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Geometric relation between two different
types of initial conditions of singular systems
of fractional nabla difference equations.

I. K. Dassios∗

In this article we study the geometric relation between two different types of initial conditions (IC) of a class of singular

linear systems of fractional nabla difference equations whose coefficients are constant matrices. For this kind of systems, we

analyze how inconsistent and consistent IC are related to the column vector space of the finite and the infinite eigenvalues

of the pencil of the system and analyze the geometric connection between these two different types of IC. Numerical

examples are given to justify the results. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. Introduction

Difference equations of fractional order have recently proven to be valuable tools in the modeling of many phenomena in various

fields of science and engineering. Indeed, we can find numerous applications in viscoelasticity, electrochemistry, control, porous

media, electromagnetism and so forth, see [3], [12], [15], [21], [27], [28]. There has been a significant development in the

study of fractional differential/difference equations and inclusions in recent years; For some recent contributions on fractional

differential/difference equations, see [5], [6], [7], [8], [13], [14], [16], [18], [19], [20], [22], [23], [24], [25], [26], [27] and the

references therein.

If we define Nα by Nα = {α,α+ 1, α+ 2, ...}, α integer, and n such that 0 < n < 1 or 1 < n < 2, then the nabla fractional

operator in the case of Riemann-Liouville fractional difference of n-th order for any Yk : Na → Rm is defined by, see [2],

∇−nα Yk =
1

Γ(n)

k∑
j=α

(k − j + 1)n−1Yj .

We denote Rm×1 with Rm. Where the raising power function is defined by

k ᾱ =
Γ(k + α)

Γ(k)
.

We consider the singular fractional discrete time system of the form

F∇n0Yk = GYk , k = 1, 2, ..., (1)

with known IC. Where F,G ∈ Rr×m and Yk ∈ Rm. The matrices F , G can be non-square (r 6= m) or square (r = m) with F

singular (detF=0).

In this article we will study the geometric relation between two different types of IC of system (1), the consistent and

the inconsistent. The paper is organized as follows: section 2 provides the necessary preliminaries used throughout the paper.

section 3 contains the main results. We analyze how inconsistent and consistent IC are related to the column vector space of

the finite and the infinite eigenvalues of the pencil of the system and provide a geometric connection of these two different

types of IC. section 4 contains examples to justify the results of the previous section and we close the paper with section 5 and

the conclusions.
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2. Preliminaries

Throughout the paper we will use in several parts matrix pencil theory to establish our results. A matrix pencil is a family of

matrices sF − G, parametrized by a complex number s, see [10], [11].

Definition 2.1. Given F,G ∈ Rr×m and an arbitrary s ∈ C, the matrix pencil sF − G is called:

1. Regular when r = m and det(sF − G) 6= 0;

2. Singular when r 6= m or r = m and det(sF − G) ≡ 0.

In this article we consider the system (1) with a regular pencil, where the class of sF − G is characterized by a uniquely defined

element, known as the Weierstrass canonical form, see [10], [11], specified by the complete set of invariants of sF − G. This

is the set of elementary divisors of type (s − aj)pj , called finite elementary divisors, where aj is a finite eigenvalue of algebraic

multiplicity pj (1 ≤ j ≤ ν), and the set of elementary divisors of type ŝq = 1
sq

, called infinite elementary divisors, where q is the

algebraic multiplicity of the infinite eigenvalue.
∑ν

j=1 pj = p and p + q = m.

From the regularity of sF − G, there exist non-singular matrices P , Q ∈ Rm×m such that

PFQ =

[
Ip 0p,q

0q,p Hq

]
,

PGQ =

[
Jp 0p,q

0q,p Iq

]
.

(2)

Jp, Hq are appropriate matrices with Hq a nilpotent matrix with index q∗, Jp a Jordan matrix and p + q = m. With 0q,p we

denote the zero matrix of q × p. The matrix Q can be written as

Q =
[
Qp Qq

]
. (3)

Qp ∈ Rm×p is a matrix with columns the p linear independent (generalized) eigenvectors of the p finite eigenvalues of sF − G;

Qq ∈ Rm×q is a matrix with columns the q linear independent (generalized) eigenvectors of the q infinite eigenvalues of sF − G.

