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1 Summary 

Background:	The	barbell	squat	is	a	popularly	used	lower	limb	rehabilitation	exercise.	It	

is	 also	 an	 integral	 exercise	 in	 injury	 risk	 screening	 protocols.	 To	 date	 athlete/patient	

technique	has	been	assessed	using	expensive	laboratory	equipment	or	subjective	clinical	

judgement;	 both	 of	 which	 are	 not	 without	 shortcomings.	 Inertial	 measurement	 units	

(IMUs)	 may	 offer	 a	 low	 cost	 solution	 for	 the	 objective	 evaluation	 of	 athlete/patient	

technique.	However,	it	is	not	yet	known	if	global	classification	techniques	are	effective	in	

identifying	naturally	occurring,	minor	deviations	in	barbell	squat	technique.	

Objectives:	The	aims	of	this	study	were	to:	(a)	determine	if	in	combination	or	in	isolation,	

IMUs	 positioned	 on	 the	 lumbar	 spine,	 thigh	 and	 shank	 are	 capable	 of	 distinguishing	

between	acceptable	and	aberrant	barbell	squat	technique;	(b)	determine	the	capabilities	

of	an	IMU	system	at	identifying	specific	natural	deviations	from	acceptable	barbell	squat	

technique;	 and	 (c)	 compare	 a	 personalised	 (N=1)	 classifier	 to	 a	 global	 classifier	 in	

identifying	the	above.		

Methods	Fifty-five	healthy	volunteers	(37	males,	18	females,	age	=	24.21	+/-	5.25	years,	

height	=	1.75	+/-	0.1	m,	body	mass	=	75.09	+/-	13.56	kg)	participated	in	the	study.	All	

participants	performed	a	barbell	squat	3-repetition	maximum	max	strength	test.	 IMUs	

were	positioned	on	participants’	lumbar	spine,	both	shanks	and	both	thighs;	these	were	

utilized	to	record	tri-axial	accelerometer,	gyroscope	and	magnetometer	data	during	all	

repetitions	 of	 the	 barbell	 squat	 exercise.	 Technique	 was	 assessed	 and	 labelled	 by	 a	

Chartered	Physiotherapist	using	an	evaluation	framework.	Features	were	extracted	from	

the	 labelled	IMU	data.	These	features	were	used	to	train	and	evaluate	both	global	and	

personalised	random	forests	classifiers.	

Results:	Global	classification	techniques	produced	poor	accuracy	(AC),	sensitivity	(SE)	

and	specificity	(SP)	scores	in	binary	classification	even	with	a	5	IMU	set-up	in	both	binary	

(AC:	64%,	SE:	70%,	SP:	28%)	and	multi-class	classification	(AC:	59%,	SE:	24%,	SP:	84%).	

However,	 utilising	 personalised	 classification	 techniques	 even	 with	 a	 single	 IMU	

positioned	 on	 the	 left	 thigh	 produced	 good	 binary	 classification	 scores	 (AC:	 81%,	 SE:	

81%,	SP:	84%)	and	moderate-to-good	multi-class	scores	(AC:	69%,	SE:	70%,	SP:	89%).	

Conclusions:	 There	 are	 a	 number	 of	 challenges	 in	 developing	 global	 classification	

exercise	 technique	 evaluation	 systems	 for	 rehabilitation	 exercises	 such	 as	 the	 barbell	

squat.	 Building	 large,	 balanced	 data	 sets	 to	 train	 such	 systems	 is	 difficult	 and	 time	



intensive.	 Minor,	 naturally	 occurring	 deviations	 may	 not	 be	 detected	 utilising	 global	

classification	 approaches.	 Personalised	 classification	 approaches	 allow	 for	 higher	

accuracy	 and	 greater	 system	 efficiency	 for	 end-users	 in	 detecting	 naturally	 occurring	

barbell	squat	technique	deviations.	Applying	this	approach	also	allows	for	a	single-IMU	

set	up	to	achieve	similar	accuracy	to	a	multi-IMU	setup,	which	reduces	total	system	cost	

and	maximises	system	usability.	
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2 Introduction 

The	squat	is	a	compound	full-body	exercise,	whose	constituent	movements	are	integral	

to	activities	of	daily	living.	The	barbell	squat	(squat	with	a	weighted	barbell	placed	across	

the	upper	shoulders)	often	features	as	a	fundamental	exercise	in	resistance	training	and	

rehabilitation	programs.	Furthermore,	it	is	incorporated	into	musculoskeletal	injury	risk	

screening/identification	 protocols	 (1).	 Aberrant	 squat	 technique	 has	 been	 shown	 to	

increase	stress	on	the	 joints	of	the	 lower	extremity	(2),	potentiating	the	risk	of	 injury.	

