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Abstract—Parkinson’s disease is a progressive, 

neurodegenerative disorder, characterized by hallmark motor 

symptoms. It is associated with pathological, oscillatory neural 

activity in the basal ganglia. Deep brain stimulation (DBS) is often 

successfully used to treat medically refractive Parkinson’s disease. 

However, the selection of stimulation parameters is based on 

qualitative assessment of the patient, which can result in a lengthy 

tuning period and a suboptimal choice of parameters. This study 

explores fourth order, control theory-based models of oscillatory 

activity in the basal ganglia. Describing function analysis is 

applied to examine possible mechanisms for the generation of 

oscillations in interacting nuclei and to investigate the suppression 

of oscillations with high-

frequencystimulation.Thetheoreticalresultsforthesuppression of 

the oscillatory activity obtained using both the fourth-order 

model, and a previously described second-order model, are 

optimized to fit clinically recorded local field potential data 

obtained from Parkinsonian patients with implanted DBS. Close 

agreement between the power of oscillations recorded for a range 

of stimulation amplitudes is observed (R2 =0.69−0.99). The results 

suggest that the behavior of the system and the suppression of 

pathological neural oscillations with DBS is well described by the 

macroscopic models presented. The results also demonstrate that 

in this instance, a second-order model is sufficient to model the 

clinical data, without the need for added complexity. Describing 

the system behavior with computationally efficient models could 

aid in the identification of optimal stimulation parameters for 

patients in a clinical environment. 

Index Terms—Basal ganglia, control theory, mean field model, 

Parkinson’s disease, pathological oscillations. 

I. INTRODUCTION 

OSCILLATORY rhythms form an integral part of the central 

nervous system, although their exact functional significance 

has not yet been determined [1], [2]. In relation to the motor 

function of cortical and subcortical areas of the brain, growing 

evidence suggests that oscillations in the beta frequency range 

(13–30 Hz), in addition to those in the gamma frequency range 

(31–100 Hz), are of particular importance. Cortical beta 

oscillations have been shown to display event-related 

desynchronization prior to the initiation of movement, 

suppression during movement, with a rebound event-related 

synchronization immediately afterward [2]. This pattern is also 

observed in the subcortical basal ganglia [1]. Cortical 

stimulation at 20 Hz, which lies within the beta frequency 

range, slows motor output, lending weight to the causal rather 

than epiphenomenological nature of these oscillations [3]. 

Koelewijn et al. found a stronger beta rebound occurring in 

response to movement errors compared to the normal rebound 

following the cessation of movement, which they propose 

reflects involvement in an active inhibition response [4]. 

The depletion of dopamine in Parkinson’s disease enhances 

the rhythmic oscillatory activity compared with that present in 

the healthy cortico-basal ganglia-thalamocortical system [5]. It 

is hypothesized that the normal dopaminergic system supports 

the segregation of the functional subcircuits of the basal ganglia 

[6], with the depletion of dopamine in Parkinson’s disease 

believed to cause a breakdown of this segregation, leading to 

abnormal synchrony of neuronal activity [7], [8]. Parkinson’s 

disease is characterized by enhanced beta rhythmical activity in 

the subthalamic nucleus (STN), globus pallidus pars externa 

(GPe) and globus pallidus pars interna (GPi), with the cerebral 

cortex postulated as being a likely source of this exaggerated 

synchronized activity [1]. Functional MRI has revealed an 

increase in the functional connectivity in the cortico-

basalganglia-thalamocortical system in Parkinson’s disease [9]. 

Although this could occur as a consequence of the changes in 

the activity of these circuits in the diseased state [10], the 

suggestion that the loss of striatal dopamine could cause the 

changes in connectivity to occur is supported by results 

presented in [11] where dynamic causal modeling was used to 

characterize and compare connections in the cortico-basal 

ganglia-thalamocortical circuit. The connections to and from the 

STN were found to strengthen and promote synchronous beta 

oscillations in the untreated compared to the treated 

Parkinsonian state [11]. In [12], simultaneous 

magnetoencephalography and local field potential (LFP) 

recordings in patients with Parkinson’s disease revealed distinct 

coupling in the beta-band frequency between the motor cortex 

area and the STN providing further support of their frequency-

dependent functional connectivity. Studies in animal models of 

Parkinson’s disease also support the hypothesis that altered 

connectivity in the cortico-basal ganglia-thalamocortical circuit 

plays a key role in the pathology of the disease [13], [14]. 

Bradykinesia and rigidity, hallmark motor symptoms of 

Parkinson’s disease, have been shown to correlate with 

synchronous beta-band oscillatory activity in the basal ganglia 

[15], [16]. A correlative relationship between limb tremor in 

patients and oscillatory activity in the theta (or tremor) 

frequency range has also been established [17]. Dopaminergic 

medication has been shown to decrease the synchronous beta 

activity and improve the motor symptoms of the disease [18], 



  

[19]. A recent study by Beudel et al. showed correlation 

between deep brain stimulation (DBS)-induced suppression in 

the power of oscillations in the low gamma frequency range 

(31–45 Hz) and the reduction in the amplitude of the resting 

tremor recorded in Parkinsonian patients [20]. DBS also acts to 

suppress the pathological oscillations in the beta frequency 

band, with a parallel improvement in the motor symptoms of 

Parkinson’s disease observed [15], [21], although a direct causal 

link, as well as an exact mode of action, remains yet to be 

established. This evidence provides support for the use of the 

oscillatory beta-band activity as a biomarker of Parkinson’s 

disease in order to guide the programming of DBS devices or to 

use in conjunction with closed-loop systems [22], [23]. 

