
A characterization of annular domains by
quadrature identities

Stephen J. Gardiner and Tomas Sjödin

Abstract
This note veri�es a conjecture of Armitage and Goldstein, that

annular domains may be characterized as quadrature domains for har-
monic functions with respect to a uniformly distributed measure on a
sphere.

1 Introduction

Let B be an open ball of centre 0 in RN (N � 2) and m denote volume
measure on RN . Then

1

m(B)

Z
B
u dm = u(0) (1)

for any integrable harmonic function u on B. Further, the following theo-
rem of Kuran [8] shows that this property actually characterizes balls. (Its
original formulation required 
 to be connected, but this hypothesis is re-
dundant.) It belongs to a long tradition of results that are surveyed in
Netuka amd Veselý [10].

Theorem A Let 
 be an open set such that m(
) <1 and 0 2 
. If
1

m(
)

Z


u dm = u(0) for any integrable harmonic function u on 
;

then 
 is a ball of centre 0.

If r > 0, then let S(r) = @B(r), where B(r) = fx 2 RN : kxk < rg, and
M(u; r) denote the mean value of an integrable function u over S(r) with
respect to surface area measure. For annular domains of the form

A(r1; r2) = fx 2 RN : r1 < kxk < r2g (0 � r1 < r2);

it is known (see, for example, Corollary 2.1 in [3]) that

1

m(A(r1; r2))

Z
A(r1;r2)

u dm =M(u; r)
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for any integrable harmonic function u on A(r1; r2), where

r =

8>>>>><>>>>>:

�
2

N

rN2 � rN1
r22 � r21

�1=(N�2)
(N � 3)

exp

�
r22 log r2 � r21 log r1

r22 � r21
� 1
2

�
(N = 2)

: (2)

(The necessity of (2) is clear from consideration of the function x 7! kxk2�N
when N � 3, or x 7! log kxk when N = 2. Further, the strict convexity of
t 7! tN=2 if N � 3, or of t 7�! t log t if N = 2, ensures that r1 < r < r2.)

Sakai [11] used an argument based on holomorphic functions to show
that the above quadrature identity characterizes annuli among multiply con-
nected planar domains that contain S(r). In higher dimensions Armitage
and Goldstein [3] subsequently showed that a similar quadrature identity
for an open set 
 implies that 
 is of the form A(r1; r2), where (2) holds.
They asked, in Problem 3.35 of [5] (see also [9]), whether annular domains
themselves could be characterized in this way, having pointed out errors in
an earlier paper of Avci [4] on this problem (see pp.142,145 of [3]). We
answer their question a¢ rmatively below.

Theorem 1 Let 
 be an open set such that m(
) <1 and S(r) � 
. If

1

m(
)

Z


u dm =M(u; r) for any integrable harmonic function u on 
;

(3)
then either
(i) 
 is of the form A(r1; r2), where 0 � r1 < r2 and (2) holds, or
(ii) 
 is an open ball centred at 0.

We de�ne hy(x) =  N (kx� yk), where  N (t) = t2�N when N � 3 and
 2(t) = � log t.

Theorem 2 Let 
 be an open set such that m(
) < 1 (or 
 is bounded,
if N = 2) and S(r) � 
. If

1

m(
)

Z


hy dm =M(hy; r) (y 2 RNn
); (4)

then either
(i) 
 is of the form A(r1; r2), where 0 � r1 < r2 and (2) holds, or
(ii) 
 is of the form BnT , where B is a ball centred at 0 and T � S(r0) for
some r0 2 (0; r). (The set T may be empty.)

2



In connection with part (ii) of the above result we note that the identity
(4) holds for 
 = B(r2)nS(r0), where

r0 =

8><>: r2

s
N=2� (r2=r)N�2

N=2� 1 (N � 3)

r2
p
2 log(r=r2) + 1 (N = 2)

;

provided that r0 exists and 0 < r0 < r.

2 An intermediate result

Let E � RN be Lebesgue measurable, where 0 < m(E) <1, and UE(y) =R
E hy dm. Since this potential may not be �nite when N = 2, we de�ne
U zE(y) =

R
E(hy � hz) dm, where z is some �xed point of RNnE. We also

de�ne

eE = E [ fx 2 RN : m(BxnE) = 0 for some ball Bx centred at xg;

whence E � eE and m( eEnE) = 0,
The main result of Hansen and Netuka [7] is the following analogue of

Theorem A. (Its converse is immediate from (1).) We give below a short
alternative proof of it and then establish an analogue for annular regions.

