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ABSTRACT
Novelty enhancement of recommendations is typically achieved

through a post-filtering process applied on a candidate set of items.

While it is an effective method, its performance heavily depends on

the quality of a baseline algorithm, and many of the state-of-the-art

algorithms generate recommendations that are relatively similar

to what the user has interacted with in the past. In this paper we

explore the use of sampling as a means of novelty enhancement

in the Bayesian Personalized Ranking objective. We evaluate the

proposed extensions on the MovieLens 20M dataset, and show

that the proposed method can be successfully used instead of two-

step reranking, as it offers comparable and better accuracy/novelty

tradeoffs, and more unique recommendations.
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1 INTRODUCTION
In the era of information and products overload, the task of brows-

ing systems to find items of interest to users is becoming more

difficult. Recommender systems play an important role in such

scenarios as they filter a large set of selections into a much smaller

set of items that a user is likely to be interested in. They do this by

utilising implicit or explicit user feedback on items recorded by the

system. While historically recommender systems were more often

tasked with rating prediction, nowadays the task of ranking items

seems to be more relevant, and a number of methods optimised for

the ranking task have been proposed.

While it is important to serve accurate recommendations, there

are other utilities beyond accuracy that have been identified as

desired properties of a system. Novelty is one of them, and there

are different notions of novelty. One notion expresses whether rec-

ommendations made to users are made of item types that the users

are aware of. This is connected to the filter bubble problem that

many of standard algorithms suffer from, where recommendations

closely follow past interactions with the system, resulting in recom-

mendations being not particularly engaging. By enhancing novelty
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of recommendations, it is possible to improve users’ experience

by widening the range of possible item types recommended to the

user, previously not explored by the users.

A common way for novelty enhancement is to generate can-

didate recommendations and to rerank them in a post-filtering

process, such that accuracy and novelty are balanced. However, the

performance of this approach heavily depends on the quality of

candidate recommendations — final recommendations will be as

novel as the most novel subset of the candidate items — and state-

of-the-art algorithms tend to recommend items similar to those

consumed by the user in the past. As an alternative, algorithms can

be modified to directly consider how similar or dissimilar items are

while making recommendations.

In this paper, we modify the Bayesian Personalised Ranking

(BPR) algorithm to make it aware of content relationships that exist

between items. We achieve this through sampling of the training

data, based on these relationships. The evaluation shows that the

proposed solution offers novel and diverse recommendations at

the same time, with similar performance as two-step post-filtering

solutions. Additionally we show that the integrated approach of-

fers recommendations much more varied than the baseline or the

reranked baseline.

The rest of the paper is structured as follows. In the next section

we give an overview of Bayesian Personalized Ranking. In section 3

we introduce a sampling scheme to account for item relationships.

We describe the evaluation protocol and discuss the obtained results

in section 4. We compare the proposed method with related existing

solutions in section 5, and we finally conclude in section 6.

2 BAYESIAN PERSONALISED RANKING
Bayesian Personalised Ranking (BPR) [10] is one of many algo-

rithms proposed to produce ranked recommendations. It infers

rankings from implicit user feedback, and learns a matrix factorisa-

tion model (as one of its variations). It requires pairwise item pref-

erences from which the model is learned. In systems with implicit

user feedback, only positive user-item interactions are available,

and the non-observed interactions are a mixture of users being not

interested in certain items — negative feedback — or users being

unaware of items — missing values. In this case, the method as-

sumes that a user prefers positive interactions over non-observed

interactions.

User-specific pairwise item preferences are triples of the form

(u, i, j) which express that user u prefers item i over j. Given the

set of available items I, for each user u ∈ U we denote her/his

positive interactions as I+u , and by (u, i) ∈ R all user-item pairs

of positive interactions. We derive the collection of preference

relations, DS : U × I × I, i.e. the training data, in the following
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way:

DS = {(u, i, j)|(u, i) ∈ R ∧ j ∈ I \ I+u } .

