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Abstract

The Schwarz re�ection principle applies to a harmonic function
which continuously vanishes on a relatively open subset of a planar
or spherical boundary surface. It yields a harmonic extension to a
prede�ned larger domain and provides a simple formula for this ex-
tension. Although such a point-to-point re�ection law is unavailable
for other types of surface in higher dimensions, it is natural to in-
vestigate whether similar harmonic extension results still hold. This
article describes recent progress on such results for the particular case
of cylindrical surfaces, and concludes with several open questions.

1 Introduction

Throughout this article H(U) will denote the collection of all harmonic func-
tions on an open set U in the complex plane C or Euclidean space RN .

To begin with, let 
 � C be open, and let U = 
 \ fIm z > 0g and
h 2 H(U), where h continuously vanishes on 
 \ fIm z = 0g. Then the
Schwarz re�ection principle tells us that h� 2 H(U�), where U� is the union
of 
 \ fIm z � 0g and the re�ected set fz : z 2 Ug, and

h�(z) =

8<:
h(z) (z 2 U)
0 (z 2 
; Im z = 0)

�h(z) (z 2 U)
:

An analogous formula holds for harmonic extension through a circular arc,
provided that we use inversion in place of re�ection. Indeed, such results
even hold for extension across analytic arcs (see Chapter 9 of [7]).

In higher dimensions the Schwarz re�ection formula readily generalizes
to give harmonic extension across a relatively open subset of a hyperplane
or a sphere. However, this is as far as we can go. For, when N = 3, Ebenfelt
and Khavinson [3] have shown that a point-to-point re�ection law can only
hold when the containing real analytic surface is either a hyperplane or a
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sphere. Thus, for other surfaces, more elaborate arguments are required
to investigate whether such harmonic extension to some speci�c enlarged
domain is still guaranteed.

An important particular case concerns cylindrical surfaces, since a cylin-
der is the Cartesian product of a line and a sphere, each of which separately
admits Schwarz re�ection. Indeed, for this case, the existence of a point-to-
point re�ection formula was originally disproved by Khavinson and Shapiro
[9]. Khavinson subsequently asked at various conferences whether a function
which is harmonic on a circular cylinder in R3 and vanishes on the boundary
must automatically have a harmonic extension to the whole of space. This
issue has particular signi�cance for the study of the Dirichlet problem on
cylindrical domains with entire boundary data f . It was recently shown in
[8] that, provided f has order less than 1, this problem has a solution that
is also entire. Of course, given the unbounded nature of the domain, this
problem does not have a unique solution. However, a positive answer to the
harmonic extension question would imply that all solutions to this Dirichlet
problem are necessarily entire.

This article describes an a¢ rmative answer to the above question (see
Theorem 1), along with several other recent extension results for harmonic
functions which vanish on cylindrical surfaces. It concludes with some re-
lated open questions.

A typical point of RN = RN�1 � R (N � 3) will be denoted by x =
(x0; xN ), and the unit ball of RN�1 will be denoted by B0. The �rst result
below is taken from [4].

Theorem 1 Let a > 0. If h is harmonic on the �nite cylinder B0� (�a; a)
and continuously vanishes on @B0�(�a; a), then h has a harmonic extensioneh to the in�nite strip RN�1 � (�a; a).

It is natural to ask whether such harmonic extension remains possible if
the function h is merely harmonic near the curved boundary rather than on
the whole cylinder. The next result comes from [5].

Theorem 2 Let a > 0 and � : [�a; a] ! [0; 1) be continuous. If h is
harmonic on the set

f(x0; xN ) : jxN j < a and �(xN ) <


x0

 < 1g (1)

and continuously vanishes on @B0 � (�a; a), then h extends to a harmonic
function on the set

f(x0; xN ) : jxN j < a and �(xN ) <


x0

 < 2� �(xN )g: (2)

A striking aspect of the above result is that, although we know that no
point-to-point re�ection principle applies to the function h, the domain of
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the harmonic extension is nevertheless formed by re�ection along the radii
of the cylinder. Further, this result is sharp: if N = 4 and the function
� : [�a; a] ! [0; 1) is continuous, then there is a harmonic function on the
domain (1) which continuously vanishes on @B0� (�a; a) and does not have
a harmonic extension beyond the domain (2). (See [5] for details.)

Theorems 1 and 2 both concern outward harmonic extension through a
cylindrical surface. Given the lack of symmetry in higher dimensions, we can
ask if inward extension is also possible. This question turns out to raise new
technical challenges. We pose some questions of this nature in Section 3, and
present here just one result which involves simultaneous inward and outward
extension for harmonic functions which vanish on two coaxial cylindrical
surfaces. Let 
b denote the in�nite annular cylinder A0b � R, where

A0b = fx0 2 RN�1 : 1 <


x0

 < bg (b > 1):

The following result was recently established in [6].

Theorem 3 If h 2 H(
b) and h continuously vanishes on @
b, then h has
a harmonic extension to (RN�1nf00g)� R.

In the next section we will give an overview of the methods used to
establish the above results.