Theorem 3 Let B be the open ball of centre 0 such that m(B) = m(E). If

1

m(E)

Z
E
(UC � UD) dm = (UC � UD) (0) (5)

whenever C and D are compact subsets of RNnE and UC � UD is bounded,
then m(BnE) = 0.

Proof. We �rst consider the case where N � 3. Let y be a Lebesgue point
of RNn(E [ f0g). We choose a sequence (Cn) of (non-negligible) compact
sets satisfying

Cn � fx 2 RNnE : kx� yk < n�1g and
m(B(n�1))

m(Cn)
! 1 (n!1): (6)

We note that UCn � m(B(n�1))hy, andZ
E

UCn
m(Cn)

dm = m(E)
UCn(0)

m(Cn)
;

by (5). Since m(E) < 1 we can use dominated convergence to conclude
that UE(y) = m(E)h0(y). Hence UE = m(E)h0 almost everywhere outside
E.
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Since UB � m(B)h0 = m(E)h0 on RN , it follows by continuity that
UB � UE outside ( eE)�. This inequality extends to RN , by the minimum
principle applied to UE � UB on ( eE)�. (Although we have not assumed
that E is bounded, we know that UE � UB � �UB ! 0 at in�nity.) Since
the non-negative function UE � UB is superharmonic on RNnB and attains
the value 0 there, it follows from the minimum principle that UE = UB on
RNnB. Hence m(EnB) = 0, and so m(BnE) = 0, as required. (We note, in
passing, that the argument in this paragraph provides a short proof of the
main result of [1].)

When N = 2 we choose a further Lebesgue point z of R2n(E [ f0g) and
then two sequences (Cn); (Dn) of compact sets satisfying (6) and

Dn � fx 2 RNnE : kx� zk < n�1g and m(Dn) = m(Cn):

Since jUCn=m(Cn)� h0j � log 2 outside B(2 + 2 kyk), we see that

jUCn � UDn j =m(Cn) � 2 log 2 outside B(R); where R = 2+2maxfkyk ; kzkg:

On B(R) we have

jUCn(x)j �
Z
fkt�yk<n�1g

log
2R

kx� tkdm(t) +m(B(n
�1)) log(2R)

� m(B(n�1)) (jhy(x)j+ 2 log(2R)) ;

and so
jUCn � UDn j � m(B(n�1)) (jhyj+ jhzj+ 4 log(2R)) :

We can now use (5) and dominated convergence as before to see that U zE =
m(E)(h0 � h0(z)) almost everywhere outside E.

Let u = U zE � UB +m(E)h0(z) and

un =
m(E)

m(E \B(n))U
z
E\B(n) � UB +m(E)h0(z) (n 2 N):

Then un ! u locally uniformly on R2. In particular, there exists c > 0 such
that junj � c on S(1) for all n. Each function un is superharmonic outside
B and tends to 0 at in�nity, so un � �c on R2nB by the minimum principle.
Hence u � �c on R2nB. Since u � 0 outside ( eE)� and f1g is polar, we can
argue as before to see that u � 0 on R2, and then that m(BnE) = 0.

It is clear from the above proof that, in Theorem 3, we might as well
replace (5) by the requirement that UE = m(E)h0 almost everywhere outside
E when N � 3, or that U zE = m(E)(h0 � h0(z)) almost everywhere outside
E when N = 2, where z is a Lebesgue point of R2n(E[f0g). The analogous
result for annular domains is given below. Its proof combines an argument
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of Kuran [8] with ideas from the technique of partial balayage as expounded
in [6]. We note, for future reference, that

M(hy; �) = minf N (�);  N (kyk)g (� > 0) (7)

(see Example 4.2.9 in [2]).

Theorem 4 Let r > 0. If

UE(x) = m(E)M(hx; r) a.e. outside E (N � 3)
U zE(x) = m(E)M(hx � hz; r) a.e. outside E (N = 2)

; (8)

where z is a Lebesgue point of R2nE, then either
(i) there exist r1; r2 satisfying 0 < r1 < r2 and (2), such that m(A(r1; r2)) =
m(E) and m(A(r1; r2)nE) = 0, or
(ii) there exists r2 � r such that m(B(r2)) = m(E) and m(B(r2)nE) = 0.