Moreover note that while Q is a matrix with columns the m linear independent (generalized) eigenvectors of the m (finite and

infinite) eigenvalues of sF − G, it is easy to observe that

colspanQ = Rm. (4)

Furthermore from (3), (4)

colspanQp ⊕ colspanQq = Rm, (5)

where

dim(colspanQp) = p, dim(colspanQq) = q

and ⊕ is the direct sum of colspanQp and colspanQq.

Definition 2.2. (See [1], [4]) Let Jp be a Jordan matrix as defined in (2). Then with Fn,n(Jp(k + n)n̄) we will denote

the discrete Mittag-Leffler function with two parameters defined by

Fn,n(Jp(k + n)n̄) =

∞∑
i=0

J ip
(k + n)in

Γ((i + 1)n)
. (6)

The following results have been proved.

Theorem 2.1. (See [5], [6], [7], [8]) We consider the system (1) with a regular pencil. Then, its solution exists if and

only if all finite eigenvalues of the pencil are distinct and lie within the open disk S = {s ∈ R : |s| < 1}; Then, the solution of

system (1) for k ≥ 0, is given by the formula

Yk = Qp(k + 1)n−1Fn,n(Jp(k + n)n̄)(Ip − Jp)C.

Where C ∈ Rp is a constant vector. The matrices Qp, Jp are given by (2), (3). The discrete Mittag-Leffler function with two

parameters is defined by (6).

Definition 2.3. Consider the system (1) with known IC. Then the IC are called consistent if there exists a solution for

the system (1) which satisfies the given conditions.
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Proposition 2.1. (See [5], [6], [7], [8]) The IC of system (1) are consistent if and only if

Y0 ∈ colspanQp.

Proposition 2.2. (See [5], [6], [7], [8]) Consider the system (1) with given IC. Then if there exists a solution for the initial value

problem, it is unique if and only if the IC are consistent. Then, the unique solution is given by the formula

Yk = Qp(k + 1)n−1Fn,n(Jp(k + n)n̄)(Ip − Jp)Zp0 . (7)

Where Zp0 is the unique solution of the linear system Y0 = QpZ
p
0 . For inconsistent IC (Y0 /∈ colspanQp) it is has been proved

that the system (1) has infinite solutions.

From the above already established results, we can conclude that if there exists solutions for system (1), then this

solution is unique and given by (7) if and only if the IC are consistent. Inconsistent IC lead to infinite solutions. This makes the

relation of this two different type of IC important. This relation has also been studied for singular discrete time systems, see [9].

Another known result that we will use in the next section is the orthogonal projection Theorem.

Theorem 2.2. (see [17]) Let W be an inner product space and let V be a finite dimensional subspace of W . Then

∀w ∈ W there exists unique vectors v1 ∈ V and v2 ∈ V ⊥, where V ⊥ is the orthogonal complement of V , such that w = v1 + v2

and v1 is the orthogonal projection of w on V , i.e.

v1 = projV w.

3. Geometric relation between a consistent and an inconsistent initial condition

In this section we will study the relation between a consistent and an inconsistent IC of the singular fractional system (1). It has

been proved (see the previous section for references) that if for the singular system (1) with known IC there exists a solution,

then it is unique and given by (7) if and only if the IC lie inside the domain colspanQp (consistent IC). However it is possible

for a system to have IC that pro exist and are not in the above mentioned domain; i.e. to be inconsistent. Then the system

at k = 0, almost instantaneously is being transferred into another new situation at time k = 1, described by system (1). This

phenomenon is called impulsive behavior of the system at k = 0. In order to study the relation of these two different type of IC

we have to study further the case of the inconsistent IC of the system.

Lemma 3.1. Let Jp be a Jordan matrix as defined in (2) with ‖Jp‖ < 1. Then for k = 0, the discrete Mittag-Leffler

function with two parameters Fn,n(Jp(k + n)n̄), defined in (6), takes the form

Fn,n(Jp(n)n̄) =
1

Γ(n)
(Ip − Jp)−1.

Proof. By replacing k = 0 into (6) we get

Fn,n(Jp(n)n̄) =

∞∑
i=0

J ip
(n)in

Γ((i + 1)n)
,

or, equivalently,

Fn,n(Jp(n)n̄) =

∞∑
i=0

J ip
Γ(n + in)

Γ((i + 1)n)Γ(n)
,

or, equivalently,

Fn,n(Jp(n)n̄) =
1

Γ(n)

∞∑
i=0

J ip

and since it is assumed ‖Jp‖ < 1,

Fn,n(Jp(n)n̄) =
1

Γ(n)
(Ip − Jp)−1.

