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Abstract

This note verifies a conjecture of Armitage and Goldstein, that
annular domains may be characterized as quadrature domains for har-
monic functions with respect to a uniformly distributed measure on a
sphere.

1 Introduction

Let B be an open ball of centre 0 in RN (N > 2) and m denote volume
measure on RY. Then

1
m(B)/Bu dm = u(0) (1)

for any integrable harmonic function v on B. Further, the following theo-
rem of Kuran [8] shows that this property actually characterizes balls. (Its
original formulation required {2 to be connected, but this hypothesis is re-
dundant.) It belongs to a long tradition of results that are surveyed in
Netuka amd Vesely [10].

Theorem A Let § be an open set such that m(Q2) < oo and 0 € Q. If
b
m(Q)

then € is a ball of centre 0.

/ u dm = u(0) for any integrable harmonic function u on €,
Q

If 7 > 0, then let S(r) = OB(r), where B(r) = {x € RY : ||z|| < r}, and
M (u,r) denote the mean value of an integrable function w over S(r) with
respect to surface area measure. For annular domains of the form

A(Tl,TQ):{.’L’GRN:T‘l < ||1‘|| <T2} (OSTl <T2),
it is known (see, for example, Corollary 2.1 in [3]) that

1
_ uwdm = M(u,r
m(AGrs, 7)) /Aw,m) (u.7)
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for any integrable harmonic function u on A(rq,r2), where

2 rl — N 1/(N=2)
B T N >3
<N r%—r% (N =>3)
r= (2)
r2 logro — r2 logr; 1
o (R -5) -

(The necessity of (2) is clear from consideration of the function z — ||z||*~
when N > 3, or « — log||z| when N = 2. Further, the strict convexity of
t— tN/2if N > 3, or of t — tlogt if N =2, ensures that r; < r < r.)

Sakai [11] used an argument based on holomorphic functions to show
that the above quadrature identity characterizes annuli among multiply con-
nected planar domains that contain S(r). In higher dimensions Armitage
and Goldstein [3] subsequently showed that a similar quadrature identity
for an open set  implies that Q is of the form A(r1,72), where (2) holds.
They asked, in Problem 3.35 of [5] (see also [9]), whether annular domains
themselves could be characterized in this way, having pointed out errors in
an earlier paper of Avci [4] on this problem (see pp.142,145 of [3]). We
answer their question affirmatively below.

Theorem 1 Let Q be an open set such that m(Q) < oo and S(r) C Q. If

1/ wdm = M (u,r) for any integrable harmonic function u on €,
m(Q) Jo

(3)
then either
(i) ¥ is of the form A(ri,r2), where 0 < ry < ry and (2) holds, or

(ii) Q is an open ball centred at 0.

We define hy(z) = 1 (||z — y||), where 1y (t) = 2= when N > 3 and
Po(t) = —log .

Theorem 2 Let Q be an open set such that m(Q) < oo (or § is bounded,
if N=2) and S(r) C Q. If

M (R
g L dm =2 eRN), ()

then either

(i) ¥ is of the form A(ri,r2), where 0 < ry < ry and (2) holds, or

(ii) Q is of the form B\T, where B is a ball centred at 0 and T C S(rg) for
some rg € (0,7). (The set T may be empty.)



In connection with part (ii) of the above result we note that the identity
(4) holds for Q = B(r2)\S(rg), where

ro = T2\/N/2J:f/(;2—/q>N2 (NV=3) ;

roy/2log(r/r) +1 (N =2)

provided that rg exists and 0 < rg < 7.

2 An intermediate result

Let E C RY be Lebesgue measurable, where 0 < m(E) < oo, and Ug(y) =
/ g hy dm. Since this potential may not be finite when N = 2, we define
Ui(y) = [p(hy — hz) dm, where z is some fixed point of RN\ E. We also
define

E=EU{z eRY :m(B,\E) = 0 for some ball B, centred at z},

whence E C E and m(E\E) = 0,

The main result of Hansen and Netuka [7] is the following analogue of
Theorem A. (Its converse is immediate from (1).) We give below a short
alternative proof of it and then establish an analogue for annular regions.

