Differential diagnosis and comorbidity of ADHD and anxiety in adults
Katie Grogan, Isobel Claire Gormley, Brendan Rooney, Robert Whelan, Hanni Kiiski, Marie Naughton and Jessica Bramham.

Abstract

Objectives. The aim of the present study was to examine symptom profiles of people diagnosed with ADHD and/or anxiety in order to determine the validity of widely used ADHD and anxiety rating scales for differential diagnostic use and to develop modified measures that take symptom overlap into account.

Design. A cross sectional design was used to assess differences in rating scale scores between a clinical (n=52) and control (n=74) sample as well as differences among subgroups of the clinical sample (22 ADHD; 16 ADHD+ANX; 14 ANX).

Method. Participants completed an online questionnaire where they responded to the Conners’ Adult ADHD Rating Scale (CAARS; Conners et al., 1999) and State Trait Anxiety Inventory scales (STAI; Spielberger et al., 1983).

Results: Results showed that the CAARS and STAI had limited sensitivity and specificity, and may lack in ability to differentially diagnose ADHD and/or anxiety. Cluster analysis was used to guide the proposal of modifications for the two scales, which were to use inattentive items only for the CAARS and to exclude state anxiety-present items on the STAI for use in differential diagnosis. Further parametric analysis supported these proposed modifications.

Conclusions: Clinicians should be made aware of the limitations of the CAARS and STAI scales in terms of specificity, when used to inform differential diagnosis of ADHD and anxiety. Further analysis on the psychometric properties of these modified scales is needed in order to confirm that they are valid and reliable scales.

Practitioner points

Clinical implications

- It is possible that widely used self-report rating scales are not valid for use in the context of assessing adult ADHD when anxiety is present.
- Clinicians should take alternative approaches to measuring ADHD symptoms in the context of anxiety.
- Findings of the present study suggest the use of inattentive items only for the CAARS and to exclude state anxiety-present items on the STAI for differential diagnostic use.
Limitations of the study

- The samples sizes of the clinical subgroups were relatively small
- Diagnoses were not confirmed using a semi-structured clinical interview
- Alternative cluster approaches (e.g. 2-step clustering using larger samples) would provide further insight.
Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with symptoms of inattention, hyperactivity and impulsivity that begin in childhood and persist into adulthood for the majority of affected children (Guldberg-Kjaer, Sehlin, & Johansson, 2013; Primich & Iennaco, 2012). The prevalence of adult ADHD has been found to be up to 4.4% (de Graaf et al., 2008; Fayyad et al., 2007; Kessler et al., 2006). However, it has been suggested that we are only identifying a fraction of the adult population who have ADHD (Primich & Iennaco, 2012), especially outside the US where the number of people who are treated for ADHD is negligible (Fayyad et al., 2007).

Adler (2009) conducted a survey study of 400 Primary Care Physicians (PCP) with results showing that 48% of PCP reported feeling uncomfortable diagnosing ADHD and 65% stated they would defer to specialists for an ADHD diagnosis compared with 3% for an anxiety diagnosis. This highlights major issues in terms of the diagnostic process for ADHD, with comorbidity being the most frequently discussed complication (Gentile, Atiq, & Gillig, 2006; Kooij et al., 2010; Solanto, Etefia, & Marks, 2004; Wadsworth & Harper, 2007; Weisler & Goodman, 2008). Comorbidity has been regarded the rule rather than the exception when it comes to adult ADHD and so an accurate evaluation of comorbid symptoms and disorders is an important aspect of the adult ADHD assessment process (Kooij et al., 2010).

One of the most common co-occurring disorders for people with ADHD is anxiety, with up to 47% of adults with ADHD being diagnosed with an anxiety disorder (Kessler et al., 2006). Both genetic and environmental factors have been thought to play a role in the comorbidity. ADHD and anxiety are found to have a common genetic component with certain maternal clinical variables specifically correlated with offspring variables (Marcoen & Van den Bergh, 2004; Segenreich et al., 2015). Moreover, adults with ADHD tend to experience more adversity throughout their lives due to their ADHD symptoms (e.g. poor performance at work, poor peer relationships), which is thought to contribute to their negative thoughts, negative beliefs and overall negative mood, so that adults with ADHD often develop an anticipatory anxiety and an expectation of failure (Bramham et al., 2012).

There are certain symptoms that overlap between ADHD and anxiety including restlessness/psychomotor agitation, concentration difficulties, decreased attention, increased distractibility, mood swings and anger outbursts (Kooij et al., 2012). Previous research has found that higher endorsements of hyperactive/impulsive items positively correlated with endorsements of anxiety items on self-report symptom rating scales (Grogan & Bramham,
2014). This overlap could result in a missed diagnosis of ADHD in the context of anxiety, with ADHD symptoms (e.g. restlessness) being explained by symptoms of anxiety rather than ADHD, or vice versa. The implications of inaccurate or missed diagnoses for individuals can include a lack of self-confidence, poor manageability, guilt feelings related to everyday difficulties (Fleischmann & Fleischmann, 2012), inappropriate treatment choice and disruption in social, occupational and family domains of life (Houston et al., 2011). Fleischmann and Fleischmann (2012) found that adults diagnosed with ADHD began to believe in their ability to lead more meaningful, manageable lives following an accurate diagnosis.