The proof is completed.

Proposition 3.1. Assume system (1) and let Y0 be inconsistent IC. Then if there exist solutions for (1)

Y0 ∈ NrcolspanQ−1
p . (8)
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Where Qp is defined by (3), Q−1
p is the left inverse of the matrix Qp, i.e. Q−1

p Qp=Ip and Nr is the right kernel of the set

colspanQ−1
p .

Proof. The IC are assumed inconsistent and thus they don’t satisfy (1). Hence

Y0 /∈ colspanQp.

From (4), (5)

Y0 ∈ Rm − colspanQp,

or, equivalently,

Y0 ∈ colspanQq. (9)

By using the transform

Yk = QZk , (10)

if

Zk =

[
Zpk
Zqk

]
,

where Zpk ∈ R
p, Zqk ∈ R

q, by using (3) we get

Y0 = QpZ
p
0 +QqZ

q
0 .

But from (9) we have Zp0 =0 and

Y0 = QqZ
q
0 . (11)

By replacing (10) into (1) we get

F∇n0QZk = GQZk ,

or, equivalently,

FQ∇n0Zk = GQZk .

Whereby multiplying by P and using (2) we obtain[
Ip 0p,q

0q,p Hq

] [
∇n0Zpk
∇n0Zqk

]
=

[
Jp 0p,q

0q,p Iq

] [
Zpk
Zqk

]
.

From above expressions, we arrive easily at the subsystems

∇n0Zpk = JpZ
p
k (12)

and

Hq∇n0Zqk = Zqk . (13)

The subsystem (12) takes values for k ≥ 1 and has the solution

Zpk = (k + 1)n−1Fn,n(Jp(k + n)n̄)(Ip − Jp)Zp1 , ∀k ≥ 1.

For a proof of this solution see [2]. Since Zp0 =0, by using the Heaviside function Hk ,

Hk =

{
1 , k ≥ 0

0 , k < 0

}
,

we give the solution the following form

Zpk = Hk−1(k)n−1Fn,n(Jp(k − 1 + n)n̄)(Ip − Jp)Zp1 , ∀k ≥ 0, (14)

i.e. a solution ∀k ≥ 0. The subsystem (13) takes values for k ≥ 1 and its solution is given by

Zqk = 0q,1, ∀k ≥ 1

For the proof see [5], [6], [7], [8]. But from (11)

Zq0 6= 0q,1

and thus by using the Dirac function δk ,

δk =

{
1 , k = 0

0 , k 6= 0

}
,

4 Copyright c© 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 00 1–10

Prepared using mmaauth.cls



I. K. Dassios

Mathematical
Methods in the
Applied Sciences

we can have the solution of (13) in the following form

Zqk = δkZ
q
0 , ∀k ≥ 0. (15)

Therefore the solution of system (1) ∀k ≥ 0 can be written as

Yk = QZk =
[
Qp Qq

] [ Zpk
Zqk

]
,

or, equivalently,

Yk =
[
Qp Qq

] [ Hk−1(k)n−1Fn,n(Jp(k − 1 + n)n̄)(Ip − Jp)Zp1
δkZ

q
0

]
,

or, equivalently,

Yk =
[
Qp Qq

] [ Hk−1(k)n−1Fn,n(Jp(k − 1 + n)n̄)(Ip − Jp) 0p,q
0q,p δk Iq

] [
Zp1
Zq0

]
,

or, equivalently,

Yk =
[
Qp Qq

] [ Hk−1(k)n−1Fn,n(Jp(k − 1 + n)n̄)(Ip − Jp) 0p,q
0q,p δk Iq

]
(

[
Zp1
0q,1

]
+

[
0p,1
Zq0

]
).

Let Y1 be a consistent value for the system (1). Then from Proposition 2.1

Y1 ∈ colspanQp.

By using (11) and the above expression combined with (3), (10), i.e. Y1 = QpZ
p
1 , we have

Yk =
[
Qp Qq

] [ Hk−1(k)n−1Fn,n(Jp(k − 1 + n)n̄)(Ip − Jp) 0p,q
0q,p δk Iq

]
Q−1(Y1 + Y0).