Theorem 3 Let B be the open ball of centre 0 such that m(B) = m(E). If

1

() /E (Uc — Up) dm = (U — Up) (0) (5)

whenever C and D are compact subsets of RN\E and Ug — Up is bounded,
then m(B\E) = 0.

Proof. We first consider the case where N > 3. Let y be a Lebesgue point
of RM\(E U {0}). We choose a sequence (C,,) of (non-negligible) compact
sets satisfying

Cpcl{zeRMN\E:|z—y|| <n!} and

We note that U, < m(B(n1))h,, and

Uc,
E m(Cn)

Uc, (0)
m(Cp)’

dm = m(E)

by (5). Since m(E) < oo we can use dominated convergence to conclude
that Ug(y) = m(E)ho(y). Hence Ug = m(E)hg almost everywhere outside
L.



Since Up < m(B)ho = m(E)ho on RY | it follows by continuity that
Up < Ug outside (E)°. This inequality extends to R, by the minimum
principle applied to Ug — Up on (E)O (Although we have not assumed
that E is bounded, we know that U — Ugp > —Up — 0 at infinity.) Since
the non-negative function Ug — Up is superharmonic on RV\ B and attains
the value 0 there, it follows from the minimum principle that Uy = Up on
RN\ B. Hence m(E\B) = 0, and so m(B\E) = 0, as required. (We note, in
passing, that the argument in this paragraph provides a short proof of the
main result of [1].)

When N = 2 we choose a further Lebesgue point z of R?\ (£ U {0}) and

then two sequences (Cy,), (Dy) of compact sets satisfying (6) and
D, C{z e RME: |z -z <n '} and m(D,) =m(C,).
Since |U¢,, /m(Cy) — ho| < log2 outside B(2 + 2 ||y||), we see that
|Uc,, — Up, | /m(Cy) < 2log2 outside B(R), where R = 2+2max{||y|, ||2] }.

On B(R) we have

Uc, (z)] < / log @dm(t)+m(3(n_l))10g(2m
{e-yl<n—y 2 =]
< m(B(n™Y) (|hy(z)| +21og(2R))

and so
Uc, — Up,| <m(B(n™") (Ihy| + || + 4log(2R)).

We can now use (5) and dominated convergence as before to see that Uj, =
m(E)(hg — ho(z)) almost everywhere outside E.
Let u=Uj, — Up + m(E)ho(z) and

Up = WUZ“QB(M —Up+m(E)ho(z) (neN).

Then u,, — u locally uniformly on R2. In particular, there exists ¢ > 0 such
that |u,| < ¢ on S(1) for all n. Each function w, is superharmonic outside
B and tends to 0 at infinity, so u,, > —c on R?\ B by the minimum principle.
Hence u > —c on R2\B. Since u > 0 outside (E)° and {oo} is polar, we can
argue as before to see that u > 0 on R2, and then that m(B\E) =0. =

It is clear from the above proof that, in Theorem 3, we might as well
replace (5) by the requirement that Ug = m(E)hg almost everywhere outside
E when N > 3, or that UZ, = m(FE)(ho — ho(z)) almost everywhere outside
E when N = 2, where z is a Lebesgue point of R?\(EU{0}). The analogous
result for annular domains is given below. Its proof combines an argument



of Kuran [8] with ideas from the technique of partial balayage as expounded
in [6]. We note, for future reference, that

M (hy, p) = min{y)n(p), N (llyl)}  (p>0) (7)
(see Example 4.2.9 in [2]).
Theorem 4 Letr > 0. If

Ug(z) = m(E)M (hyg,7) a.e. outside E (N >3) (8)
Ui(z) = m(E)M(hy — h;,r) a.e. outside E (N =2)°

where z is a Lebesque point of R2\E, then either

(i) there exist r1,ra satisfying 0 < r1 < 1o and (2), such that m(A(r1,r2)) =
m(E) and m(A(r1,r2)\E) =0, or

(1) there exists ro > r such that m(B(r2)) = m(E) and m(B(rz)\E) = 0.