During a diagnostic assessment for ADHD, self-report screening measures are usually the first indicator of the presence or absence of ADHD and comorbid symptoms. After screening for the presence of symptoms, accurate diagnosis requires a multifaceted approach including gathering information on childhood history, current symptoms and a measurement of functional impairments (Weisler & Goodman, 2008). This information is gathered by means of a clinical interview, objective collateral interview, neuropsychological testing and computerised tests of attention and response inhibition (Haavik, Halmøy, Lundervold, & Fasmer, 2010).

The Conners’ Adults ADHD Rating Scale (CAARS; Conners et al., 1999) is one of the most widely used self-report rating scales for ADHD, comprising of subtests that incorporate symptoms of inattention and hyperactivity/impulsivity from the Diagnostic and Statistical Manual for Mental Disorders, fourth edition revised (DSM-IV-R; APA, 2000), and is useful for screening purposes, diagnostic purposes and tracking the progression of treatment (Baer & Blais, 2010). Taylor et al. (2011) conducted a systematic review on 14 separate ADHD rating scales and concluded that for adult ADHD symptom ratings, the CAARS had the best psychometric properties. Self-report rating scales are cost-effective and time-efficient tools used to screen for the presence of symptoms of various disorders. However, self-report rating scales should be used only to complement a comprehensive diagnostic assessment (Asherson et al., 2012).

Two important measures of scale validity are sensitivity and specificity, which are forms of classification (i.e. the ability of a scale to distribute new cases to groups of the same type, for example, ADHD group or non-ADHD group), whereby more valid scales have better discriminant ability in terms of differentiating clinical and non-clinical groups. More precisely, sensitivity is the ability of a scale to correctly identify true cases (ADHD present) and specificity is the ability of a scale to identify true non-cases (ADHD absent).
Many studies have found that the CAARS has good sensitivity, indicating its ability to correctly identify ADHD individuals (Conners et al., 1999; Erhardt, Epstein, Conners, Parker, & Sitarenios, 1999; Taylor et al., 2011). It is not uncommon for a test with high sensitivity to have low specificity and vice versa (Lalkhen & McCluskey, 2008), as it is difficult, but possible, to achieve high levels of both. Other research has suggested that the CAARS has poor specificity, and that the scale contains certain items that might be explained by other Axis I disorders, such as anxiety (Stewart & Liljequist, 2015). For instance, the State Trait Anxiety Inventory (STAI; Spielberger et al., 1983) is a measure of current (state) and on-going (trait) symptoms of anxiety. However, there are certain items on both the STAI and the CAARS that appear to tap into similar constructs, such as ‘I tend to squirm or fidget’ and ‘I am jittery’; ‘I’m not sure of myself’ and ‘I lack self confidence’; ‘I feel restless inside even if I am sitting still’ and ‘I feel nervous and restless’. Although these self-report rating scales are deemed valid for use in a wide variety of clinical populations, it may not be suitable to use these scales in combination when assessing ADHD and comorbid anxiety due to overlapping symptoms. Taylor (2011) emphasises the importance of assessing discriminant validity of scales on other psychiatric comparison groups so that the effects of confounding variables can be reduced, however research of this kind is limited for the CAARS.

Aims of the present study

Although the CAARS has been shown to have very good psychometric properties and can accurately aid in the assessment process by correctly identifying people who have ADHD (i.e. good sensitivity), there is concern that these scales may not be able to accurately identify people who do not have ADHD, particularly in the context of anxiety disorders (i.e. poor specificity). The aim of the present study is to examine the profile of responses of people with ADHD, anxiety (ANX) and ADHD and comorbid anxiety (ADHD+ANX) on the CAARS and STAI so that recommendations for modified scales that take account of symptom overlap can be proposed. The first objective is to assess the ability of the CAARS and STAI to discriminate between clinical versus control samples as well as to distinguish between individuals in the clinical subgroups (ADHD, ANX ADHD+ANX). The second objective is to use cluster analysis to assess the pattern of responses on the CAARS and STAI self-report measures in order to assess overlapping symptoms and to guide the development of a modified CAARS and modified STAI scale. The final objective is to propose changes to be made to the current versions of the CAARS and STAI for differential diagnostic use.
Method

Participants
Participants included 126 individuals over the age of 18 (74 control participants; 52 clinical participants) who were divided into a clinical sample and a control sample (see Table 1 for sample characteristics). Control participants were recruited from a university sample. Clinical participants were recruited at an Adult ADHD specialist clinic and through support group websites. The clinical sample was further divided into subgroups of people with ADHD (n=22), ANX (n=14) and ADHD+ANX (n=16), based on having received a formal diagnosis of each of the disorders. Participants were included in the clinical group if they received a new diagnosis of ADHD and/or anxiety at the Adult ADHD specialist clinic or if they had already received a diagnosis of ADHD and/or anxiety previously. Participants recruited from the Adult ADHD specialist clinic received a formal diagnosis of ADHD with/without comorbid anxiety from a multidisciplinary team which included a consultant psychiatrist, clinical psychologist and clinical nurse manager using the Conners Adult ADHD Diagnostic Interview for DSM-IV (Conners, Epstein, & Johnson, 2001). Participants recruited from support group websites reported having received a diagnosis of ADHD and/or anxiety by means of the following question on the questionnaire: ‘Do you have a formal diagnosis of any of the following disorders?’. The university Office of Research Ethics granted ethical approval in March 2014. The hospital granted ethical approval in March 2015.