Mathematical modeling provides a valuable pathway for 

testing new hypotheses and gaining a greater understanding of 

the cortico-basal ganglia network and DBS. Models of the 

corticobasal ganglia network range from detailed cellular level 

models to reduced, neural mass-type models. A network model 

comprised of conductance-based biophysical models of each 

included cell type, the STN, GPe, GPi, and thalamus, introduced 

by [24], has been implemented and extended in a number of 

subsequent studies exploring the effect of DBS [25]–[27]. 

Cellular level models have also been utilized to explore the 

STN-GPepacemaking hypotheses[28],[29]. Other detailed 

computational models that have been used to explore the effect 

of applied DBS have also been developed [30]–[32]. However, 

although examination of interactions occurring at the cellular 

level can yield valuable insight into possible pathological 

mechanisms at a local level, it seems that examining the 

behavior of the model at a system level should result in a deeper 

understanding of Parkinson’s disease and DBS. In addition, 

modeling systems at the level of individual neurons can lead to 

a model becoming unwieldy and intractable. Hence,in many 

studies,a phenomenologically based model, often referred to as 

a “neural mass” or “lumped parameter” model, is designed, with 

simplifying assumptions made about the behavior at the cellular 

level. One of the earliest models representing the collective 

dynamics of neural populations comprising of distinct 

excitatory and inhibitory subpopulations was introduced by 

Wilson and Cowan in [33], and forms the basis for many of the 

more recent neural models. Mathematical models can also be 

designed to illustrate and explore a particular phenomenon 

occurring in a physiological system, without a foundation on the 

anatomy or physiology of the system [34]. 

In an attempt to gain a greater understanding of the 

Parkinsonian basal ganglia and the mechanism of action of 

DBS, a number of models based on this phenomenological idea 

have been developed. Holgado et al. demonstrated the intrinsic 

oscillatory capabilities of the STN-GPe network in a model 

based on anatomical and electrophysiological studies [35]. 

Rather than simulating the dynamics and firing times of 

individual neurons, their model represented changes in the firing 

rates of neural populations. A more comprehensive, neural mass 

model of the cortico-basal ganglia-thalamocortical circuit based 

on LFP data recorded from a rat model of Parkinson’s disease 

was presented in [13]. In this study, under simulated dopamine 

depletion, the connection strength of cortical, hyperdirect input 

to STN was observed to increase, and the STN input to GPe 

decreased. Pathological, synchronized oscillations were 

modeled in a simplified manner and used to explore the effects 

of different types of desynchronizing brain stimulation 

techniques in number of publications from Tass et al. [36]–[38]. 

In a similar way, the models we present here aim to capture the 

key pathological mechanisms of Parkinson’s disease, without 

including details of the cellular morphology of the system. This 

is to allow the models to be readily explored and analyzed, and 

track the complex system in a simplified manner, without 

reverse engineering, the failing basal ganglia [39]. 

In [40], a second-order macroscopic mathematical model 

used to represent oscillatory activity of a synchronous group of 

neurons was presented. The model was tuned to specifically 

capture key features of the physiological system representing a 

closed loop within the cortico-basal ganglia-thalamocortical 

system and to generate the pathological oscillations that occur 

here in Parkinson’s disease. The suppression of these 

oscillations by the injection of high-frequency stimulation was 

examined, and the results compared to clinical data previously 

published in [41]. However, the model analyzed is the simplest 

that can generate oscillatory activity, and the analysis presented 

cannot readily be extended to higher order models. More 

complex, higher order models may more accurately represent 

the dynamics of the basalganglia-thalamocortical system by 

modeling the interaction of two or more nuclei, allowing the 

parameters of each to be varied individually. 

This study examines and analyzes two fourth-order models 

of oscillatory activity with the aim of capturing the dynamics 

of the system being considered while remaining analytically 

tractable. In developing the models,we consider the cortico-

basal ganglia-thalamocortical system as a complex network of 

coupled nuclei, in which the level of synchronization and 

coupling between neurons within and across different nuclei 

increases as dopamine is depleted in Parkinson’s disease. 

Within this network, under conditions of dopamine depletion, 

the enhanced coupling may lead the reciprocally connected 

STN-GPe loop to act as a central pacemaker, as discussed in 

[42], or alternatively, the entire network may experience a loss 

of segregation [17] reducing to a simpler, tightly coupled 

network of interacting oscillators. Each fourth-order model is 

based on a combination of two of the previously described 

second-order models. A series model with separate self-

oscillating feedback loops, and a reduced fourth-order series 

model are both considered. The describing function is applied 

to analyze the models. Two describing functions are combined 

in a novel way, enabling the application of this established 

theory to the fourth-order models. The theoretical analysis 

presented is extendable to higher order models, providing a 

framework for the theoretical analysis of more complex 

networks modeled in this way, similar to that described in [43]. 