Since it is assumed that there exists solutions for system (1), from Theorem 2.1, ‖Jp‖ < 1. Then for k = 1 and Lemma 3.1 we

obtain

Y1 =
[
Qp Qq

] [ (1)n−1 1
Γ(n)

(Ip − Jp)−1(Ip − Jp) 0p,q

0q,p δ1Iq

]
Q−1(Y1 + Y0),

or, equivalently,

Y1 =
[
Qp Qq

] [ Γ(1+n−1)
Γ(1)

1
Γ(n)

(Ip − Jp)−1(Ip − Jp) 0p,q

0q,p 0q,q

]
Q−1(Y1 + Y0),

or, equivalently,

Y1 =
[
Qp Qq

] [ Ip 0p,q
0q,p 0q,q

]
Q−1(Y1 + Y0).

Let

Q−1 =

[
Q−1
p

Q−1
q

]
,

where Q−1
p ∈ Rp×m, Q−1

q ∈ Rq×m. From Q−1Q = Im we have that the matrix Q−1
p is the left inverse of the matrix Qp, i.e.

Q−1
p Qp = Ip. Then

Y1 =
[
Qp 0m,q

] [ Q−1
p

Q−1
q

]
(Y1 + Y0),

or, equivalently,

Y1 = QpQ
−1
p (Y1 + Y0)

and by multiplying from the left by Q−1
p we arrive at

Q−1
p Y0 = 0p,1,

or, equivalently,

Y0 ∈ NrcolspanQ−1
p .

The proof is completed.

Proposition 3.2. Assume system (1) and let Y0 be consistent IC. Then if there exist solutions for (1)

Y0 ∈ NrcolspanQ−1
q . (16)
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Qq is defined by (3), Q−1
q is the left inverse of the matrix Qq, i.e. Q−1

q Qq=Iq and Nr is the right kernel of the set colspanQ−1
q .

Proof. If Zk =

[
Zpk
Zqk

]
, where Zpk ∈ R

p, Zqk ∈ R
q, by using the transform (10) and we get

Y0 = QpZ
p
0 +QqZ

q
0 .

But from Proposition 2.1 we have Zq0 = 0q,1 and

Y0 = QpZ
p
0 . (17)

Let Y−1 be an inconsistent condition for (1). Then from Proposition 3.1 and (8)

Y−1 ∈ colspanQq

and Zp−1 = 0p,1. Thus

Y−1 = QqZ
q
−1. (18)

By replacing (10) into (1) we get

F∇n0QZk = GQZk ,

or, equivalently,

FQ∇n0Zk = GQZk .

Whereby multiplying by P and using (2) we obtain[
Ip 0p,q

0q,p Hq

] [
∇n0Zpk
∇n0Zqk

]
=

[
Jp 0p,q

0q,p Iq

] [
Zpk
Zqk

]
.

From the above expressions, we arrive easily at the subsystems (12) and (13). The subsystem (12) takes values for k ≥ 0 and

has the solution

Zpk = (k + 1)n−1Fn,n(Jp(k + n)n̄)(Ip − Jp)Zp0 , k ≥ 0.

Since Zp−1=0, by using the Heaviside function Hk we can give to the solution the following form

Zpk = HkZ
p
k = (k + 1)n−1Fn,n(Jp(k + n)n̄)(Ip − Jp)Zp0 , ∀k ≥ −1 (19)

and thus have a solution for every k ≥ −1. The subsystem (13) takes values for k ≥ 0 and has the solution

Zqk = 0q,1, k ≥ 0.

But as we stated earlier, Zq−1 6= 0q,1 and thus by using the Dirac function δk we can give to the solution the following form

Zqk = δk−1Z
q
−1, ∀k ≥ −1 (20)

and thus have a solution for every k ≥ −1. Then by using (10), (19) and (20), the solution of system (1) can be written as