Measures
Conners Adult ADHD Rating Scale-long version
This version of the CAARS (Conners et al., 1999) is made up of 66-items which can be divided into 8 subscales: Inattention/ Memory Problems, Hyperactivity/ Restlessness, Impulsivity/ Emotional Lability, Problems with Self-Concept, DSM-IV Inattention Symptoms, DSM-IV Hyperactive/Impulsive Symptoms, DSM-IV ADHD Symptoms Total and ADHD Index. Ratings are given on a four-point scale with responses including “Not at all, never”, “Just a little, once in a while”, “Pretty much, often” and “Very much, very frequently”. Conners et al. (1999) indicate that individuals scoring T>70 on the ADHD Index are likely to meet diagnostic criteria.

In a systematic literature review conducted by Taylor (2011) the CAARS was found to have the most robust psychometric properties of 14 separate scales and the best content validity of all the adult symptoms rating scales. The CAARS has high internal consistency (.86-.92), high test-retest reliability (r=.80-.91), a diagnostic sensitivity of up to 97%, specificity of up to 83% and overall correct classification of 85% (Conners et al., 1999; Luty et al., 2009; Macey, 2003). CAARS was found to have better convergent validity of DSM-IV factors in comparison to other
adult ADHD rating scales (Kooij et al., 2008). In a more recent study, the CAARS showed
good internal consistency across all 8 subscales (Cronbach’s Alpha= .740-.893) and for the
whole scale (Cronbach’s Alpha=.967) within a sample of college students (Fuller-Killgore,
Burlison, & Dwyer, 2013).

State Trait Anxiety Inventory- Form Y
The STAI (Spielberger et al., 1983) is a 40 item questionnaire consisting of two subscales; the
state subscale contains 20 items relating to current symptoms of anxiety and the trait subscale
contains 20 items relating to general symptoms of anxiety. All items are rated using a 4-point
scale with answers “Almost never”, “Sometimes”, “Often” and “Almost always". The STAI-Y is
a more recent version of the STAI-X with improved psychometric properties (Spielberger &
Reheiser, 2009). During scale composition, the authors (Spielberger et al., 1983) reported
good internal consistency of both the state (.93) and trait (.90) subscales according to
Cronbach’s Alpha, across a sample including high school and college students, working adults
and military recruits. Test-retest stability coefficients for the trait subscale ranged from .73 to
.86, but were lower for the state subscale (.33), which was expected and was desirable as an
accurate measure of state anxiety should be influenced by situational factors occurring during
testing resulting in fluctuating scores (Spielberger et al., 1983). The trait subscale has good
concurrent validity with other measures of trait anxiety such as the Taylor Manifest Anxiety Scale and the Cattell and Scheier’s Anxiety Scale Questionnaire, with coefficients of .73 and .85, respectively. More recently, Ortuno-Sierra et al. (2016) reported internal consistency of
.98 and .94 and test-retest reliability of .81 and .93 for non-clinical and clinical samples
respectively for the STAI, concluding that the scale has adequate psychometric properties.

The STAI was initially viewed as a set of unidimensional, bipolar constructs (state anxiety and
trait anxiety). However, the STAI was constructed using 10 anxiety-present and 10 anxiety-
absent items in each subscale in order to reduce acquiescence. More recently, a four-factor
model has been produced (state anxiety present, state anxiety absent, trait anxiety present, trait anxiety absent) (Vigneau & Cormier, 2008). The STAI has often been used to assess anxiety levels in adults with ADHD, demonstrating higher levels of anxiety in adults with ADHD compared to controls (Pehlivanidis, Papanikolaou, Spyropoulou, & Papadimitriou, 2014) and higher levels of trait anxiety than state anxiety (Müller et al., 2007). Although T scores are not provided, raw scores were converted to T scores based on the norms outlined by Crawford et al. (2011), whereby T scores greater than 70 indicated cut-off for anxiety.

Procedures
Participants were given a short description of the research, and provided with an online link to the study. Participants were first asked to read the information sheet, then to provide consent, after which they were given time to complete the questionnaire. Consent was given by means of ticking a box, and data were collected only if the participant had provided informed consent. No identifying information was recorded.

Data analyses

Data were stored and statistical analyses were performed using Predictive Analytics Software version 20 (IBM Corp, 2011). Sensitivity and specificity were calculated using the following formulae:

\[
\text{Sensitivity} = \frac{\text{number of true positives}}{\text{number of true positives} + \text{number of false negatives}}
\]

\[
\text{Specificity} = \frac{\text{number of true negatives}}{\text{number of true negatives} + \text{number of false positives}}
\]