Given the derived training set DS , the optimisation criterion for

the BPR algorithm is defined as

BPR-Opt = argmin

Θ

∑
(u,i, j)∈DS

− lnσ (r̂ui j ) + λΘ | |Θ| |
2 ,

where Θ represents model parameters on which the r̂ui j predic-
tion depends, λΘ are model regularisation parameters. The r̂ui j
expresses the preference of user u between items i and j, which
can be seen as a difference of predicted utilities: r̂ui j = r̂ui − r̂uj .
The σ function is the logistic sigmoid function that transforms the

predictions: σ (x) = 1

1+e−x . The objective is being minimised, which

happens when the difference between items i and j is large.
The matrix factorisation model is used to drive the objective,

thus Θ corresponds to low-rank matrices P : |U| ×k and Q : |I | ×k
that approximate the utility matrix of all user-item interactions,

where k is the dimensionality of the approximation. Matrices P and

Q represent, respectively, latent feature vectors describing users

and items, and the r̂ui prediction can be formulated as r̂ui = pTu qi .
Final recommendations are made by calculating r̂ui for all user-item
pairs and ordering them per user in a descending manner.

The Stochastic Gradient Descent (SGD) optimisation algorithm

has been proposed to run the optimisation of the objective, based

on uniform bootstrap sampling with replacement, however in other

work, Rendle and Freudenthaler [9] pointed out that the training

data is skewed towards popular positive items which dominate

the gradient, making it harder to learn the model. To address the

skewness of the training data, Rendle and Freudenthaler proposed

an adaptive oversampling technique, where for each positive inter-

action, a negative item is sampled w.r.t. the estimated ranking for

its context. A similar idea has been proposed in Weston et al. [15].

We use a simplified version of this, by selecting negative items such

that they are close to violating the ranking implicit in the pattern

of user interactions. This can be done by selecting negative items

whose predicted score is high.

3 CONSTRAINING ITEMS SAMPLING
There are two main components of the BPR algorithm—derivation

of the item preferences and the learning objective. Here we focus

on the first one, the sampling process, to enhance the method and

promote novelty.

A number of novelty notions exist, with two most commonly

considered being: a) the long tail novelty [3, 8], where novelty is

based on items popularity; and b) personalised unexpectedness [1],

based on some distance between recommended items and items

that we know the user is aware of:

PD(Ru ) =
1

|Ru |

∑
i ∈Ru

dist(i,Eu ) , (1)

where Eu represents a set of obvious items that the user would

expect. Based on the assumption that items in the user profile, Iu ,

are known and not unexpected by the user, the distance dist(i,Eu )
can be further decomposed into dist(i,Eu ) =

∑
j ∈Iu dist(i, j) where

dist(i, j) can be defined through e.g. item features. The above defini-

tion of novelty relies on pairwise dissimilarity, and there a natural

way to incorporate such pairwise dissimilarities into the the BPR

method.

The training data, DS , that the BPR uses, has been constructed

from positive interactions recorded by the system paired with un-

seen interactions. This approach ignores any relationship that exists

between a pair of items. Item similarity/dissimilarity is one such

relationship, used to express novelty of recommendations, as we

see in Equation 1, and it is possible to extend the definition of the

DS set to make it aware of such relationships, by constraining the

sampling. Given a measure dist(i, j) that expresses dissimilarity

between items i and j, we can constrain the above set of pairs as

follows:

Ddist

S = {(u, i, j)|(u, i) ∈ R ∧ j ∈ I \ I+u ∧ dist(i, j) < τ } .

In the above definition, pairs of items whose dissimilarity is greater

than the threshold τ are not selected. While this might be counter-

intuitive, let’s consider an example showing how the BPR learning

objective operates on such pairs. Assuming that dist(i, j) takes a
value on the range [0, 1], we select threshold τ = 0.8. This threshold

splits the space of items into a similar/different, in addition to a

positive/unseen categorisation. If two items have a dissimilarity

larger than or equal to τ , we exclude that pair from the training

data on the assumption that two dissimilar items are not considered

as contrary items. Note that the BPR-Opt pushes away item pairs

that are defined as contrary — that is, all item pairs in the dataset

DS or Ddist

S . Dissimilar items can be seen as two ‘positive’ items,

thus the items that we want to separate in the learning process are

the items that we consider similar.