Possible mechanisms for the generation of pathological 

oscillatory activity are explored by studying the interaction of 

the two distinct nuclei. The suppression of oscillations with the 

application of high-frequency stimulation representing DBS is 



  

examined in the fourth-order series (reduced) model. In order 

to examine whether the addition of a second nuclei improves 

the accuracy of the model, the theoretical results obtained for 

the fourth-order series (reduced) model, and the original 

second order model, are compared to clinically recorded LFP 

data, and the fits obtained are compared. Both models are 

shown to be capable of capturing the dynamics of the beta-band 

LFP activity as the amplitude of the applied DBS is increased. 

The models presented in this study are designed with the aim 

of being readily analyzed such that their translation to a clinical 

environment as a tool to aid in the identification of optimal 

DBS parameters on a patient by patient basis would be 

possible. 

II. METHODS 

Oscillatory activity in the basal ganglia can be recorded in 

the form of the LFP. LFPs reflect the summation of local, 

rhythmic, synchronized subthreshold activity in presynaptic 

terminals and postsynaptic neurons [7], [44]. The models 

presented in this study aim to capture the dynamics of the 

cortico-basal ganglia-thalamocortical system as they appear to 

an external observer, by reproducing the synchronized 

oscillatory activity recorded in the vicinity of the STN. 

Although comparisons are drawn between the models and the 

physiological system, each second order nucleus, consisting of 

a nonlinear, sigmoidal arctan function in series with a second-

order transfer function, essentially represents a reduced 

oscillating system. The individual, physiological components 

modeled by each nucleus are assumed to display synchronous 

dynamics. This system-level model of the neural population 

explored in this study follows concepts of neural mass 

modeling [45]. 

The fourth-order models each consist of two reciprocally 

connected second-order models, which are used to represent 

two distinct neural ensembles connected in series, Figs. 1 and 

2. These could be chosen to represent any two individual 

interconnected nuclei. For example, each loop in Fig. 1 could 

represent a nucleus with self-excitation that would enable it to 

generate oscillations, or two coupled nuclei, which form a 

single oscillator, as is considered in [40]. The STN-GPe loop 

could be modeled as shown in Fig. 2. The choice of excitatory-

inhibitory interconnections between the two nuclei reflects the 

physiological interconnections existing between both the 

cortex and basal ganglia, and the STN and GPe [46]. The 

theoretical analysis presented here, based on describing 

function analysis, can be extended to include as many 

individual groups of neurons as required. A complete 

description of the second-order model, and the associated 

analysis, is provided in an earlier paper [40]. 

Imaging and electrophysiological studies indicate that the 

depletion of dopamine in Parkinson’s disease is associated 

with an increase in the functional connectivity within the basal 

ganglia, leading to abnormal, synchronous neural activity [9], 

[47]. Connectivity is modulated by the parameter hn, which 

represents the effect of dopamine on the system; a decrease in 

hn leads to an increase in the gain (or functional connectivity) 

of the system, 

 

Fig. 1. Schematic diagram of the fourth-order series model (with feedback) 

representing neural synchrony in two interconnected second-order loops. The 

two networks are coupled through g1 and g2. For excitatory-excitatory coupling 

(+/+) g1 =−g2 > 0. For excitatory-inhibitory (+/−) coupling g1 = g2. 

 

Fig. 2. Schematic diagram of the fourth-order model of neural synchrony 

comprised of a series connection of two second-order models of synchronous 

activity as presented in [40]. For notational simplicity, the nonlinear element in 

the first nuclei is labeled as NL1and in the second nuclei similarly termed NL2. 

The DBS is applied additively at the input to NL1. 

resulting in an increase in the amplitude of the model output. 

Mathematically, as hn decreases, the slope of the sigmoid, and 

thus, the responsiveness of the feedback loop, increases. 

A. Fourth-Order Series Model (With Feedback) 

In order to explore mechanisms by which oscillatory neural 

activity can be generated through the interaction of different 

frequencies, a fourth-order model of the basal ganglia 

thalamocortical system is presented and analyzed using the 

describing function approach. Interaction between distinct 

loops, either tuned to oscillate at a particular frequency or 

inherently nonoscillating, can give rise to oscillations at other 

frequencies. The fourth-order series model (with feedback) 

presented in Fig. 1, consists of two second-order models of 

oscillatory activity coupled with two variable gain terms,g1 and 

g2.Thecoupling shown in Fig. 1 is an excitatory-inhibitory 



  

configuration. This reflects the physiological excitatory-

inhibitory interconnections that exist between either the STN-

GPe, or the cortex-basal ganglia. Within the fourth-order series 

model (with feedback), each second-order model includes an 

individual feedback loop, and is capable of oscillatory activity 

when appropriately tuned. The parameters of the second-order 

models can be chosen such that they are non oscillating, or 

initialized to oscillate at either the same or different frequencies, 

with the frequency of the resulting output from the model 

changing as a function of the gain in the loop, g1g2. The 

interaction of two different initial frequencies is examined 

through simulation of the model with the interconnections in an 

excitatory-excitatory configuration. This was achieved by 

setting g1 = −g2. 

To facilitate the theoretical analysis, the initial frequencies of 

oscillation of the two nuclei are chosen equal, b = b1 = b2, and 

k1 = k2 = b. The coupling gains, g1 and g2 in Fig. 1 are chosen to 

be equal and denoted as g in the following. Each node in the 

loop can be expressed, using phasor notation, with Z1 the 

reference phasor, as 

Z1 = Ym (1) 

Z2 = D1(Ym) · Ym 

Z3 = D1(Ym) · Ym · |G1(jω)|ej∠G1(jω) 

(2) 

(3) 

Z4 = Ymejθ (4) 

Z5 = D2(Ymejθ) · Ymejθ 

Z6 = D2(Ymejθ) · Ymejθ · |G2(jω)|ej∠G2(jω). 