\(T\) tests were used to assess the differences between the CAARS and STAI subscale scores of the clinical and control samples. A one-way Analysis of Variance was used to assess the difference between the CAARS and STAI subscale scores for the ADHD, ADHD+ANX and ANX subgroups. Based on the methodology used by Donnchadha et al. (2013), we used cluster analysis by item in order to disentangle overlapping symptoms. Lewandowski, Sperry, Cohen, & Öngür (2014) emphasise the importance of using cluster analytic approaches for cross-diagnostic samples presenting with similar difficulties. Hierarchical cluster analysis is recommended for smaller sample sizes and for cluster analysis of items rather than cases (Hair, 2010) and is a stable and reproducible procedure. Ward’s hierarchical agglomerative method was selected for the purpose of this research, with the squared Euclidean distance used as the measure of similarity. One-way ANCOVAs were used to examine any differences between the samples and groups in terms of the cluster total scores and on the proposed modified scale scores while adjusting for age. Bonferroni’s correction was used to account for multiple comparisons and corrected \(p\) values are stated beneath tables.
Results

Objective 1: The first objective was to assess the ability of the CAARS and STAI to discriminate between clinical versus control samples as well as to distinguish between individuals in the clinical subgroups (ADHD, ANX ADHD+ANX). This objective was subdivided into two objectives, namely 1a and 1b. Objective 1a was to assess the sensitivity and specificity of each subscale on the CAARS and STAI. Sensitivity and specificity were calculated using t-scores of 70 as the cut-off criteria for both scales. Objective 1b was to assess whether there are any differences of mean scores across all subscales between the clinical and control samples, as well as between the subgroups of the clinical samples.

Sensitivity and specificity of CAARS and STAI subscales
Sensitivity and specificity rates were calculated for each subscale of the CAARS and STAI for the whole sample, and specificity rates for the clinical sample were also obtained (see Table 2). The CAARS inattention/memory problems, CAARS DSM inattentive symptoms and CAARS DSM-IV total symptoms showed better sensitivity (>70%) in comparison to other subtests (<70%). Overall, specificity rates for the whole sample were generally good (>70%) across all subscales for the CAARS and STAI. However, specificity of subscales for the clinical sample was lower than specificity of subscales for the whole sample. This suggests that both scales have poorer discriminant ability when used cross-diagnostically in comparison to clinical versus control comparisons.

Subscale score differences across the samples and subgroups
As sensitivity and specificity classify individuals based on cut-off scores (t=70), we assessed whether there are any differences between mean scores across all subscales for the clinical and control samples, as well as between the subgroups of the clinical samples. T tests were used to assess the differences between the CAARS and STAI subscale scores of the clinical and control samples (see Table 3). Results showed that there was a significant difference between the two groups in terms of each of the eight CAARS subscales, and for the two STAI subscales. Analysis of the means suggests that the clinical group scored higher on each CAARS and STAI subscale than the control group.

A one-way Analysis of Variance was used to assess the differences between the CAARS and STAI subscale scores for the ADHD, ADHD+ANX and ANX subgroups (see Table 4). Results showed that the CAARS inattention/memory problems and CAARS DSM inattentive symptoms scores differed between the three groups. Least Significant Difference (LSD) post
hoc analysis, showed that the ADHD group and the ADHD+ANX group had significantly higher ratings for CAARS inattentive/memory problems than the ANX group ($p=.001$, $p=.001$, respectively) but that there was no significant difference between the ADHD group and the ADHD+ANX group ($p=.825$). LSD analysis also showed that the ADHD group and the ADHD+ANX group had significantly higher ratings for CAARS DSM Inattentive symptoms than the ANX group ($p=.002$, $p=.000$, respectively) but that there was no significant difference between the ADHD group and the ADHD+ANX group ($p=.320$). There were no significant differences between the three groups in terms of CAARS hyperactivity/restlessness, impulsivity/emotional lability, problems with self-concept, hyperactivity/impulsivity symptoms, DSM total symptoms and ADHD index, or the STAI state or trait subscale scores.

Objective 2: Objective 2 was to use cluster analysis to assess the pattern of responses of all participants on the CAARS and STAI self-report measures in order to assess overlapping symptoms and to guide the development of a modified CAARS and modified STAI scale.

Cluster analysis was used to find clusters of STAI and CAARS items for which similar response patterns were observed. Forty STAI items and 66 CAARS items were examined using cluster analysis with many cluster solutions being formed. Having more than 7 clusters increases the heterogeneity between clusters which is not helpful in terms of interpretation (Hair, 2010), therefore we narrowed our selection to up to 7 clusters only. The percentage change in heterogeneity is the stopping rule selected for the purpose of cluster solution selection. This stopping rule suggests that a large increase in the percent of heterogeneity between one stage and the next implies a substantial increase in heterogeneity and therefore the cluster solution prior to this increase is the best fitting solution. The largest increase was seen between the one- and two-cluster solutions (12.46%), however a two-cluster solution provides limited information and should be avoided (Hair, 2010). Therefore, we will focus on a three-cluster solution because the next largest percent increase occurs at this stage (10.49%). The increase at this point is relatively large, favouring a three-cluster solution over a two-cluster solution and suggesting a possible stopping point.

Cluster one contained 19 items, which related to problems with attention, forgetfulness, distractibility or memory problems, and will be referred to as the ‘inattention/memory’ cluster. Six items were from the CAARS DSM inattentive symptoms subscale, 10 items were from the CAARS inattention/memory problems subscale and 3 items were from the CAARS ADHD index subscale. This cluster contained no STAI items.
Cluster two comprised of 32 items, consisting mostly of STAI trait items, STAI state anxiety-absent items and CAARS self-concept items relating to emotional state or traits or perceptions of well-being and will be referred to as the ‘emotions and well-being’ cluster. Eighteen items were from the STAI trait subscale, 10 items were from the STAI state anxiety-absent subscale and four items were from the CAARS problems with self-concept subscale.