In our definition of Ddist

S , we treat a pair of known items and

unknown but dissimilar items, in the same way as a pair of two

known and liked items. In reality, some of the unknown dissimilar

items may be relevant to the user but that will not be the case for

all items. Actually if we were randomly selecting pairs of items,

and we knew the ground truth for all items, it is much easier to

find a pair of dissimilar items that are not relevant, than a pair of

relevant dissimilar items. If we base the process of learning user

preferences purely onDdist

S , we actually would learn disturbed user-

item relations, which may have a negative effect on the accuracy of

the model. Instead, we propose to sample from both datasets, the

original DS , and the one constrained by distance, Ddist

S . By doing

that, we incorporate some additional signals on the dissimilar pairs

of items, while respecting that these are not really two positive

interactions. To control the strength of this effect, we propose to

sample from both sets of triples, with probability β of taking a

sample from Ddist

S .

In Figure 1 we present the learning procedure of BPR where

distance-biased sampling is applied. The pseudocode shows how β
is used to control the source of sampling — a random number r is
selected uniformly on a 0-1 range, and based on that number, the

dataset is selected.

4 EVALUATION
4.1 Dataset
To compare the effectiveness of novelty enhancement in the BPR

setting, we perform evaluation on the MovieLens 20M (ML-20M)

dataset[5]. The biggest MovieLens dataset consists of about 20M



function LearnDistBPR(DS , D
dist

S , Θ, α , β , λΘ, λ)
initialise Θ
repeat

r = random(0,1)

draw (u, i) ∈ R uniformly

if r ≤ β then
draw j from I \ I+u ∝ s(u, j) s.t. dist(i, j) < τ

else
draw j from I \ I+u ∝ s(u, j)

end if

Θ← Θ − α

(
−e−r̂ui j
1+e−r̂ui j

∂
∂Θ r̂ui j + λΘΘ

)
until convergence
return Θ

end function

Figure 1: BPR algorithm with distance-biased sampling.

ratings on a 0.5 to 5 scale, with a step-size of 0.5, from 138K users on

28Kmovies. Movies are enriched by 20 genres, however interactions

for items without any genre information have been removed from

the dataset. As the considered algorithm was designed for implicit

datasets, we treat ratings of 5 as implicit positive feedback, and take

the score of 1. The rest of the ratings are removed. The dataset has

been split into training and test sets, with an 80:20 split.

4.2 Evaluation Protocol
In order to assess the considered method, we generate and evaluate

ranked lists Ru of top N = 20 items for each user in the test set.

Before testing novelty enhancements, the BPR algorithm has been

tuned for λΘ to find the best baseline solution in terms of precision.

The factorisation dimensionality has been set to k = 20, training is

run for 100 iterations, the learning rate is α = 0.01, and sample size

in each iteration is equal to the size of the training data. As BPR

depends on random sampling, we repeat the training/evaluation

process 5 times and present the average performance.

We evaluate the proposed method (denoted by BPR
dist

), and

the impact of its parameters by varying β ∈ [0, 1] and τ ∈ [0, 1].
We compare the performance with the novelty reranker applied

on the original BPR (denoted as BPR+PD). We generate a set C

of 40 candidate items for each user, then we iteratively construct

the reranked list by greedily selecting at each iteration item i that
satisfies:

i∗ = arg max

i ∈C\Ru
(1 − λ)s(u, i) + λ

1

|Iu |

∑
j ∈Iu

dist(i, j) ,

and updating Ru ← Ru ∪ {i} until |Ru | = N . Parameter λ ∈ [0, 1]
controls the tradeoff between accuracy and novelty, and s(u, i) is
the score given by the baseline recommender.

