6.4257,-2.0587,0) 6.7475 (-0.0420,-0.9828,0.7087) 1.2124
7 (2.3711,1.3416,0.4175) (-5.3047,2.0587,-0.0000) 5.6901 (3.1709,0.0466,0.7087) 3.2495
8 (2.3711,-0.6076,0.4175) (5.3047,1.8396,0) 5.6146 (-2.6943,0.0466,0.7087) 2.7863
9 (-3.3535,0.1561,-0.2913) (6.7070,-0.3122,-1.4175) 6.8623 (-0.042,-0.9828,0.7087) 1.2124
10 (-0.1406,1.1855,-0.2913) (0.2813,-2.3709,-1.4175) 2.7766 (-0.042,0.9664,0.7087) 1.1992
11 (2.5117,0.1561,-0.2913) (-5.0234,-0.3122,-1.4175) 5.2289 (-2.6943,0.0466,0.7087) 2.7863
12 (-0.1406,-0.7637,-0.2913) (0.2813,1.5274,-1.4175) 2.1027 (3.1709,0.0466,0.7087) 3.2495
13 (0,-1.9492,0) 1.9492
14 (-5.8652,0,0) 5.8652
15 (0,1.9492,0) 1.9492
16 (5.8652,0,0) 5.8652
17 (-3.3535,0.1561,0.7087) 3.4311
18 (-0.1406,-0.7637,0.7087) 1.0513
19 (-0.1406,1.1855,0.7087) 1.3883
20 (-3.3535,0.1561,0.7087) 3.4311
21 (2.5117,0.1561,0.7087) 2.6144
22 (-0.1406,1.1855,0.7087) 1.3883
23 (-0.1406,-0.7637,0.7087) 1.0513
24 (2.5117,0.1561,0.7087) 2.6144
25 (-3.2129,-1.0293,0) 3.3737
26 (-2.6523,1.0293,0) 2.8451
27 (2.6523,0.9198,0) 2.8073
28 (3.2129,-0.9198,0) 3.3419
29 (-5.8652,0,0) 5.8652
30 (0,1.9492,0) 1.9492
31 (-5.8652,0,0) 5.8652
32 (0,1.9492,0) 1.9492
33 (-0.1826,0.2027,1.4175) 1.4435
34 (-0.1826,0.2027,1.4175) 1.4435
35 (-0.1826,0.2027,1.4175) 1.4435
36 (-0.1826,0.2027,1.4175) 1.4435

TABLE 3 Final nodes, edges, and edge lengths.

optimal for larger networks: as the size of system increases, Ã becomes more sparse, therefore Ã11, Ã12, BP , andXQ should be
stored as sparse matrices to speed up MATLAB’s ‘\’ function.

Conclusions
In this article we proposed a mathematical model of elasticity with exact kinematics, where the intrinsically discrete structure of
materials is represented by two graphs and analysed using calculus on discrete manifolds. Bymaking the kinematics of one of the
graphs induced by the kinematics of the other, we derived the governing equations of elasticity where the deformations of both
graphs contribute energy to the system, but the reaction of the system is only via forces in the edges of latter graph. This provides
a single non-linear system of governing equations, for which we offered linearisation, computational implementation, and a
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simple demonstration of the model at work. The numerical example shown is for a particular simple arrangement of neighbours
of a single vertex, but the model is applicable to any spatial arrangement of vertices and their connectivity, e.g. an arrangement
arising from a Voronoi tessellation of a domain with randomly distributed nodes as described in Section 2. The model requires
extensive testing with larger lattices to compare with experimentally measured elastic behaviour of various materials, which
is a subject of ongoing work. We anticipate that the model can be used for atomic scale simulations as an alternative to the
currently used in molecular dynamics interactions based on empirical pair and cohesive potentials. Our expectation is based
on the following observation. The original atomic scale models used only pair potentials, e.g. Lenard-Jones or Morse, suitable
for neutral atoms and molecules, and were later complemented by cohesive terms, e.g. in embedded atom and Finnis-Sinclair
models, for describing the behaviour of crystalline lattices [new citation]. The latter were still further modified to include angular
dependences of the cohesive potentials in order to capture the complex interaction of a single metal atomwith its neighbourhood.
The calibration of such potential functions is increasingly difficult and involves a great degree of empiricism. Our proposition
is that the method described here will allow for capturing the complex linear and angular interactions by the combination of
energies stored in the primary and complementary lattices. Testing this proposition is one of the avenues for future work on
the model developed here. In addition, we plan to compare the two-graph approach with an approach based on a 3-complex
description of solids, which is still under development. It will be important to demonstrate to what extent the two-graph approach
is an approximation to the ”exact” 3-complex solution, in order to justify the applicability of the former as computationally more
efficient.
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