Cluster three consisted of 55 items, all relating to hyperactivity, impulsivity, stress, nervousness, worry and inattention (to a lesser extent), and will be referred to as the ‘hyperactivity, impulsivity and anxiety’. Twelve items were from the CAARS impulsivity/emotional lability subscale, a further 12 items were from the CAARS hyperactivity/restlessness subscale, 9 items were from the CAARS DSM hyperactive-impulsive symptoms subscale, 10 items were from the STAI state anxiety-present subscale, three items were from the CAARS ADHD index subscale, three items were from the CAARS DSM inattentive symptoms subscale, two items were from the CAARS inattention/memory problems subscale, two items were from the CAARS problems with self-concept subscale and there were two STAI trait anxiety items.

One-way ANOVAs were used to examine any differences between the clinical and control groups as well as the subgroups of the clinical sample in terms of the cluster total scores (see Table 5). A significant difference was found between the clinical and control groups for cluster one (‘inattention/memory’ cluster), cluster two (‘emotions and well-being’ cluster), and for cluster three (‘hyperactivity, impulsivity and anxiety’ cluster). Observation of the means shows that the clinical group had significantly higher ratings on each of the three clusters compared to the control group. A significant difference was found between the subgroups of the clinical sample for cluster one and cluster two, but not cluster three. LSD post hoc analysis showed that the ADHD group and the ADHD+ANX group had significantly higher ratings for Cluster 1 ‘inattentive symptoms’ than the ANX group (p=.000 and p=.000, respectively), but that there was no significant difference between the ADHD and ADHD+ANX group (p=.670). LSD analysis also showed that the ADHD group had significantly lower Cluster 2 (‘emotions and well-being’) scores than the ADHD+ANX group (p=.005) and that the difference between the ADHD group and the ANX group is approaching significance (p=.034) (because of Bonferroni corrections) but that there was no significant difference between the ANX group and the ADHD+ANX group (p=.555).

Objective 3: Objective 3 was to propose changes to be made to the current versions of the CAARS and STAI for differential diagnostic use based on cluster analysis findings. Cluster analysis showed that Cluster 1 (items relating to attention, forgetfulness, distractibility and
memory problems) and Cluster 2 (items relating to emotional state or traits or perceptions of well-being) might contain items that can successfully distinguish between the three clinical subgroups. The proposal for the modified CAARS therefore included CAARS items from cluster one, which was free from STAI items. The proposal for the modified STAI included STAI items from cluster two, and omitted CAARS items that appear to overlap.

ANCOVAs were calculated to examine the differences between groups in terms of the modified CAARS and modified STAI while controlling for age. ANCOVAs were firstly performed to assess differences in scores between the control and clinical sample. Age was significantly related to modified CAARS scores $F(1, 126)= 4.856, p=.029$, and there was a significant difference between the clinical ($M=62.239; SD=1.968$) and control ($M=39.021; SD=1.613$) groups after age was accounted for $F(1, 126)= 82.168, p=.000, \eta^2=.394$. Age was not significantly related to modified STAI scores $F(1, 126)=2.107, p=.149$, and there was a significant difference between the clinical ($M=83.073; SD=2.318$) and control ($M=59.457; SD=1.900$) groups after age was accounted for $F(1, 126)= 61.297, p=.000, \eta^2=.327$.

ANCOVAs were then performed to assess differences in scores between the subgroups of the clinical sample. Age was not significantly related to modified CAARS scores $F(1, 48)=1.542, p=.220$, and there was a significant difference between the groups after age was accounted for $F(2, 48)=10.394, p=.000, \eta^2=.302$. Post hoc analysis showed that the ADHD ($M=66.409; SD=2.372$) and ADHD+ANX ($M=67.911; SD=2.782$) groups had larger modified CAARS scores compared to the ANX ($M=51.245; SD=2.974$) group, but that there was no difference between the ADHD and ADND+ANX groups ($p=.000; p=.000; p=.683$). Age was not significantly related to modified STAI scores $F(1, 48)=.716, p=.402$, and there was a significant difference between the groups after age was accounted for $F(2, 48)=4.427, p=.017, \eta^2=.156$. Post hoc analysis showed that the ANX ($M=86.894; SD=3.774$) and ADHD+ANX ($M=89.727; SD=3.530$) groups had larger modified STAI scores compared to the ADHD group ($M=76.812; SD=3.011$), but that there was no difference between the ANX and ADND+ANX groups ($p=.042; p=.008; p=.586$).

Reliability analysis of original and modified CAARS and STAI

Cronbach’s Alpha was used to measure the reliability of the original and modified CAARS and STAI scales. Cronbach’s Alpha for the 66 items of the original CAARS scale was .982 and for the 40 items of the original STAI was .974. For the 19 items of the proposed modified CAARS scale, Cronbach’s Alpha was .980 and for the 28 items of the proposed modified STAI, Cronbach’s Alpha was .970. This indicated excellent reliability for both original and modified versions of the CAARS and STAI.
Discussion

The overall aim of the present study was to examine the profile of responses of people with ADHD, ANX and ADHD+ANX on the CAARS and STAI so that recommendations for modified scales that take account of symptom overlap can be proposed. The three objectives were i) to assess the ability of the CAARS and STAI to discriminate between clinical versus control samples as well as to distinguish between individuals in the clinical subgroups (ADHD, ANX ADHD+ANX) ii) to use cluster analysis to assess the pattern of responses on the CAARS and STAI self-report measures in order to assess overlapping symptoms and to guide the development of a modified CAARS and modified STAI scale and iii) to propose changes to be made to the current versions of the CAARS and STAI for use in differential diagnosis.