(5) 

(6) 

From Fig. 1, with the coupling in the excitatory-inhibitory 

configuration as shown, it is clear that 

 Z1 = Z3 + gZ6 (7) 

and 

 Z4 = Z6 − gZ3. (8) 

Under the assumed conditions, the input signals at Z1 and Z4 are 

equal in amplitude and frequency, and G1(jω) = G2(jω). The 

following equality, therefore, holds 

D1(Ym) · |G1(jω)|ej∠G1(jω) = D2(Ymejθ) 

·|G2(jω)|ej∠G2(jω). (9) 

By letting M represent the complex number 

M = D(Ym)|G(jω)|ej∠G(jω). 

(7) reduces to 

(10) 

Ym = MYm + gMYmejθ 

and (8) similarly can be expressed as 

(11) 

Ymejθ = MYmejθ − gMYm. (12) 

Combining (11) and (12), and using Euler’s formula yields 

giving 

2g cosθ = 0 (13) 

 . (14) 

Substituting this value into either (11) or (12) results in 

 . (15) 

Therefore, from (10) and (15) 

 ∠G(jω) = arctan(±g). (16) 

From the definition of the second-order transfer function, shown 

in Fig. 1 

  . (17) 

Rearranging gives 

 . (18) 

Equation(18) thus defines the two new frequencies of 

oscillation that emerge as a function of the coupling gain g, and 

b, the original angular frequency of the oscillations, for the 

network topology shown in Fig. 1. 

B. Fourth-Order Series Model (Reduced) 

The fourth-order series model (reduced) comprises two 

reciprocally connected second-order nuclei, with transfer 

functions 

  (19) 

without the individual feedback connections included in the 

model described in Section II-A. The nuclei in this 

configuration are not capable of oscillating individually, but 

will begin to oscillate once the coupling gain between them 

reaches a critical value. High-frequency stimulation 

representative of DBS is also included. DBS is modeled here 

as a biphasic, rectangular waveform, with an amplitude of 

stimulation a and fractional pulse duration α, and is applied 

additively at the input to a nonlinear element, Fig. 2. This is 

analogous to adding the stimulation to the synaptic input of the 

neurons in the network, consistent with orthodromic driving of 

the neuron. As described in [40], the addition of this high-

frequency stimulation to the system essentially counteracts the 

increase in the slope of the nonlinear element, and subsequent 

increased excitability, caused by a decrease in hn, thereby 

suppressing the oscillatory activity induced. Experimental [48] 

and simulation [49] studies at the cellular level indicate that 

DBS does elicit its effect through antidromic and orthodromic 

activation of target neurons. 



  

In order to analyze the fourth-order series model (reduced) 

shown in Fig. 2, the applied high-frequency stimulation, 

representative of DBS, is mathematically combined with the 

nonlinear element NL1 resulting in an equivalent nonlinear 

element [50], [51]. As described in [40], describing function 

analysis techniques from [52] are applied to find a linear 

approximation of the gain of this equivalent nonlinear element, 

calculated as 

 

where 

 

and 

. 

The describing function of the original nonlinearity, N L2, is 

denoted Do, with De the notation assigned to the describing 

function of the equivalent nonlinearity, N L1 + DBS. The 

amplitude of the oscillations is described at each given point in 

the loop in terms of the describing function as follows: 

X1 = Do(Ym) · Ym (22) 

X2 = Do(Ym) · Ym · |Gr(jb)| 

X3 = Do(Ym) · Ym · |Gr(jb)| 

(23) 

·De(Do(Ym) · Ym · |Gr(jb)|) 

X4 = Do(Ym) · Ym · |Gr(jb)| 

(24) 

 ·De(Do(Ym) · Ym · |Gr(jb)|) · |Gr(jb)|. (25) 

From Fig. 2, it is clear that in (25) X4 = Ym , and so 

. 
(26

) Allowing both transfer functions to be equal, as given in (19), 

and evaluating at angular frequency b yields 

 . (27) 

Combining this with (26) gives 

  (28) 

which sets the critical value of the composition of describing 

functions to that for which oscillations will occur in the fourth 

order series model (reduced). Letting k = b2 in (28) results in a 

threshold value, to ascertain whether oscillatory activity is 

present in the system, equal to 4. For oscillations to occur in 

the system, the phase condition must also be satisfied; that is, 

the phase difference around the feedback loop must sum to 

zero. Each transfer function contributes a phase difference of 

, and when combined with the negative feedback in the 

model yields a total phase difference of zero. 

In order to examine the effects of changing the parameters 

and the stimulation applied to the model on the amplitude of 

the oscillations, the intersection point between the describing 

function and the threshold for generation of oscillations is 

calculated for a range of parameter values. First, the amplitude 

of oscillations, denoted Ym, is calculated as a function of h1, the 

parameter modeling the effect of dopamine on the system. 

Stimulation is then applied to the system and the effect of 

varying a, the amplitude of applied stimulation, α, the 

fractional pulse duration of the applied stimulation and the 

frequency of the stimulation on the oscillations in the system 

for a fixed value of h1 is examined. 