Yk = QZk =
[
Qp Qq

] [ Zpk
Zqk

]
,

or, equivalently,

Yk =
[
Qp Qq

] [ (k + 1)n−1Fn,n(Jp(k + n)n̄)(Ip − Jp)Zp0
δk−1Z

q
−1

]
,

or, equivalently,

Yk =
[
Qp Qq

] [ (k + 1)n−1Fn,n(Jp(k + n)n̄)(Ip − Jp)Zp0 0p,q
0q,p δk−1Iq

] [
Zp0
Zq−1

]
,

or, equivalently,

Yk =
[
Qp Qq

] [ (k + 1)n−1Fn,n(Jp(k + n)n̄)(Ip − Jp)Zp0 0p,q
0q,p δk−1Iq

]
(

[
Zp0
0q,1

]
+

[
0p,1
Zq−1

]
)

and by using (17), (18)

Yk =
[
Qp Qq

] [ (k + 1)n−1Fn,n(Jp(k + n)n̄)(Ip − Jp)Zp0 0p,q
0q,p δk−1Iq

]
Q−1(Y0 + Y−1).
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Then for k = −1 we obtain

Y−1 =
[
Qp Qq

] [ 0p,p 0p,q
0q,p Iq

]
Q−1(Y0 + Y−1)

and if we assume

Q−1 =

[
Q−1
p

Q−1
q

]
,

where Q−1
p ∈ Rp×m, Q−1

q ∈ Rq×m, then from Q−1Q = Im we have that the matrix Q−1
q is the left inverse of the matrix Qq, i.e.

Q−1
q Qq = Iq. Hence

Y−1 =
[

0m,p Qq

] [ Q−1
p

Q−1
q

]
(Y0 + Y−1),

or, equivalently,

Y−1 = QqQ
−1
q (Y0 + Y−1).

By multiplying from the left with Q−1
q we get

Q−1
q Y0 = 0q,1,

or, equivalently,

Y0 ∈ NrcolspanQ−1
q .

The proof is completed.

Theorem 3.1. Let Y0 be a consistent condition of system (1) and Y ∗0 an inconsistent. If there exist solutions for (1), Q

is the a matrix as defined in (2), (3) and orthogonal, then

Y0 = projcolspanQp (Y0 + Y ∗0 ), (21)

i.e. Y0 is the orthogonal projection of Y0 + Y ∗0 on the set colspanQp and

Y ∗0 = projcolspanQq (Y0 + Y ∗0 ), (22)

i.e. Y ∗0 is the orthogonal projection of Y0 + Y ∗0 on the set colspanQq.

Proof. As we already stated in (5)

colspanQp ⊕ colspanQq = Rm.

While Y0 is a consistent condition, from Proposition 2.1 we have that

Y0 ∈ colspanQp

and while Y ∗0 is an inconsistent condition, from (9) we have that

Y ∗0 ∈ colspanQq.

Furthermore

Y0 + Y ∗0 ∈ Rm.

Let Q be an orthogonal matrix, then QTQ = Im, where QT is the transposed matrix of Q. If we assume

Q−1 =

[
Q−1
p

Q−1
q

]
,

where Q−1
p ∈ Rp×m, Q−1

q ∈ Rq×m, then from Q−1Q = Im we have that Q−1
p = QT

p , Q−1
q = QT

q and from Proposition 3.2

Y0 ∈ NrcolspanQ−1
q ,

i.e.

Y0 ∈ NrcolspanQT
q ,

or, equivalently,

colspanQT
q = (colspanQp)⊥.

But colspanQT
q =rowspanQq and thus

rowspanQq = (colspanQp)⊥. (23)
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From (9)

Y ∗0 ∈ colspanQq,

or, equivalently,

(Y ∗0 )T ∈ rowspanQq.

Then from (5), (9), (23), Proposition 2.1 and Theorem 2.2

Y0 = projcolspanQp (Y0 + Y ∗0 )

and thus we proved (21). From Proposition 3.1 we have

Y ∗0 ∈ NrcolspanQ−1
p ,

i.e.

Y ∗0 ∈ NrcolspanQT
p ,

or, equivalently,

colspanQT
p = (colspanQq)⊥.

But colspanQT
p =rowspanQp and thus

rowspanQp = (colspanQq)⊥. (24)

From Proposition 2.1

Y0 ∈ colspanQp,

or, equivalently,

Y T0 ∈ rowspanQp.

Then from (5), (9), (24), Proposition 2.1 and Theorem 2.2

Y ∗0 = projcolspanQq (Y0 + Y ∗0 )

and thus we proved (22). The proof is completed.