Thus,	the	reliable	assessment	of	technique	is	necessary	to	mitigate	injury	risk.		

	

The	 assessment	 of	 squat	 technique	 is	 typically	 undertaken	 using	 one	 of	 two	 distinct	

methods:	 (a)	 3-D	motion	 capture;	 (b)	 subjective	 visual	 analysis.	 Both	 of	 these	 have	 a	

number	of	limitations.	3-D	motion	capture	systems	are	expensive	and	the	application	of	

skin-mounted	 markers	 may	 hinder	 normal	 movement	 (3,	 4).	 Furthermore,	 data	

processing	can	be	time	intensive	and	specific	expertise	is	often	required	to	interpret	the	

processed	data	and	make	 recommendations	on	 the	observed	 results.	Therefore,	 these	

systems	 are	 not	 frequently	 used	 to	 assess	 squat	 technique	 beyond	 the	 research	

laboratory	 (5).	 In	 clinical	 and	 gym-based	 settings,	 subjective	 visual	 assessment	 is	

typically	used	to	assess	technique.	This	subjective	visual	assessment	of	human	movement	

is	not	always	reliable	even	amongst	experts,	as	the	need	to	visually	assess	the	numerous	

constituent	components	of	the	movement	simultaneously	is	challenging	(6).		

	

Wearable	inertial	measurement	units	(IMUs)	may	offer	the	potential	to	bridge	the	gap	

between	laboratory	and	day-to-day	“real-world”	acquisition	and	assessment	of	human	

movement.	These	 IMUs	are	 small,	 inexpensive	 sensors	 that	 consist	 of	 accelerometers,	

gyroscopes	and	magnetometers.	They	are	able	to	acquire	data	pertaining	to	the	 linear	

and	angular	motion	of	individual	limb	segments	and	the	centre	of	mass	of	the	body.	Self-

contained,	wireless	IMU	devices	are	easy	to	set-up	and	allow	for	the	acquisition	of	human	

movement	data	in	unconstrained	environments	(7).	In	this	paper	the	term	IMU	system	

will	 be	 used	 to	 describe	 the	 IMU	 sensors,	 the	 sensor	 signals,	 the	 associated	 signal	

processing	applied	to	them	and	the	output	of	the	exercise	classification	algorithms.	

	



IMU	systems	can	robustly	track	the	variety	of	postures	and	environmental	complexities	

associated	with	training,	unlike	camera-based	systems,	which	are	hampered	by	location,	

occlusion	and	lighting	 issues	 in	such	settings	(8).	 IMUs	have	also	been	shown	to	be	as	

effective	as	marker-based	systems	at	measuring	joint	angles	(5,	9,	10).	There	are	many	

commercially	 available	 examples	 of	 IMU	 systems	 that	 monitor	 physical	 activity	 (e.g.	

JawboneTM	 and	 FitbitTM).	 However,	 using	 IMU	 systems	 to	 assess	 gym-based	 exercises	

such	as	the	barbell	squat	is	less	common.	Researchers	have	demonstrated	the	ability	of	

IMU-based	systems	to	distinguish	different	exercises	and	count	exercise	repetitions	with	

moderate	 to	 good	 levels	 of	 accuracy	 (11-15).	 Whilst	 these	 systems	 are	 capable	 of	

counting	 exercise	 repetitions,	 they	 do	 not	 provide	 instruction	 on	 technique	 and	

performance	quality.	A	holistic	exercise	tracking	system	should	not	only	recognise	the	

exercise	completed	and	count	repetitions,	but	should	also	provide	technique	feedback.	