C. Clinical Data 

To verify the behavior of the model in comparison to the 

physiological system, the model parameters of the fourth-order 

series model (reduced) were optimized to fit clinical LFP data 

recorded postoperatively. The data were recorded at the 

Department of Clinical Neurology, University of Oxford, and at 

the University College of London, from four patients with 

Parkinson’s disease who had undergone bilateral implantation 

of DBS electrodes into the STN. All patients gave their 

informed consent to take part in the study, which was approved 

by the local ethics committees of the University of Oxford or 

University College of London. The permanent quadripolar 

macroelectrode implanted was model 3387 (Medtronic 

Neurologic Division, Minneapolis, MN, USA). Bipolar LFPs 

were captured using a single channel, isolated, high-gain (100 

dB) amplifier with a pass band of 4–40 Hz from contact pairs 0–

2 or 1–3 (contact 0 being the most caudal and contact 3 the most 

rostral contact) and recorded onto a PC via a 1401 data 

acquisition system (Cambridge Electronic Design Ltd., 

Cambridge, U.K.). Data were recorded with a sampling 

frequency of 2.2 kHz, except in one patient where a sampling 

rate of 200 Hz was used. Recordings were obtained after 

overnight withdrawal from patients’ usual antiparkinsonian 

medication while the patients sat comfortably in a chair. Patients 

were stimulated monopolarly at either contact 1 (if the LFP was 

captured from contacts 0– 2) or contact 2 (if the LFP was 

captured from contacts 1–3). Stimulation and recording contact 

pairs were determined according to which bipolar LFP contacts 

exhibited highest beta power. To determine this, two short 

recordings of 100 s were made in the absence of stimulation 

from contact pairs 0–2 and 1–3. Power spectral density was 

calculated offline using Spike2 (Cambridge Electronic Design 

Ltd., Cambridge, U.K.). Based on this assessment, for each 

patient the LFPs were recorded as the stimulation amplitude, 

delivered via the external stimulator (Medtronic Neurologic 

Division, Minneapolis, MN, USA), was varied while the 

stimulation frequency and pulse duration were kept fixed, at 130 

Hz and either 60 or 90 μs, respectively. 

The raw data were imported from Spike2 (Cambridge 

Electronic Design Ltd., Cambridge, U.K.) and processed using 



  

custom developed software (MATLAB 7.12, The MathWorks 

Inc., Natick, MA, USA, 2011). Each dataset was filtered using 

a tenth-order Butterworth filter with cutoff frequencies 13 < f < 

35 Hz in order to examine the data in the beta frequency range. 

To calculate the amplitude of the oscillations for each 

stimulation setting, the root mean square (RMS) value of 5 s 

epochs, with an 80% overlap, were calculated. In each case, the 

epochs were chosen to begin 10 s after the adjustment to the 

stimulation took place. The amplitude of the beta-band 

oscillations in the LFP data for each stimulation setting was 

calculated as the average of the 5 s RMS values, converted to 

 

Fig. 3. Sample of LFP data recorded via implanted macroelectrodes from the 

STN of a patient with Parkinson’s disease shown before stimulation was applied 

and during 130-Hz stimulation at 1.5 V with a pulse duration of 60 μs. The 

power spectrum shown, estimated using Welch’s method, is based on the entire 

LFP recording for the given stimulation settings. 

beta-band power, and was normalized with respect to the DBS-

off data recorded during that trial. Two samples of the filtered 

LFP data are shown in Fig. 3—both before stimulation and 

during 130 Hz stimulation applied at an amplitude of 1.5 V and 

a pulse duration of 60 μs. 

D. Model Analysis 

In addition to the theoretical analysis, both of the fourth-order 

series models were implemented and simulated using a 

commercial software package (Simulink, MATLAB 7.12, The 

MathWorks Inc., Natick, MA, USA, 2011). 

In order to fit the theoretical output of the fourth-order series 

model (reduced) to the clinical data, the model parameters were 

optimized to fit each individual dataset using the Levenberg– 

Marquardt algorithm to minimize the difference between the 

power of the clinically recorded LFP data and the model 

estimates of the oscillation power. The R2 values, indicating the 

agreement between the model predictions and the clinical data, 

were calculated for each fitted dataset. This procedure was 

repeated with the previously presented second-order model [40] 

and the same sets of clinical data to enable a comparison to be 

drawn between the two models. 

III. RESULTS 

A. Fourth-Order Series Model (With Feedback) 

The effect of increasing the amplitude of the coupling gain in 

the fourth-order series model (with feedback), Fig. 1, is 

illustrated in Figs. 4 and 5. Fig. 4 shows the frequencies present 

as a function of coupling gain when both ensembles are 

initialized to oscillate at the same frequency (10 Hz), with 

excitatory inhibitory coupling of the model. This is achieved by 

taking h1 = 0.3 and b = 5π. Both the theoretically predicted 

frequencies based on (18), and frequencies measured from the 

output of the simulated system for discrete values of gain are 

presented. As the coupling gain in the network is increased, the 

frequencies diverge, with this behavior also observed in the 

model 

 

Fig. 4. Diverging frequencies (f1 and f2) of the fourth-order series model (with 

feedback) as a function of coupling gain. f1 and f2 denote a frequency 

component of the oscillatory activity. Both ensembles are initialized to 

oscillate at 10 Hz, with the model in the excitatory-inhibitory configuration. 