We measure the performance in terms of the following metrics:

precision, nDCG, EPD and EILD. A good overview of metrics can

be found in [12]. Precision represents the fraction of relevant items

in the results, nDCG measures relevance w.r.t. to an item’s position,

and ideal ranking list. The Expected Profile Distance (EPD) is an

extension of Equation 1, which measures the average pairwise dis-

similarity between items in a recommendation set, and previously

consumed items, but can also take into account rank and relevance

of recommended items. The EILD measures the average pairwise
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Figure 2: Tradeoffs between accuracy (nDCG) and novelty
(EPD). For BPR

dist
, various τ and β settings are presented,

where for BPR+PD, λ is varied.

dissimilarity of items in a recommendation set, also with the possi-

bility to consider rank and relevance. We apply logarithmic rank

discount, however we use relevance-unaware versions of these

metrics. To express item relationships, we use cosine dissimilarity

between item genre profiles.

4.3 Results
Impact of method parameters. The distance-biased samplingmethod,

BPR
dist

, is controlled by two parameters, τ and β . To measure how

these impact accuracy and novelty of recommendations, in Figure 2

we present the tradeoffs between accuracy (expressed through the

nDCG metric) and novelty of different combinations of these two

parameters — for each threshold we vary the β parameter. For clar-

ity we plot the results only for thresholds τ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}
which mark the general trend, and other threshold settings follow

these. Parameter β controls the fraction of the dataset that comes

from the dataset constrained by item distances. The higher the

value of the parameter, the more the method is trained on the con-

strained dataset Ddist

S , the higher novelty performance we could

expect, which the results confirm.

The second parameter, τ , is used to split item pairs into those

that we consider different and those that we consider similar. By

exposing the BPR algorithm to pairs of similar items, we want to

demote these items and push their representations apart, which

results in recommendations made of more novel items. The results

show that by picking higher thresholds, we obtain solutions that

offer better novelty performance for the same accuracy, because

more items are considered similar.

Comparison with novelty reranking. In Figure 2 performance of the

BPR+PD reranker is shown, for different values of the blending

parameter λ. It can be seen that for λ < 0.5 the rerankers offer

slightly better accuracy/novelty tradeoff, however BPR
dist

is really

close to them. From that point onward, the BPR
dist

outperforms

BPR+PD, offering generally higher novelty scores, and better nov-

elty performance for the nDCG scores obtained by BPR+PD. The

above is generally true if a reasonable parameters of BPR
dist

are



λ τ β Prec. nDCG EPD EILD

BPR - - - 0.1165 0.2309 0.6705 0.6399

+PD 0.5 - - 0.1064 0.1931 △
0.7434 ▲

0.7353

BPR
dist

- 0.6 0.8 0.1016 0.1925 ▲
0.7502 △

0.7238

Table 1: Comparison of novelty enhancement methods. We
have set a desirable performance, and we report one best set-
ting where nDCG reaches the level of approximately 0.19.
For each metric, improvements over the baseline are de-
noted with △, best improvements with ▲ , and overall best
are underlined. All differences with respect to the baseline
are statistically significant (Wilcoxon p < 0.05).

selected, τ ≥ 0.4. Lower threshold values do not distinguish items

well.

In Table 1 we compare other metrics that we have measured, for

one setting of the considered novelty enhancement methods, and

the original BPR algorithm. We have selected settings that obtain

the value of nDCG of approximately 0.19. For both methods, this

also corresponds to precision of around 0.105. Similar nDCG and

lower precision may mean that BPR+PD holds more relevant items

higher in the ranked list. We will look into the qualitative analysis

of recommendations later.

With respect to the BPR, both methods improve novelty ex-

pressed through the EPD metric, however BPR
dist

seems to offer

better tradeoff, with the score of 0.7502 compared to 0.7434 of

BPR+PD. These correspond to improvements of 11-12% over the

baseline.