4. Numerical Example

We assume the system (1) with

F =
2

3

 1
2

1 1

−2 −1 2

0 0 0

 , G =

 0 0 0

− 4
3
− 2

3
4
3

2 −2 1

 .
Then det(sF − G) = s(s − 1

2
) and the pencil is regular. Hence, from Theorem 2.1 there exists a solution for system (1). By

calculating the eigenvectors of the finite and infinite eigenvalues we get the matrices

Qp =
1

3

 1 −2

2 −1

2 2

 , Qq =
1

3

 2

−2

1

 ,
respectively.

Example 4.1.

We will begin with a simple example to justify the results of Theorem 3.1. We assume the IC

Y0 =

 −1

1

4

 , Y ∗0 =

 2

−2

1

 .
It is easy to observe that Y0 ∈ colspanQp (consistent IC), Y ∗0 ∈ colspanQq (inconsistent IC) and (Y0 + Y ∗0 )T =

[
1 −1 5

]
.

Then ∀α ∈ R such that u1 = αY0 ∈ colspanQp, we have

projcolspanQp (Y0 + Y ∗0 ) =
(Y0 + Y ∗0 )Tu1

‖u1‖2
2

u1 =

[
1 −1 5

]  −1

1

4


18

 −1

1

4

 =

 −1

1

4

 = Y0,

8 Copyright c© 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 00 1–10

Prepared using mmaauth.cls



I. K. Dassios

Mathematical
Methods in the
Applied Sciences

which justifies (21). In addition, ∀u2 ∈ colspanQq we have

projcolspanQq (Y0 + Y ∗0 ) =
(Y0 + Y ∗0 )Tu2

‖u2‖2
2

u2 =

[
1 −1 5

]  2

−2

1


9

 2

−2

1

 =

 2

−2

1

 = Y ∗0 ,

which justifies (22).

Example 4.2.

We assume now the IC

Y ∗0 =

 4

−4

2

 .
It is easy to observe that Y ∗0 ∈ colspanQq, i.e. the IC are inconsistent. We will use Theorem 3.1 to seek a consistent IC Y0 such

that system (1) will have a unique solution. Let

Y0 =

 x

y

z

 , x, y , z ∈ R.

From (22) and ∀u ∈ colspanQq we have

Y ∗0 = projcolspanQq (Y0 + Y ∗0 ) =
(Y0 + Y ∗0 )Tu

‖u‖2
2

u,

or, equivalently,  4

−4

2

 =
1

9
(2x − 2y + z + 18)

 2

−2

1

 .
or, equivalently,

2x − 2y + z = 0.

Hence

Y0 ∈<

 1

0

−2

 ,
 0

1

2

 >= colspanQp.

5. Conclusions

In this article we studied the relation between two different types of IC of a class of singular nabla fractional discrete time systems.

We proved that these vectors are related to the column vector spaces of the finite and the infinite eigenvalues respectively and

also that a consistent initial value (and an inconsistent initial value) can be viewed as the orthogonal projection of the sum of a

consistent with an inconsistent initial value over a certain subspace.

Acknowledgments

I. Dassios is supported by Science Foundation Ireland (award 09/SRC/E1780). The author would like to thank very much the

anonymous referees for their comments that clearly improved the article.

References

1. T. Abdeljawad, On Riemann and Caputo fractional differences, Computers & Mathematics with Applications, 62 (2011) 1602-1611.

2. F. M. Atici, P.W. Eloe, Linear systems of fractional nabla difference equations, The Rocky Mountain Journal of Mathematics, Volume

41, Number 2, pp. 353–370, (2011).

3. D. Baleanu, K. Diethelm, E. Scalas, Fractional Calculus: Models and Numerical Methods, World Scientific (2012).

4. F. Chen, X. Luo, Y. Zhou, Existence results for nonlinear fractional difference equation, Adv Diff Equ, 713201 (2011).

Math. Meth. Appl. Sci. 2015, 00 1–10 Copyright c© 2015 John Wiley & Sons, Ltd. 9
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences I. K. Dassios

5. I. K. Dassios, D. Baleanu, Duality of singular linear systems of fractional nabla difference equations. Applied Mathematical Modeling,

Elsevier, Volume 39, Issue 14, pp. 4180-4195 (2015).