The theoretically predicted frequencies based on (18) are shown, as well as the 

frequency of the output from simulations of the system for discrete values of 

coupling gain. 

The geometric mean of the two frequencies, , remains approximately 

constant and is also illustrated. Note that a single frequency can give rise to 

any value. 

 

Fig. 5. Converging frequencies (f1 and f2) of the coupled fourth-order series 

model (with feedback) as a function of coupling gain. f1 and f2 denote a 

frequency component of the oscillatory activity. The frequencies converge to 

their geometric mean, and then decrease with increasing gain. The points 

illustrated were obtained through simulation of the system shown in Fig. 1, 

with the networks set to initially oscillate at two different frequencies (11 and 

24 Hz), with the coupling between the networks in the excitatory-excitatory 

configuration. 



  

simulations. The geometric mean of the frequencies, which is 

illustrated in Fig. 4, remains approximately constant. 

Fig. 5 illustrates the frequencies of the simulated model 

output obtained when the individual networks shown in Fig. 1 

are initialized to oscillate at different frequencies (11 and 24 

Hz), again as the amplitude of the coupling gain is increased. 

This is achieved by setting b1 = 5.5π and b2 = 12π. The two 

frequencies are observed to converge towards an intermediate 

frequency with increasing gain. When the frequencies 

converge, the single resultant frequency decreases gradually as 

the gain is increased further. These results are based on 

simulations of the system shown in Fig. 1 with the excitatory-

excitatory system configuration used, g1 = −g2. 

 

Fig.6. Amplitude of oscillations (normalizedvalues) in the fourth-order series 

model (reduced) of neural synchrony as a function of the amplitude of applied 

stimulation, given in arbitrary units (a.u.). Four different pulse durations of 

stimulation are presented. h1 is chosen to be 0.1 in each. 

 

Fig.7. Amplitude of oscillations (normalized values) in the fourth-order series 

model (reduced) of neural synchrony as a function of the frequency of applied 

stimulation. Four different amplitudes of stimulation are presented. h1 is 

chosen to be 0.1 in each. 

B. Fourth-Order Series Model (Reduced) 

The describing function analysis developed here enables the 

amplitude of the oscillations present in the system to be 

calculated as a function of the parameter h1, representing the 

dopamine level in the system. The oscillations increased in 

amplitude as the parameter h1 was decreased. The amplitude of 

oscillations in the model for any particular fixed value of h1 

can be evaluated analytically for a range of applied stimulation 

parameters, as shown in Figs. 6 and 7. In each case, the 

amplitude of oscillations present in the system is shown 

normalized with respect to the amplitude without stimulation 

applied. In Fig. 6, the amplitude of oscillations are plotted as a 

function of the amplitude of the applied stimulation, a, for four 

separate pulse durations. The amplitude of the oscillations is 

decreased as the amplitude of the stimulation is increased, with 

the oscillations suppressed more readily as the pulse duration 

is increased.Fig.7 shows the amplitude of oscillations within 

the series network plotted as a function of frequency for four 

different amplitudes of stimulation. The amplitude of the 

oscillations is decreased as the frequency of the applied 

stimulation is increased. The suppression achieved is increased 

as the amplitude of the applied stimulation is increased. In each 

case, h1 = 0.1. 
TABLE I 

OPTIMAL PARAMETERS OF THEORETICAL SECOND-ORDER MODEL IDENTIFIED 
TO FIT PREDICTIONS TO LFP DATA FROM FOUR PATIENTS SHOWN IN FIG. 8(A) 

Patient #1 #2 #3 #4 

h 0.3167 0.3170 0.3177 0.3180 

Scaling on x-axis 7.42 53.28 37.36 65.97 
Scaling on y-axis 0.0022 0.0016 0.0008 0.0004 
Pulse duration of stim. (μs) 60 90 60 60 
Frequency of stim. (Hz) 130 130 130 130 

The pulse duration and frequency of the stimulation applied in each case 

is also included. 

TABLE II 

OPTIMAL PARAMETERS OF THEORETICAL FOURTH-ORDER SERIES MODEL 
(REDUCED) IDENTIFIED TO FIT LFP DATA FROM FOUR PATIENTS SHOWN IN 

FIG. 8(B) 

Patient  #1 #2 #3 #4 

 

μs) 

60 

90 60 60 

The pulse duration and frequency of the stimulation applied in each case 

is also included. 

C. Comparison of Models with Experimental Data 

The parameters of the original second-order model and the 

fourth-order series model (reduced) were optimized for each 

patient independently. The model parameters and stimulation 

settings identified for each dataset are given in Table I and Table 

II, and the experimental and theoretically predicted data are 

compared in Fig. 8. The amplitude of oscillations in the 

experimental dataset are normalized with respect to the off-DBS 

recording for that patient. In each case, the pulse duration was 

fixed at either 60 or 90 μs as the amplitude of the stimulation 

was varied. 

IV. DISCUSSION 

It is hypothesized that the healthy basal ganglia consists of 

functionally distinct networks that lose their segregation under 

conditions of dopamine depletion, leading to pathological 

oscillatory activity [7], [8]. Amassed evidence from the 

literature supports the proposal that the pathological oscillations 



  

observed in Parkinson’s disease rise as a result of the interaction 

of two or more populations of synchronized neurons. In this 

study, control theory has been used in order to gain insight into 

the generation and interaction of oscillatory activity in two 

simplified network models each representing two interacting 

populations of neurons. 