Proof. Radial solutions g(kxk) of Laplace�s equation satisfy��g = 0, where

�� =
d2

d�2
+
N � 1
�

d

d�
:

We de�ne
gS(�) = m(E)minf N (r);  N (�)g (� > 0); (9)

and choose cN > 0 such that ��UB(1) = 2NcN on B(1). Next, let fA :
(0;1)! R denote the largest convex function of  N (�) satisfying fA(�) �
gS(�) + cN�

2, and de�ne gA(�) = fA(�) � cN�
2. Clearly gA � gS . To see

that the set f� > 0 : gA(�) < gS(�)g is bounded, let

� =
N

r
m(E)maxfN � 2; 1g

2"
;

where " 2 (0; cN ) is chosen small enough to ensure that

� > r and m(E) N (�) + "�
2 < m(E) N (r):

Then the function de�ned by

g(�) =

�
m(E) N (�) + "(�

2 � �2) (0 < � � �)
m(E) N (�) (� > �)

is C1, satis�es ��(g(�) + cN�
2) � 0 when � 6= �, and g � gS . Since

g(�) = gS(�) when � > �, we see that f� > 0 : gA(�) < gS(�)g is bounded,
as claimed. Further, this set must be of the form (r1; r2), where 0 � r1 < r <
r2, since if gA(t) = gS(t) for some t > r (respectively, t < r), then maximality
and the fact that ��gS(�) = 0 when � 6= r ensures that gA = gS on (t;1)
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(respectively, on (0; t)). Maximality also ensures that ���gA = 2NcN on
(r1; r2).

The functions de�ned by uA(x) = gA(kxk) and uS(x) = gS(kxk), ex-
tended to the origin by continuity, are Newtonian (or logarithmic, if N = 2)
potentials. More precisely, uA = UA(r1;r2), and uS is the potential of the
uniformly distributed measure on S(r) of total mass m(E) since

uS(y) = m(E)M(hy; r) (10)

by (7) and (9). These potentials satisfy uA � uS everywhere, and uA < uS
on A(r1; r2). Further, m(A(r1; r2)) = m(E), since uA(x) = m(E) N (kxk)
on RNnB(r2).

If N � 3, then UE = uS � uA almost everywhere on RNnE by (8) and
(10). Hence UE � uA outside ( eE)�, and so this inequality holds everywhere,
by the minimum principle applied to UE � uA on ( eE)�. Since the non-
negative function UE � uA, which is superharmonic on RNnB(r2), attains
the value 0 there, it follows from the minimum principle that UE = uA on
RNn B(r2), and so m(EnB(r2)) = 0.

If N = 2, then we instead argue as in the �nal paragraph of the proof
of Theorem 3 (with u = U zE � uA +m(E)M(hz; r) and B(r2) in place of B)
to see that U zE � uA �m(E)M(hz; r) on R2 and again m(EnB(r2)) = 0. It
follows that UE is �nite, so U zE = UE � UE(z), and hence

UE(x)� UE(z) = m(E) (M(hx; r)�M(hz; r)) a.e. outside E;

by (8). Letting kxk ! 1, we see that UE(z) = m(E)M(hz; r), and so

UE(x) = m(E)M(hx; r) a.e. outside E:

If r1 = 0, then m(E) = m(A(r1; r2)) = m(B(r2)) and conclusion (ii)
holds.

If r1 > 0 and m(E \ B(r1)) = 0, then m(EnA(r1; r2)) = 0 and so
m(A(r1; r2)nE) = 0. Further, uA(0) = uS(0), soZ

A(r1;r2)
h0 dm = m(E) N (r) = m(A(r1; r2)) N (r); (11)

and a straightforward calculation establishes (2). Thus conclusion (i) holds.
It remains to consider the case where r1 > 0, whence uA = uS on