2 Methods of proof

2.1 The use of series expansions

Let GU (�; y) denote the Green function for U with pole at y 2 U . Then
��GU (�; y) = C(N)�y in the sense of distributions, where C(N) > 0 is a
dimensional constant and �y is the unit mass concentrated at y. Further,
GU (�; y) continuously vanishes on @U , except possibly at a polar set. For
example, if U is the half-space RN�1 � (0;1), where N � 3, then

GU (x; y) =
1

kx� ykN�2
� 1

kx� ykN�2
; where y = (y1; :::; yN�1;�yN ):

This formula bears an obvious relationship with the Schwarz re�ection prin-
ciple. Indeed, the Green function is both a test case and a building block
for the above harmonic extension questions. As usual, we write

GU�(x) =

Z
U
GU (x; z) d�(z)

for the potential of a suitable measure � on U . The following useful lemma,
taken from [5], is not di¢ cult to prove. It connects the Green function for
the N -dimensional cylinder B0�R with the Green function for the (N � 1)-
dimensional ball B0. The obvious analogue for cylindrical domains of more
general cross-section is also valid.
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Lemma 4 Let 
 = B0 � R and y0 2 B0, and let d�(z0; 0) = GB0(z
0; y0)dz0

on B0 � f0g. Then

G
(�; (y0; 0)) = C(N)
@2

@x2N
G
�:

Let Tn denote the usual Chebyshev polynomial of degree n, given by the
formula Tn(t) = cos(n cos�1 t) when jtj � 1. Then the Green function for
the unit disc D has the known expansion

GD(x
0; y0) = � log



x0

+ 1X
n=1

1

n
Tn

�
hx0; y0i
kx0k ky0k

�

y0

n n

x0

�n � kxkno (3)

when ky0k < kx0k < 1. The Bessel function Jn of the �rst kind, of order n,
satis�es the di¤erential equation

t2
d2y

dt2
+ t

dy

dt
+ (t2 � n2)y = 0

(see Watson [10]). Its positive zeros are denoted by jn;1 < jn;2 < :::. When
n > 0 let gn;m(s; t) denote the summand in the following classical Fourier-
Bessel expansion (see Carslaw [2]):

4n
1X
m=1

Jn(jn;ms)Jn(jn;mt)

j2n;mfJn+1(jn;m)g2
=

�
tn(s�n � sn) (0 � t < s)
sn(t�n � tn) (s � t � 1) : (4)

Further, let g0;m(s; t) denote the summand in the analogous expansion

2
1X
m=1

J0(j0;ms)J0(j0;mt)

j20;mfJ1(j0;m)g2
=

�
� log s (0 � t < s)
� log t (s � t � 1) : (5)

If 
 = D�R, then (3) - (5) and Lemma 4 together lead to the expansion

G
(x; (y
0; 0)) = 2

1X
m=1

g0;m(


x0

 ;

y0

)j0;me�j0;mjx3j

+4

1X
n=1

1X
m=1

Tn

�
hx0; y0i
kx0k ky0k

�
gn;m(



x0

 ;

y0

)jn;me�jn;mjx3j:
(6)

This formula for the Green function of a three-dimensional cylinder has long
been known (see [2]). It has a generalization to all dimensions which uses
ultraspherical polynomials in place of Chebyshev polynomials.

The next step is to examine the convergence of this expansion when x
lies outside 
. Using a variety of estimates for Bessel functions and their
zeros, this series was shown in [4] to converge when x0 2 RN�1 and xN 6= yN .
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This yields an extension result for the Green function. It can, in turn, be
used to establish the extension of more general harmonic functions in �nite
cylinders that vanish on the curved part of the boundary, thus leading to a
proof of Theorem 1.

Before leaving Theorem 1 we remark that the harmonic extension eh of h
to RN�1�(�a; a) decays near in�nity. More precisely, we have the following
result.

Theorem 5 Let h and eh be as in Theorem 1. Then, for any b 2 (0; a),
there is a constant c, depending on a; b;N and h, such that���eh(x)��� � c



x0

1�N=2 (x0 2 RN�1nB0; jxN j < b):

2.2 Domain re�ection

Although point-to-point re�ection formulae are unavailable for cylindrical
surfaces, Theorem 2 still exhibits a domain re�ection property. A key tool
in proving this is the following result of Wimp and Colton [11], which was
established using the theory of Volterra integral equations.

Theorem A. Let q; ym 2 C[��; �] and cm 2 Rnf0g be such that

d2ym
dt2

+
�
c2m � q(t)

�
ym = 0; ym(0) = 0; y0m(0) = cm (m 2 N):

If X
m

bmym(t) = 0 (0 � t � �); (7)

where
P
jbmj <1, then the equality in (7) holds when �� � t � �.