Furthermore,	 in	 order	 for	 IMU	 systems	 to	 assess	 human	movement	 data	 as	 part	 of	 a	

musculoskeletal	injury	risk	screening	protocol,	they	need	to	be	able	to	identify	aberrant	

movement	patterns	and	provide	easily	interpretable	data	to	clinicians/coaches	who	use	

them.		

	

A	 growing	 body	 of	 scientific	 literature	 has	 investigated	 the	 ability	 of	 IMU	 systems	 to	

assess	technique	in	order	to	provide	this	holistic	exercise	analysis	(15-22).	The	majority	

of	 authors	 have	 developed	 these	 IMU	 systems	 by	 employing	 the	 following	 steps:	 (a)	

collection	 of	 labelled	 dataset;	 (b)	 pre-processing	 of	 data;	 (c)	 data	 segmentation;	 (d)	

feature	extraction;	(e)	classification	development	and	evaluation	(23).	These	studies	have	

demonstrated	 the	 ability	 of	 IMU	 systems	 in	 identifying	 deviations	 with	 moderate	 to	

excellent	levels	of	accuracy	in	exercises	such	as	the	biceps	curl,	military	press,	squat	and	

lunge.	 However	 the	 majority	 of	 these	 IMU	 systems	 were	 developed	 using	 a	 dataset	

consisting	 of	 induced	 deviations	 (i.e.	 deviations	 that	were	 intentionally	 performed	by	

participants).	When	deviations	occur	naturally,	the	exact	way	in	which	they	present	may	

be	 more	 nuanced	 and	 subsequently	 more	 difficult	 to	 classify.	 This	 means	 that	 these	

systems	may	not	be	suitable	for	a	real	world	environment	where	deviations	present	in	a	

natural	manner.	When	collecting	data	in	a	natural	environment	a	variety	of	deviations	

may	present	in	different	quantities	with	some	deviations	occurring	less	frequently	than	

others.	 This	 means	 collecting	 a	 large	 and	 balanced	 data	 set	 of	 natural	 deviations	 is	

challenging.	 This	 is	 necessary	 to	 allow	 for	 the	 development	 of	 a	 robust	 global	



classification	system	(24-26).	In	these	situations	a	personalised	classifier	may	be	more	

appropriate.		

	

A	personalised	classifier	is	a	classifier	developed	on	data	provided	by	a	single	person	(N	

of	 1).	 The	 data	 used	 to	 develop	 this	 classifier	 is	 collected	 from	 participants	 as	 they	

complete	 exercises	wearing	 IMUs.	 Each	 individual	 exercise	 repetition	 is	 assessed	 and	

labelled	by	a	movement	expert	through	live	or	post-hoc	video	analysis.	This	means	that	

IMU	 signals	 for	 each	 exercise	 repetition	 can	 be	 associated	 with	 this	 repetition’s	

movement	pattern.	When	the	data	set	used	for	training	the	IMU	system	is	collected	in	this	

way	 it	 means	 the	 system	 can	 be	 individualised.	 While	 this	 may	 prove	 more	 labour	

intensive	 than	 using	 an	 IMU	 system	 based	 on	 a	 global	 classifier	 it	 may	 be	 more	

appropriate	in	some	situations.		

3 Objectives 

The	 barbell	 squat	 is	 a	 compound	 full-body	 exercise	 that	 is	 typically	 a	 constituent	

component	 of	 resistance	 training,	 rehabilitation	 programs	 and	musculoskeletal	 injury	

risk	 screening	 protocols.	 Incorrect	 technique	 can	 increase	 the	 risk	 of	 sustaining	 a	

musculoskeletal	 injury.	 Traditionally,	 exercise	 technique	 has	 been	 evaluated	 using	

expensive	 motion	 capture	 systems	 or	 via	 subjective	 visual	 inspection	 from	 trained	

professionals.	IMU	systems	offer	an	opportunity	to	provide	low-cost	exercise	technique	

assessment.	However	to	date,	no	research	has	evaluated	the	capability	of	IMU	systems	to	

identify	 natural	 deviations	 in	 barbell	 squat	 technique.	 In	 this	 setting	 the	 use	 of	 an	

individualised	classifier	based	on	an	N	of	1	data	set	may	prove	more	appropriate	than	

global	classifiers.		