Proof. Radial solutions g(||z||) of Laplace’s equation satisfy A,g = 0, where

d? N-1d
A, = a2 + @
We define
9s(p) = m(E) min{yn (r),vn(p)}  (p>0), (9)

and choose cy > 0 such that —AUp) = 2Ney on B(1). Next, let fa :
(0,00) — R denote the largest convex function of 1y (p) satisfying fa(p) <

gs(p) + cnp?, and define ga(p) = fa(p) — cnp?. Clearly ga < gs. To see
that the set {p > 0:ga(p) < gs(p)} is bounded, let

B Vm(E) max{N — 2,1}
7= 2¢ ’

where ¢ € (0,cy) is chosen small enough to ensure that
o>r and m(E)Yy(o) +eo? < m(E)py(r).
Then the function defined by

m(Eybx(o) +e(0® — o2 (0<p< o)
9p) = { m(E)bx(p) (0> o)

is C1, satisfies A,(g(p) + cnp®) > 0 when p # o, and g < gs. Since
g(p) = gs(p) when p > o, we see that {p > 0: ga(p) < gs(p)} is bounded,
as claimed. Further, this set must be of the form (r1,72), where 0 <7 < r <
9, since if g4 (t) = gg(t) for some t > r (respectively, ¢t < r), then maximality
and the fact that A,gs(p) = 0 when p # r ensures that g4 = gg on (t, 00)



(respectively, on (0,t)). Maximality also ensures that —A,g4 = 2Ncy on
(ri,m2).

The functions defined by us(z) = ga(||z||) and ug(z) = gs(||z|]), ex-
tended to the origin by continuity, are Newtonian (or logarithmic, if N = 2)
potentials. More precisely, ua = Ua(y,,rp), and ug is the potential of the
uniformly distributed measure on S(r) of total mass m(E) since

us(y) = m(E)M (hy,7) (10)

by (7) and (9). These potentials satisfy ug < ug everywhere, and ugq < ug
on A(ry,ra). Further, m(A(r1,r2)) = m(E), since ua(x) = m(E)Yyn(||z|])
on R\ B(ry).

If N > 3, then Ug = ug > u4 almost everywhere on RN\ E by (8) and
(10). Hence Ug > uy outside (E)°, and so this inequality holds everywhere,
by the minimum principle applied to Ug — u4 on (E)o Since the non-
negative function Ug — u4, which is superharmonic on R\ B(rq), attains
the value 0 there, it follows from the minimum principle that Ug = u4 on
RN\ B(rs), and so m(FE\B(r2)) = 0.

If N = 2, then we instead argue as in the final paragraph of the proof
of Theorem 3 (with u = Uf —ua +m(E)M (h,,r) and B(rs) in place of B)
to see that Uz > us — m(E)M(h,,r) on R? and again m(E\B(rs)) = 0. It
follows that Ug is finite, so U;, = Ug — Ug(%), and hence

Ug(x) —Ug(z) = m(E) (M(hy,r) — M(h,,7)) a.e. outside F,
by (8). Letting ||z| — oo, we see that Ug(z) = m(E)M (h,r), and so
Ug(x) = m(E)M (hg,r) a.e. outside E.

If r1 = 0, then m(E) = m(A(r1,7m2)) = m(B(rz)) and conclusion (ii)
holds.

If 4 > 0 and m(E N B(r1)) = 0, then m(E\A(r1,m2)) = 0 and so
m(A(r1,m2)\E) = 0. Further, u4(0) = ug(0), so

/A o dm = mE)N() = m(AL ) ), (11)

and a straightforward calculation establishes (2). Thus conclusion (i) holds.