Diversity of recommendations. Diversity of items is another distance-

based utility of recommendations, and commonly improvements

in novelty improve diversity and vice versa. We have looked into

this aspect as well, and in Table 1 we report the EILD metric of

diversity. We can observe that both methods boost diversity, with

BPR+PD showing slightly better capabilities — improving by 15%

over the baseline, where BPR
dist

improves diversity by 13%. For the

BPR
dist

method improving diversity is expected as its objective is

generally trying to separate similar items. In the case of BPR+PD,

this is rather a side effect of the reranking.

Comparison of recommendations. Finally, we would like to compare

the recommendations produced by all the methods, by comparing

items that have been recommended to each of the users. We do that

for the recommendations generated by settings reported in Table 1.

We simply count the items that each pair of recommendations share,

which follows the Inter-System Diversity metric of Bellogín et al.

[2]. Results show that the reranked recommendations share with

the baseline BPR, on average, 15 out of 20 items, where BPR
dist

shares only 10 items with the baseline. Such huge overlap of items

in the BPR+PD method could also explain slightly better tradeoffs

we have discussed earlier, because for lower λ values even fewer

items are replaced in the recommendations (and these are closer to

the list end), making it easier to hold accuracy.

If in addition to previously considered settings, we also looked

into settings that offered the most in terms of novelty of recommen-

dations — λ = 1.0 for BPR+PD; τ = 0.6 and β = 1.0 for BPR
dist

— we can find that BPR+PD shares also only 10 items with the

baseline, however as we have seen in Figure 2, this happens at

much higher cost in terms of accuracy. The most ‘novel’ setting

of BPR
dist

shares only 7 items with the baseline. If we compare

these different settings of the same methods with each other, we

can find that BPR+PD recommendations share 15 items on average,

where BPR
dist

10 items on average. All of the above tells us that

BPR+PD makes recommendations much more similar (in terms of

items used) to the original BPR method and that these lists vary

less than those produced by BPR
dist

. Together with the fact that

the novelty performance of BPR
dist

(depending on the choice of

parameters) is comparable or better, we claim that the BPR with

distance-constrained sampling process is better than the reranking

approach, and it is a one-step approach.

5 RELATEDWORK
Many improvements have been proposed to the BPR method since

it was introduced. In [4], sampling has been modified to take into

account items’ popularity. Rendle and Freudenthaler [9] proposed

a sampler that is context-dependent and over-samples informative

pairs to speed up convergence. Loni et al. [7] modified the sampler

to utilise different types of user feedback. Similarly, Lerche and

Jannach [6] extended the BPR to deal with graded preference rela-

tions coming from implicit feedback, claiming that e.g. purchase

of an item is a stronger feedback than a view. Additional pairwise

preferences are derived from such information, and incorporated

into the optimisation phase by choosing a proportion of samples

coming from these additional preferences. We applied a similar

pattern to mix constrained sampling and original sampling.

Wasilewski and Hurley [13, 14] have proposed methods to op-

timise other beyond-accuracy utility, diversity, also in one step,

instead of post-filtering reranking. The stream of research pre-

sented in this paper falls into the same category of algorithms,

however achieved through data sampling rather than reformula-

tion of the objective. Also for diversity, Su et al. [11] has proposed

a set-oriented formulation of BPR. Instead of training the model

based on item pairs, whole sets of items are considered. Sets in

the training collection are constrained by set relevance and set

diversity. In this paper we apply a similar constraining, however

on item pairs rather than item sets.

6 CONCLUSIONS
In this paper we looked into the problem of novelty enhancement

of the Bayesian Personalized Ranking method. We proposed to

constrain the sampling process of the algorithm, by utilising the

content relationships between items. By doing so, we managed

to improve novelty of recommendations produced by the method,

without a post-filtering step proposed in the state-of-the-art. We

showed that it is not only possible to improve novelty while training

the BPR model, but also that the tradeoff between accuracy and

novelty is comparable or better than post-filtering methods, and

that final recommendations are more unique when compared to

the recommendations produced by the BPR.
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