Sensitivity and specificity of original CAARS and STAI
Aside from the CAARS inattention/memory problems and DSM-IV inattentive symptoms, all other subscales on the CAARS and STAI had poor sensitivity. Overall, specificity rates were generally good (>70%) across all subscales for the whole sample. However, specificity rates of subscales for the clinical sample were observably lower than specificity of subscales for the whole sample. It was found that the CAARS and STAI have poor discriminant ability among a clinical sample of individuals with ADHD, ADHD+ANX and ANX. This indicates that symptom overlap results in an inflation of symptoms on both scales for all clinical subgroups. This concern has been expressed previously in the literature (Stewart & Liljequist, 2015; Taylor et al., 2011). Although previous experts in the area (i.e. Houston et al., 2011) have proposed new screening tools that take account of symptom overlap of certain Axis I disorders, this has yet to take place in the context of ADHD and anxiety symptoms specifically.

Usage of scales in clinical samples
Further analysis of symptoms aimed to assess differences between groups of participants without using the stringent cut-off (>70) for criteria. It was found that the clinical group scored higher on the CAARS and STAI than the control samples, but there were no differences on the two scales when comparing the subgroups of the clinical sample. The only exceptions were the CAARS inattention/memory and DSM-inattentive symptoms subscales. Stewart and Liljequist (2015) also found that the inattentive symptoms were best able to distinguish between an ADHD versus non-ADHD clinical group, which is consistent with inattention being the hallmark of adult-ADHD (Barkley, 1990). This is also supported by our finding that the inattentive symptoms are most sensitive in identifying ADHD participants.
Overlapping symptoms identified by cluster analysis

Cluster analysis demonstrated three distinct findings that were confirmed using parametric analysis. Firstly, it was apparent that the majority of inattentive items remain dissimilar to any of the anxiety items, suggesting that there is no overlap between inattentive symptoms and anxiety symptoms. Secondly, there appears to be a similarity between all STAI items (except STAI state anxiety-present items) and CAARS self-concept items. This finding suggests that the formation of a modified STAI scale for use with people with ADHD should not include STAI state anxiety-present items. Furthermore, caution should be made in interpreting scores for adults with ADHD who have high scores on the CAARS self-concept subscale, as these individuals might also endorse high STAI trait and STAI state anxiety-absent items. Thirdly, the majority of CAARS items relating to hyperactivity, impulsivity, restlessness and emotional lability are similar to the STAI state (anxiety-present) items, suggesting that a distinct overlap occurs for these symptom types. These items are therefore unable to distinguish individuals with ADHD from individuals with anxiety as both samples endorse items similarly. This suggests that these items should not be used to make decisions on differential diagnosis in the context of ADHD and anxiety.

Proposal for modified CAARS and STAI scales

Based on cluster analysis findings, we propose that a modified version of the CAARS for use in the context of symptoms of anxiety would include inattentive symptoms only, such as those inattentive items found in cluster 1. This proposal was supported by the finding that there were significant differences between individuals with ADHD (+/- ANX) and those with ANX alone on the modified CAARS. Many hyperactive and impulsive items as well as self-concept items overlap with anxiety items- a finding supported by the literature (Grogan & Bramham, 2014; Kooij et al., 2008)- and so we advise that they be omitted from the modified CAARS as they will likely result in a false elevation of ADHD symptoms in the context of anxiety, or vice versa. We propose that a modified version of the STAI exclude state anxiety-present items, as these specific STAI items appear to be endorsed similarly to CAARS items and might lead to over-reporting of anxiety symptoms for some ADHD individuals. This proposal was also supported by the finding that there were significant differences between individuals with ANX (+/- ADHD) and those with ADHD alone on the modified STAI. However, we also caution the use of this modified scale in the context of ADHD individuals who have high self-concept ratings on the CAARS as there appears to be a relationship between these items.

However, we acknowledge that there are certain limitations in the present research design. A larger sample size for the clinical sub-groups would be desirable for more robust findings. Furthermore, participants were divided into clinical subgroups based on previous clinical
diagnoses. It would be preferable to use more rigorous examination, such as a Structured Clinical Interview for DSM-V in order to confirm these diagnoses. From the analysis point of view, examining alternative clustering methods (e.g. 2-step clustering) may also provide further insights. Future research without these limitations are needed to provide further support for the modified CAARS and STAI scales proposed.