It remains to consider the case where r; > 0, whence uq = ug on
B(r1) and (2) holds, and where m(E N B(ry)) > 0. If m(B(r1)\E) >
0, then Ug — uas would attain its minimum value in B(ry), contradicting
the minimum principle. Hence B(r1) C E. We suppose, for the sake of
contradiction, that B(r)\E # 0, and choose a point zg in the closure of
B(r)\E at minimum distance from the origin. Let ro = |2/ and

_ Jalf® — 3

uo(x) (x € RN\{xo}).

|z — ao||™

6



Then ry < 79 < 7, ug < 0 on B(rg) and ug > 0 on RN\ B(rq). Further,
M (ug, p) = p>~N when p > rg, since M(ug, p) is a linear function of p?>~V
on (rg,00) (see Theorem 3.5.6(i) of [2]) and ||z||Y "2 ug(x) — 1 as ||z|| — .
Hence

/uodm < / uodmg/ ug dm
E E\B(’r‘o) A(To,TQ)

— / le|2N dm < / l2|2N dm
A(TO,TQ) A(T17T2)

= m(A(r1,m2))r2 N = m(E)M (ug, ), (12)

where the penultimate equality follows from (11) when N > 3, and is trivial
when N = 2. However, Ug is C! and the function y — M (hy,r) is constant
on B(r). Thus, if y € B(r) is in the closure of RN\ E, we see from (8) that
S5 hy dm = m(E)M (hy,r) and

_ Ohy C_
dm—m(E)M(ayi,r> (i=1,..,N)

(this follows from Theorem 4.5.3 of [2], since m(E\B(r2)) = 0). Since

2

max{N —2,1} (20, Vaghayo (7))

ug(x) = [l& — o>~ +
it follows that [, ugdm = m(E)M (ug,r), contradicting (12). Hence B(r) C
E’, and thus

1

—_— m = 2 T) = hy x M\ E).
m(E)/Ehmd M(ha,7) = ha(0)  (z € RN\E)

We now see from Theorem 3 that conclusion (ii) holds. m

3 Deduction of Theorems 1 and 2

Lemma 5 Let Q be an open set such that S(r) C Q, where r > 0.

(i) If §~2~: A(r1,72) and (4) holds, then Q = A(r1,72).

(i1) If Q = B(rq) and (4) holds, then either Q = A(0,72), or Q = B(ra)\T
where T C S(rg) for some ro € (0,7).

Proof. Let v(y) = m(Q2)M(hy,r) — Ua(y), whence v € CL(RN\S(r)) and
v =0 on RV\Q, by (4).

(i) If @ = A(r1,73), then r; > 0. We claim that v # 0 on Q\S(r). To
see this, suppose first that v(yo) = 0 where yo € A(r,r2). Then v = 0 on
OA(||lyol| ,m2) by rotational symmetry, and Av = 2Ncy > 0 on A(||yol| , 72)-
Hence v < 0 on A(||lyol|,72) by the maximum principle, and we arrive at



the contradictory conclusion that ||Vov| > 0 on S(r3). A similar argument
applies if yo € A(r1,7). Hence Q = A(r1,72).

(ii) If Q = B(ry), we again see that v # 0 on A(r, 7). If there exists
wo € A(0,7) such that v(xo) = 0, then v = 0 on S(rp), where ro = [|xo||, and
so v < 0 on B(rg). It follows that Q\Q C S(rg). The remaining possibility
is that v # 0 on A(0,r), whence either Q = A(0,72) or Q@ = B(rz). m

Proof of Theorem 2. The hypotheses of Theorem 4 are satisfied, with
E = Q, so Q is either of the form A(r1,72), where r1 > 0, or B(ry). If
0 ¢ Q, then it follows from Lemma 5 that Q is of the form A(r1,72), where
0 <rj; <72, and from (11) that (2) holds. Otherwise, the lemma shows that
Q = B(r2)\T where T' C S(rg) for some 79 € (0,7), as required. m

Proof of Theorem 1. In view of Theorem 2, it remains to consider the
case where 2 = B(r3)\T and T' C S(rg) for some rg € (0,r). If there exists
xo € T, then we can adapt (12) to see that

/uo dm < / o dm:/ |z|>N dm(z)
0 A(To,?“z) A(7"077"2)
= [ el dm@) < [ o=zl dno)
A(To,?“z) Q
= m(Q)r*N = m(Q)M(uo,r),

where the penultimate equality follows by applying (3) to the function hg,
when N > 3 and is trivial when N = 2. This contradicts (3). Hence T' = ()
and so Q = B(rz). m
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