Specifically, describing function analysis provides a method 

of exploring and understanding the oscillatory activity in both 

of the fourth-order series models of neural synchrony presented 

in this study, including the effect of applying high-frequency 

stimulation to the oscillations produced. The method of 

combining two describing functions is a novel approach, which 

allows the application of the well-established engineering tool 

synchronous neural activity. 

to the fourth-order series models presented. This method can 

also be extended to the analysis of higher order models with a 

greater number of interacting nuclei, which may provide a more 

accurate representation of the physiological system in question, 

while still remaining analytically tractable. Although the 

method of describing function analysis was the one chosen and 

applied here, other techniques such as bifurcation analysis could 

equally be utilized in order to characterize the oscillatory 

activity of the models presented here. 

The analysis of the fourth-order series model (with feedback) 

explores how the output frequency or frequencies of the 

produced oscillatory activity depend on the coupling gain of the 

model. For reciprocally connected loops of two oscillating 

interconnected networks, with excitatory-inhibitory 

interconnections, initialized to oscillate at the same frequency, 

two divergent frequencies emerge as the coupling gain between 

the nuclei is increased. The geometric mean of these two 

frequencies remains approximately constant; see Fig. 4. When 

the coupled loops are set to oscillate at different initial 

frequencies, with excitatory-excitatory interconnections, the 

frequencies converge as the coupling gain is increased. As the 

gain is increased above that at which the frequencies converge, 

this resultant frequency decreases slightly from that of the initial 

convergence point; see 

Fig.5.Similarresultsweredemonstratedwithamorephysiologicall

ydetailedstudyofthecortico-basalganglia-thalamocortical 

network [31], where the interaction of oscillations at different 

frequencies in the cortex and STN were examined and found to 

result in a new, intermediate frequency of synchronized 

oscillations under dopamine depleted conditions (increased 

coupling gain). The geometric mean of the converging 

frequencies was also observed to remain approximately constant 

[31]. 

Oscillatory activity recorded from the cortico-basal ganglia-

thalamocortical network has been shown to occur at a range of 

frequencies. Given the increased functional connectivity 

between these loops that occurs in Parkinson’s disease [9], it is 

likely that interaction between loops of different frequencies 

does occur. The measured LFP likely reflects activity generated 

by synchronous synaptic inputs to the STN, including afferent 

inputs from the cortex through the hyperdirect pathway, along 

with inputs from the GPe and other interconnecting nuclei. In 

[53], bispectral analysis of LFP data recorded from the STN of 

Parkinsonian patients revealed a nonlinear correlative 

relationship between LFP rhythms of different frequencies, 

which was decreased after dopaminergic medication. Marceglia 

et al. suggested that the loss of dopamine in Parkinson’s disease 

causes a loss of segregation between different LFP rhythms 

[53], and that the nonlinear interactions observed could arise as 

a result of the synchronization between two or more populations 

of neurons [54]. In particular, overactivity in the hyperdirect 

pathway has been postulated as playing a critical part in the 

generation of the pathological oscillations associated with 

Parkinson’s disease [13], [14], [55]. The theoretical and 

simulated results presented here suggest some possible 

mechanisms by which the pathological oscillatory activity 

 

Fig. 8. Normalized LFP beta-band power as a function of the amplitude of applied stimulation for the theoretical models of synchronous neural activity, optimized 

to fit four experimental patient datasets. The patient data are shown (◦ ) along with the theoretical fit to the model optimized for that individual patient as the DBS 

amplitude is increased. The stimulation frequency was fixed at 130 Hz, and the pulse duration at 60 μs, except for Patient #2, where a pulse duration of 90 μs was 

used. The R2 value calculated for each fit is also included. (a) Second-order model of synchronous neural activity. (b) Fourth-order series model (reduced) of 



  

observed in Parkinson’s disease may occur via a similar loss of 

segregation or increased coupling gain between the individual 

nuclei. The results in Fig. 5 show how frequencies in the low 

beta range (16 Hz) can be produced by combining 11 and 24 Hz 

oscillations in two separate networks and increasing the 

coupling gain. Similarly, two diverging frequencies of 

oscillation are shown to emerge from the series with feedback 

network arrangement of two nuclei with initially equal 

frequencies of oscillation, illustrated for 10 Hz; see Fig. 4. 

The fourth-order series model (reduced), representative of 

two synchronous nuclei, predicts oscillatory activity that grows 

in amplitude as the parameter h1 is decreased causing an 

increase in the excitability of the loop. For any chosen 

frequency and initial amplitude of oscillations, the theoretical 

analysis predicts that the oscillatory activity decreases in 

amplitude as either the frequency, pulse duration, or amplitude 

of the applied stimulation, representing DBS, is increased; see 

Figs. 6 and 7. The suppression of oscillations in this way can 

also be described as a supercritical Hopf bifurcation. As the 

amplitude of applied stimulation is increased the stable 

oscillations in the system disappear. This description of the 

changes in dynamics induced in an oscillatory network by the 

application of high-frequency stimulation as a Hopf bifurcation 

was first observed by Titcombe et al. [34]. 