B(r1) and (2) holds, and where m(E \ B(r1)) > 0. If m(B(r1)nE) >
0, then UE � uA would attain its minimum value in B(r1), contradicting
the minimum principle. Hence B(r1) � eE. We suppose, for the sake of
contradiction, that B(r)n eE 6= ;, and choose a point x0 in the closure of
B(r)n eE at minimum distance from the origin. Let r0 = kx0k and

u0(x) =
kxk2 � r20
kx� x0kN

(x 2 RNnfx0g):
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Then r1 � r0 < r, u0 < 0 on B(r0) and u0 > 0 on RNnB(r0). Further,
M(u0; �) = �2�N when � > r0, since M(u0; �) is a linear function of �2�N

on (r0;1) (see Theorem 3.5.6(i) of [2]) and kxkN�2 u0(x)! 1 as kxk ! 1.
Hence Z

E
u0 dm <

Z
EnB(r0)

u0 dm �
Z
A(r0;r2)

u0 dm

=

Z
A(r0;r2)

kxk2�N dm �
Z
A(r1;r2)

kxk2�N dm

= m(A(r1; r2))r
2�N = m(E)M(u0; r); (12)

where the penultimate equality follows from (11) when N � 3, and is trivial
when N = 2. However, UE is C1 and the function y 7!M(hy; r) is constant
on B(r). Thus, if y 2 B(r) is in the closure of RNn eE, we see from (8) thatR
E hy dm = m(E)M(hy; r) andZ

E

@hy
@yi

dm = m(E)M

�
@hy
@yi

; r

�
(i = 1; :::; N)

(this follows from Theorem 4.5.3 of [2], since m(EnB(r2)) = 0). Since

u0(x) = kx� x0k2�N +
2

maxfN � 2; 1g hx0;rx0hx0(x)i ;

it follows that
R
E u0 dm = m(E)M(u0; r), contradicting (12). Hence B(r) �eE, and thus
1

m(E)

Z
E
hx dm =M(hx; r) = hx(0) (x 2 RNn eE):

We now see from Theorem 3 that conclusion (ii) holds.

3 Deduction of Theorems 1 and 2

Lemma 5 Let 
 be an open set such that S(r) � 
, where r > 0.
(i) If e
 = A(r1; r2) and (4) holds, then 
 = A(r1; r2).
(ii) If e
 = B(r2) and (4) holds, then either 
 = A(0; r2), or 
 = B(r2)nT
where T � S(r0) for some r0 2 (0; r).

Proof. Let v(y) = m(
)M(hy; r) � U
(y), whence v 2 C1(RNnS(r)) and
v = 0 on RNn
, by (4).

(i) If e
 = A(r1; r2), then r1 > 0. We claim that v 6= 0 on e
nS(r). To
see this, suppose �rst that v(y0) = 0 where y0 2 A(r; r2). Then v = 0 on
@A(ky0k ; r2) by rotational symmetry, and �v = 2NcN > 0 on A(ky0k ; r2).
Hence v < 0 on A(ky0k ; r2) by the maximum principle, and we arrive at
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the contradictory conclusion that krvk > 0 on S(r2). A similar argument
applies if y0 2 A(r1; r). Hence 
 = A(r1; r2).

(ii) If e
 = B(r2), we again see that v 6= 0 on A(r; r2). If there exists
x0 2 A(0; r) such that v(x0) = 0, then v = 0 on S(r0), where r0 = kx0k, and
so v < 0 on B(r0). It follows that e
n
 � S(r0). The remaining possibility
is that v 6= 0 on A(0; r), whence either 
 = A(0; r2) or 
 = B(r2).

Proof of Theorem 2. The hypotheses of Theorem 4 are satis�ed, with
E = 
, so e
 is either of the form A(r1; r2), where r1 > 0, or B(r2). If
0 =2 
, then it follows from Lemma 5 that 
 is of the form A(r1; r2), where
0 � r1 < r2, and from (11) that (2) holds. Otherwise, the lemma shows that

 = B(r2)nT where T � S(r0) for some r0 2 (0; r), as required.

Proof of Theorem 1. In view of Theorem 2, it remains to consider the
case where 
 = B(r2)nT and T � S(r0) for some r0 2 (0; r). If there exists
x0 2 T , then we can adapt (12) to see thatZ



u0 dm <

Z
A(r0;r2)

u0 dm =

Z
A(r0;r2)

kxk2�N dm(x)

=

Z
A(r0;r2)

kx� x0k2�N dm(x) <

Z


kx� x0k2�N dm(x)

= m(
)r2�N = m(
)M(u0; r);

where the penultimate equality follows by applying (3) to the function hx0
when N � 3 and is trivial when N = 2. This contradicts (3). Hence T = ;
and so 
 = B(r2).
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