Implications of findings and conclusions

The CAARS and STAI appear effective in distinguishing between clinical and control samples, however clinicians cannot presume the absence of comorbid disorders when using self-report screening measures. For this reason, clinicians should be wary of using the CAARS or STAI in the context of suspected comorbid symptoms, as some items may be falsely elevated due to symptom overlap. Furthermore, it is advisable that an alternative approach be taken when screening adults for ADHD in the presence or suspected presence of anxiety. In this context, a modified version of the CAARS that includes only inattentive symptoms, has been proposed to be best able distinguish between the two disorders. Similarly, the use of the STAI in the context of ADHD should be modified so that state anxiety-present items are omitted as they overlap with many CAARS items. As the number of adults seeking an ADHD assessment and the rates of ADHD diagnoses are increasing, it is pertinent to assess and utilise accurate measures during the diagnostic process.
References

Solanto, M. V., Etefia, K., & Marks, D. J. (2004). The Utility of Self-Report Measures and the Continuous Performance Test in the Diagnosis of ADHD in Adults. CNS Spectrums, 9(9), 649-659.

Tables

Table 1: Sample characteristics

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>Male:female</th>
<th>Mean age in years (SD)</th>
<th>Age range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical sample</td>
<td>52</td>
<td>25:27</td>
<td>30.87 (9.86)</td>
<td>18-55</td>
</tr>
<tr>
<td>ADHD</td>
<td>22</td>
<td>14:8</td>
<td>30.64 (7.56)</td>
<td>18-44</td>
</tr>
<tr>
<td>ADHD+ANX</td>
<td>16</td>
<td>7:9</td>
<td>31.00 (11.38)</td>
<td>18-51</td>
</tr>
<tr>
<td>ANX</td>
<td>14</td>
<td>4:10</td>
<td>31.07 (11.81)</td>
<td>18-55</td>
</tr>
<tr>
<td>Control sample</td>
<td>74</td>
<td>21:53</td>
<td>27.64 (7.89)</td>
<td>18-52</td>
</tr>
<tr>
<td>Total sample</td>
<td>126</td>
<td>46:80</td>
<td>28.97 (8.86)</td>
<td>18-55</td>
</tr>
</tbody>
</table>

Note: ADHD= Attention Deficit Hyperactivity Disorder, ANX= anxiety and ADHD+ANX= ADHD + comorbid anxiety
Table 2: Sensitivity and specificity of each of the CAARS and STAI subscales

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity (whole sample)</th>
<th>Specificity (clinical sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAARS inattention/memory problems</td>
<td>81.58%</td>
<td>80.68%</td>
<td>50.00%</td>
</tr>
<tr>
<td>CAARS hyperactivity/restlessness</td>
<td>21.05%</td>
<td>95.45%</td>
<td>78.57%</td>
</tr>
<tr>
<td>CAARS impulsivity/ emotional lability</td>
<td>28.95%</td>
<td>88.64%</td>
<td>64.29%</td>
</tr>
<tr>
<td>CAARS problems with self-concept</td>
<td>39.47%</td>
<td>87.50%</td>
<td>71.43%</td>
</tr>
<tr>
<td>CAARS DSM inattentive symptoms</td>
<td>94.74%</td>
<td>73.86%</td>
<td>42.86%</td>
</tr>
<tr>
<td>CAARS DSM hyperactivity/impulsivity symptoms</td>
<td>28.95%</td>
<td>92.05%</td>
<td>85.71%</td>
</tr>
<tr>
<td>CAARS DSM total symptoms</td>
<td>76.32%</td>
<td>78.41%</td>
<td>35.71%</td>
</tr>
<tr>
<td>CAARS ADHD index</td>
<td>52.63%</td>
<td>87.50%</td>
<td>57.14%</td>
</tr>
<tr>
<td>STAI state</td>
<td>50.00%</td>
<td>84.38%</td>
<td>77.27%</td>
</tr>
<tr>
<td>STAI trait</td>
<td>66.67%</td>
<td>86.46%</td>
<td>63.64%</td>
</tr>
</tbody>
</table>
Table 3: Analysis of the control sample and clinical sample in terms of CAARS and STAI subscale scores

<table>
<thead>
<tr>
<th>Subscale</th>
<th>Control group M (SD)</th>
<th>Clinical group M (SD)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAARS inattention/memory problems</td>
<td>11.46 (8.83)</td>
<td>26.40 (7.96)</td>
<td>9.731</td>
<td>.000*</td>
</tr>
<tr>
<td>CAARS hyperactivity/restlessness</td>
<td>11.57 (6.49)</td>
<td>19.50 (8.32)</td>
<td>6.007</td>
<td>.000*</td>
</tr>
<tr>
<td>CAARS impulsivity/ emotional lability</td>
<td>9.50 (7.01)</td>
<td>18.00 (7.41)</td>
<td>6.544</td>
<td>.000*</td>
</tr>
<tr>
<td>CAARS problems with self-concept</td>
<td>6.62 (5.01)</td>
<td>12.81 (4.17)</td>
<td>7.305</td>
<td>.000*</td>
</tr>
<tr>
<td>CAARS DSM inattentive symptoms</td>
<td>7.81 (7.08)</td>
<td>19.63 (6.59)</td>
<td>9.493</td>
<td>.000*</td>
</tr>
<tr>
<td>CAARS DSM hyperactivity/impulsivity symptoms</td>
<td>7.11 (4.55)</td>
<td>12.77 (6.11)</td>
<td>5.964</td>
<td>.000*</td>
</tr>
<tr>
<td>CAARS DSM total symptoms</td>
<td>14.92 (11.11)</td>
<td>32.40 (10.64)</td>
<td>8.850</td>
<td>.000*</td>
</tr>
<tr>
<td>CAARS ADHD index</td>
<td>10.49 (6.98)</td>
<td>21.38 (6.54)</td>
<td>8.856</td>
<td>.000*</td>
</tr>
<tr>
<td>STAI state</td>
<td>38.64 (13.20)</td>
<td>53.67 (13.19)</td>
<td>6.296</td>
<td>.000*</td>
</tr>
<tr>
<td>STAI trait</td>
<td>40.70 (12.30)</td>
<td>58.08 (10.51)</td>
<td>8.279</td>
<td>.000*</td>
</tr>
</tbody>
</table>

Note: ADHD= Attention Deficit Hyperactivity Disorder, ANX= anxiety and ADHD+ANX= ADHD + comorbid anxiety.