The relevance of this result to the present context lies in the well known
fact that, if we de�ne y(t) =

p
tJn(kt), where k is a non-zero constant, then

d2y

dt2
+

 
k2 +

1
4 � n

2

t2

!
y = 0 (t > 0):

Thus, if we de�ne (for �xed n > 0)

yn;m(t) =
p
tJn(jn;mt); cm =

q
j2n;m + 1; q(t) =

n2 � 1
4

t2
+1 (m � 1; t > 0);

we �nd that

d2yn;m
dt2

+
�
c2m � q(t)

�
yn;m =

d2yn;m
dt2

+

 
j2n;m +

1
4 � n

2

t2

!
yn;m = 0

and yn;m(1) = 0.
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Recalling from above that

4n
1X
m=1

Jn(jn;ms)Jn(jn;mt)

j2n;mfJn+1(jn;m)g2
= sn(t�n � tn) (s < t � 1);

we can now use Theorem A to extend the validity of this equation to the
range s < t < 2�s for any given s 2 (0; 1). We can then substitute s = ky0k
and t = kx0k into this identity and combine it with (6), (4) and reasoning
related to Lemma 4 to show that the series expansion of the Green function
G
(�; y), where 
 = B0 � R, converges even on the annular cylinder

fx0 2 RN�1 :


y0

 < 

x0

 < 2� 

y0

g � R:

We already knew from Theorem 1 that G
(�; y) extends to RN�1�(RnfyNg).
This, in turn, leads to the domain extension result for harmonic functions
stated in Theorem 2.

2.3 Extension through two coaxial cylindrical surfaces

Now we consider the case of a function h that is harmonic on the �nite
annular cylinder A0b � (�a; a) and continuously vanishes on the two curved
parts of the boundary. The proof of Theorem 1 can be adapted to show that
h extends outwards to a harmonic function on (RN�1nB0)� (�a; a). Inward
extension requires a more delicate analysis.

In Theorems 1 and 2 we used the fact that Jn(jn;m kx0k) vanishes, like
h, on @B0 �R. In the current situation, h vanishes on @A0b �R. In place of
Jn(jn;m kx0k) we now need to consider cross-product terms of the form

Jn(�


x0

)Yn(�b)� Jn(�b)Yn(�

x0

);

where Yn is the Bessel function of the second kind of order n. These functions
clearly vanish when kx0k = b. To make them vanish also when kx0k = 1, we
need to replace � by the positive zeros (�n;m)m�1 of the above expression
when kx0k = 1. Strong uniform estimates for �n;m of the form

�n;m+1 � �n;m >
�

2b� 1 (n � 1;m � 2)

were established in [6], and then used to show that h can be extended to
the domain n

(x0; xN ) : jxN j < a;


x0

 > e(jxN j�a)=b

o
:

The conclusion of Theorem 3 follows on letting a!1.
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3 Open questions

Two questions left open above concern whether Theorems 1 and 2 have
analogues for inward extension.

Question 1. If h is harmonic on the set (RN�1nB0)� (�a; a) and continu-
ously vanishes on @B0 � (�a; a), does h then have a harmonic extension to
(RN�1nf00g)� (�a; a)?

Question 2. Let � : [�a; a] ! (1;1) be continuous. If h is harmonic on
the set

f(x0; xN ) : jxN j < a and 1 <


x0

 < �(xN )g

and continuously vanishes on @B0 � (�a; a), does h then have a harmonic
extension to a set of the form

f(x0; xN ) : jxN j < a and  (xN ) <


x0

 < �(xN )g;

where  : [�a; a]! (0; 1) is continuous and independent of the function h?

Another open question is whether Theorem 3 can be strengthened to
give a direct analogue of Theorem 1 for �nite annular cylinders:

Question 3. If h 2 H(A0b � (�a; a)) and h = 0 on @A0b � (�a; a), does h
then have a harmonic extension to (RN�1nf00g)� (�a; a)?

A further line of enquiry concerns ellipsoidal cylinders: it was conjectured
in [8] that Theorem 1 should remain true in this context (at least when
a =1).

It is also natural to ask whether Theorems 1�3 have analogues for sur-
faces other than cylinders. In particular, an obvious next step would be
to consider conical surfaces. In this regard we pose some further questions
below. Let

C(�) = f(x0; xN ) : xN > � kxkg (0 < � < 1)

and the N -dimensional annular set

Ab = fx 2 RN : 1 < kxk < bg (b > 1):

Question 4. If h is harmonic on the set C(�)\Ab and continuously vanishes
on @C(�) \ Ab, does h then have a harmonic extension to AbnL, where
L = RN�1 � (�1; 0]?

Question 5. Let � : [1; b] ! (�; 1) be continuous. If h is harmonic on the
set �

x : � <
xN
kxk < �(kxk) and 1 < kxk < b

�
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and continuously vanishes on @C(�) \ Ab, does h then have a harmonic
extension to some set of the form�

x :  (kxk) < xN
kxk < �(kxk) and 1 < kxk < b

�
;

where  : [1; b]! (�1; �) is continuous and independent of the function h?

Question 6. Let 0 < � < � < 1. If h is harmonic on the set C(�)nC(�)
and continuously vanishes on @C(�) [ @C(�), does h then have a harmonic
extension to (RN�1nf00g)� R?

In connection with the last three questions we note that, when N = 3,
Carslaw [2] has obtained double series expansions for the Green function of
domains with conical boundaries.
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