6. I. K. Dassios, D. Baleanu, On a singular system of fractional nabla difference equations with boundary conditions, Boundary Value

Problems, 2013:148, Springer (2013).

7. I. K. Dassios, Optimal solutions for non-consistent singular linear systems of fractional nabla difference equations, Circuits systems and

signal processing, Springer, Volume 34, Number 6, 1769–1797 (2015).

8. I. K. Dassios, D. Baleanu, G. Kalogeropoulos, On non-homogeneous singular systems of fractional nabla difference equations, Applied

Mathematics and Computation, Volume 227, 112–131 (2014).

9. I. K. Dassios, G. Kalogeropoulos, On the relation between consistent and non consistent initial conditions of singular discrete time

systems, Dynamics of continuous, discrete and impulsive systems Series A: Mathematical Analysis, Volume 20, Number 4a, pp. 447–458

(2013).

10. R. F. Gantmacher, The theory of matrices I, II, Chelsea, New York, (1959).

11. G. I. Kalogeropoulos, Matrix pencils and linear systems, Ph.D Thesis, City University, London, (1985).

12. J. Klamka, A., Czornik, M. Niezabitowski, A. Babiarz, Controllability and mini-mum energy control of linear fractional discrete-time

infinite-dimensional systems. 11th IEEE International Conference on Control & Automation, Taichung, Taiwan, pp. 1210–1214 (2014).

13. C. Lizama, lp-maximal regularity for fractional difference equations on UMD spaces. Math. Nachr. (2015) doi:

10.1002/mana.201400326

14. C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability. Proc. Amer. Math. Soc. Forthcoming (2015).

15. J. A. Machado, M. E. Mata, and A. M. Lopes. Fractional State Space Analysis of Economic Systems. Entropy 17, Number 8 (2015):

5402–5421.

16. J. A. Tenreiro Machado, A. M. S. F. Galhano, J. J. Trujillo. On development of fractional calculus during the last fifty years.

Scientometrics 98, Number 1 (2014): 577-582.

17. C. D. Meyer, Jr. Matrix Analysis and Applied Linear Algebra, SIAM publications, Package edition (2001).

18. W. Lv, Existence and Uniqueness of Solutions for a Discrete Fractional Mixed Type Sum-Difference Equation Boundary Value Problem.

Discrete Dynamics in Nature and Society 501 (2015): 376261.

19. W. Lv, Existence of solutions for discrete fractional boundary value problems with a p-laplacian operator, Advances in Difference

Equations, Volume 2012, article 163, 2012.

20. W. Lv and J. Feng, Nonlinear discrete fractional mixed type sum-difference equation boundary value problems in Banach spaces,

Advances in Difference Equations, Volume 2014, article 184, 12 pages, 2014.

21. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering,p. xxiv+340. Academic Press, San Diego, Calif,

USA (1999).

22. Rahmat, Mohamad Rafi Segi, and Mohd Salmi Md Noorani. Caputo type fractional difference operator and its application on discrete

time scales. Advances in Difference Equations 2015.1 (2015): 1-15.

23. Rahmat, Mohamad Rafi Segi. The (q, h)-Laplace transform on discrete time scales. Computers & Mathematics with Applications 62.1

(2011): 272–281.

24. G.C. Wu, D. Baleanu, Z.G. Deng, S.D. Zeng, Lattice fractional diffusion equation in terms of a Riesz–Caputo difference, Physica A,

438 (2015): 335–339.

25. G.C. Wu, D. Baleanu, S.D. Zeng, Z.G. Deng, Discrete fractional diffusion equation, Nonlinear Dynamics, 80 (2015) 281–286.

26. Yin, Chun, et al. Robust stability analysis of fractional-order uncertain singular nonlinear system with external disturbance. Applied

Mathematics and Computation Volume 269 pp. 351–362 (2015)

27. C. Yin, S. Zhong, W. Chen Design of sliding mode controller for a class of fractional-order chaotic systems Commun. Nonlinear Sci.

Numer. Simul., 17 (2012), pp. 356–366

28. C. Yin, Y.Q. Chen, S.M. Zhong Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems

Automatica, 50 (2014), pp. 3173–3181

10 Copyright c© 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 00 1–10

Prepared using mmaauth.cls


	Introduction
	Preliminaries
	Geometric relation between a consistent and an inconsistent initial condition
	Numerical Example
	Conclusions