Bonferroni corrected p value = .005, * denotes p<.005.
Table 4: The difference between the ADHD, ADHD+ANX and ANX groups in terms of CAARS and STAI subscale scores

<table>
<thead>
<tr>
<th>Subscale</th>
<th>Group</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADHD M (SD)</td>
<td>ADHD+ANX M (SD)</td>
<td>Anx M (SD)</td>
<td>F</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>CAARS inattention/memory problems</td>
<td>28.55 (5.99)</td>
<td>29.06 (5.01)</td>
<td>20.00 (10.06)</td>
<td>7.893</td>
<td>.001*</td>
<td></td>
</tr>
<tr>
<td>CAARS hyperactivity/restlessness</td>
<td>19.59 (8.86)</td>
<td>20.38 (8.39)</td>
<td>18.36 (7.80)</td>
<td>.215</td>
<td>.807</td>
<td></td>
</tr>
<tr>
<td>CAARS impulsivity/emotional lability</td>
<td>17.00 (7.55)</td>
<td>20.81 (6.50)</td>
<td>16.36 (7.76)</td>
<td>1.745</td>
<td>.185</td>
<td></td>
</tr>
<tr>
<td>CAARS problems with self-concept</td>
<td>11.23 (4.50)</td>
<td>14.63 (3.05)</td>
<td>13.21 (4.02)</td>
<td>3.476</td>
<td>.039</td>
<td></td>
</tr>
<tr>
<td>CAARS DSM inattentive symptoms</td>
<td>20.77 (4.40)</td>
<td>22.69 (4.03)</td>
<td>14.36 (8.78)</td>
<td>8.425</td>
<td>.001*</td>
<td></td>
</tr>
<tr>
<td>CAARS DSM hyperactivity/impulsivity symptoms</td>
<td>12.27 (6.40)</td>
<td>14.31 (5.57)</td>
<td>11.79 (6.33)</td>
<td>.757</td>
<td>.474</td>
<td></td>
</tr>
<tr>
<td>CAARS DSM total symptoms</td>
<td>33.05 (9.08)</td>
<td>37.00 (7.98)</td>
<td>26.14 (12.99)</td>
<td>4.497</td>
<td>.016</td>
<td></td>
</tr>
<tr>
<td>CAARS ADHD index</td>
<td>20.86 (5.32)</td>
<td>24.44 (5.41)</td>
<td>18.71 (8.29)</td>
<td>3.240</td>
<td>.048</td>
<td></td>
</tr>
<tr>
<td>STAI state</td>
<td>48.63 (15.69)</td>
<td>58.19 (9.05)</td>
<td>56.43 (10.70)</td>
<td>3.078</td>
<td>.055</td>
<td></td>
</tr>
<tr>
<td>STAI trait</td>
<td>53.59 (10.21)</td>
<td>62.13 (8.79)</td>
<td>60.50 (10.75)</td>
<td>3.976</td>
<td>.025</td>
<td></td>
</tr>
</tbody>
</table>

Note: ADHD= Attention Deficit Hyperactivity Disorder, ANX= anxiety and ADHD+ANX= ADHD + comorbid anxiety.
Bonferroni corrected p value = .005, * denotes p<.005.
Table 5: Mean difference between the clinical and control samples and the subgroups of the clinical sample in terms of cluster total scores and proposed modified CAARS and STAI scores

<table>
<thead>
<tr>
<th>Group</th>
<th>Subscale</th>
<th>Control</th>
<th>Clinical</th>
<th>Statistic</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADHD M (SD)</td>
<td>ADHD+ANX M (SD)</td>
<td>ANX M (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster 1</td>
<td>38.65 (15.06)</td>
<td>62.79 (13.05)</td>
<td>t= 9.411</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66.36 (8.87)</td>
<td>67.94 (6.95)</td>
<td>F= 10.218</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Cluster 2</td>
<td>68.23 (20.53)</td>
<td>96.38 (16.80)</td>
<td>t= 8.204</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88.59 (17.83)</td>
<td>103.69 (11.66)</td>
<td>F=4.912</td>
<td>.011*</td>
<td></td>
</tr>
<tr>
<td>Cluster 3</td>
<td>100.87 (27.36)</td>
<td>139.00 (28.21)</td>
<td>t= 7.667</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>134.23 (29.16)</td>
<td>149.50 (24.41)</td>
<td>F=1.642</td>
<td>.204</td>
<td></td>
</tr>
</tbody>
</table>

Note: *denotes p<.05, **denotes p<.01, ***denotes p<.001