The theoretical results of varying amplitude of stimulation 

for fixed frequency and pulse duration were fitted to clinically 

recorded LFP data from four individual Parkinsonian patients 

using optimization, with the R2 values calculated as 0.96, 0.69, 

0.79, and 0.99, respectively, indicating a good agreement 

between the model and the clinical values. The output of the 

original second-order model explored in [40] was fitted to the 

same clinically recorded LFP datasets. The R2 values of this fit 

were calculated as 0.96, 0.69, 0.78, and 0.99. The similarity 

between the fits obtained to the clinical data for both the 

second- and fourth-order models indicate that the addition of a 

second nucleus to the network does not improve the accuracy 

of the model in representing the dynamics of the Parkinsonian 

LFP in the datasets examined. Indeed, the second-order model 

examined in our earlier study [40], and a third-order model 

described in a study by Titcombe et al. [34], have been shown 

to accurately capture the dynamics of a clinical data set 

obtained from the literature [41]. 

A decrease in h1 in the model is analogous to the depletion 

of dopamine in Parkinson’s disease, with the resulting 

increased amplitude of the oscillatory activity mimicking that 

observed in LFP data recorded from the pathological basal 

ganglia. An improvement in motor symptoms in patients is 

seen to occur in parallel with either a drug, or DBS-induced, 

suppression of this oscillatory activity [15], [18], [19], [21]. 

Furthermore, clinical studies report a progressive improvement 

in the motor symptoms of the disease as the amplitude, and to 

a lesser extent, the frequency and pulse duration, of the applied 

DBS is increased [56]–[58]. As a causal relationship between 

a decrease in beta-band oscillations and motor symptom 

reduction has not yet been proven, the suppression of the 

oscillatory activity in the model with high-frequency 

stimulation cannot be taken as translating directly into a 

clinical improvement in the motor symptoms. However, 

evidence from recent studies lends weight to the use of the 

beta-band oscillatory activity as a biomarker of the disease, 

which supports this representation. 

Mathematical models of the cortico-basal ganglia-

thalamocortical region provide a pathway to further 

understanding of the underlying pathological oscillatory 

activity of Parkinson’s disease. Using models, hypotheses can 

be easily tested, developed and refined. Comparisons can be 

made between models of differing levels of complexity in 

addition to direct comparisons with clinical data, where model 

complexity allows. The models presented in this study have the 

advantage of being easily manipulated and analytically 

tractable. This may facilitate their translation to a clinical 

environment where they could be used as a tool to aid in the 

choice of stimulation parameters. They can be tuned to match 

individual patient disease characteristics—the model 

parameters b, k, and h1 can be chosen to tune the output to 

whatever the dominant frequency and amplitude of oscillation 

recorded from the patient is. The stimulation parameters can 

then be chosen based on the level of suppression required, 

although it is likely, due to the interpatient variability observed 

in LFP data [8], that the suppression required may be patient 

specific. Translation of the model to a clinical environment 

would involve restricting the optimization of the model 

parameters to a certain area of the parameter space in order to 

comply with clinically safe levels of stimulation, and to 

minimize side effects. This method could also be extended to 

include tuning of the model using alternative, more readily 

recordable potential biomarkers of Parkinson’s disease, for 

example, electromyography or limb tremor. Although the 

focus in this study is on beta-band oscillations in two 

interacting nuclei, the models presented can also be extended 

to include a number of nuclei oscillating at a range of different 

frequencies based on physiological recordings, and used to 

study the interaction of these as the gain of the system is 

increased, mimicking the increased functional connectivity 

that occurs with the depletion of dopamine. The theoretical 

analyses outlined can be extended to higher order models 

based on combinations of the two basic network architectures 

presented in this study. 

The models presented here represent two interacting nuclei 

displaying synchronous oscillatory dynamics. This is based on 

the hypothesis that the pathological oscillatory activity observed 

in Parkinson’s disease arises as a result of the loss of functional 

segregation in the basal ganglia-thalamocortical system. 

However, the reduction of the system to include just two 

subnetworks may well be an oversimplification. In addition, 

although the models presented in this study provide good 

agreement with the clinically recorded LFP data, it is important 

to note that, as mean-field type models, much physiological 

accuracy and detail is neglected, and therefore, some of the 

effect of the subtle relationships and interactions between 

neurons are lost. Similarly, the stimulation representing DBS is 

applied additively at the input to one nuclei, with no 



  

consideration given to the interaction of the stimulation pulse 

with the tissue surrounding the electrode. Finally, the use of the 

describing function analysis is an approximation method, 

however, its application to models presented here is justified by 

ensuring the appropriate specifications are met in the model, and 

by confirming the theoretical results achieved through 

simulation of the model. 

V. CONCLUSION 

Mathematical models of the cortico-basal ganglia-

thalamocortical network that capture the key features of the 

physiological system in order to produce a faithful 

representation of the dynamics, while remaining analytically 

tractable, are particularly valuable. The results presented in this 

study demonstrate that both the second-order and fourth-order 

series (reduced) models provide close agreement between the 

model output and clinical data. Therefore the second-order 

model is sufficient to represent the system, with the added 

complexity of the fourth-order model, in this case, unnecessary. 

The agreement observed offers the possibility that the model 

could be translated to a clinical tool to aid in DBS parameter 

selection. The model could conceivably be tuned to represent an 

individual patients pathological state using a biomarker of 

Parkinson’s disease. The analytically tractable theoretical 

analysis established here can readily be extended to higher order 

models also, thus providing a valuable framework with which 

to examine and test new models of this type. 
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