	

Therefore,	 the	research	question	that	 this	study	seeks	to	address	 is:	 “how	well	can	an	

IMU-based	system	quantify	barbell	squat	technique?”	The	aims	of	this	study	were	to:	(a)	

determine	if	in	combination	or	in	isolation,	IMUs	positioned	on	the	lumbar	spine,	thigh	

and	shank	are	capable	of	distinguishing	between	acceptable	and	aberrant	barbell	squat	

technique;	(b)	determine	the	capabilities	of	an	IMU	system	at	identifying	specific	natural	

deviations	 from	 acceptable	 barbell	 squat	 technique;	 (c)	 compare	 a	 personalised	 to	 a	

global	classifier	in	identifying	the	above.		



4 Methods 

4.1 Experimental Approach to Problem 

This	study	employed	an	opportunistic	approach	to	the	development	of	a	wearable	sensor	

system	for	automatically	assessing	barbell	squat	technique.	Participants	were	required	

to	perform	a	3-repetition	maximum	barbell	squat	test.	This	test	was	recorded	in	HD	video.	

A	Chartered	Physiotherapist	then	assessed	each	repetition	video	and	labelled	the	labelled	

it	appropriately	(i.e.	acceptable	or	containing	one	of	the	deviations	identified	in	Table	1).	

In	order	to	ensure	standardisation,	form	was	considered	acceptable	if	it	was	completed	

as	 defined	 by	 the	 National	 Strength	 and	 Conditioning	 Association	 (NSCA)	 (27).	 The	

deviations	from	this	acceptable	form	are	detailed	in	Table	1.	During	performance	of	the	

barbell	squats,	data	was	acquired	from	5	IMUs	(SHIMMER,	Shimmer	Research,	Dublin,	

Ireland)	placed	on	 the	 lumbar	spine,	 right	and	 left	 thigh	and	right	and	 left	shank.	The	

IMUs	were	positioned	on	each	participant	by	the	same	researcher	using	a	standardised	

and	repeatable	protocol.	Participants	were	allowed	a	rest	interval	between	performances	

of	 each	 set	 of	 repetitions.	 Following	 data	 collection,	 a	 total	 of	 306	 variables	 were	

extracted	 from	the	sensor	signals	 for	every	repetition	 from	each	 IMU.	These	variables	

were	used	to	develop	and	evaluate	the	quality	of	an	automated	classification	system	for	

the	analysis	of	barbell	 squat	 technique.	This	was	undertaken	using	data	derived	 from	

each	 individual	 IMU	and	combinations	of	multiple	IMUs.	A	global	classification	system	

was	evaluated	as	well	as	separate	(N	of	1)	personalised	classifier	for	each	participant.	

	

Table 1.  List and description of barbell squat exercise deviations used in this study	

Label	 Description	
Acceptable	 Acceptable	technique	
Knee	Valgus	 Knees	coming	together	during	downward	phase	
Knee	Varus	 Knees	coming	apart	during	downward	phase	
Knees	Too	
Forward	

Knees	ahead	of	toes	during	downward	phase	

Heels	Elevated	 Heels	raising	off	the	ground	during	exercise	
Bent	Over	 Excessive	flexion	of	hip	and	torso	during	exercise	
Other	 Other	deviation,	not	highlighted	in	NSCA	guidelines	

NSCA	=	National	Strength	and	Conditioning	Association	

	



4.2 Participants 

Fifty-five	healthy	volunteers	(37	males,	18	females,	age	=	24.21	+/-	5.25	years,	height	=	

1.75	+/-	0.1	m,	body	mass	=	75.09	+/-	13.56	kg)	participated	in	the	study.	No	participant	

reported	having	a	current	or	recent	musculoskeletal	injury	that	would	impair	his	or	her	

performance	 of	 the	 exercise.	 All	 participants	 reported	 a	 level	 of	 familiarity	 with	 the	

barbell	squat	exercise.	The	University	College	Dublin	Human	Research	Ethics	Committee	

approved	 the	 study	 protocol	 and	 written	 informed	 consent	 was	 obtained	 from	 all	

participants	before	testing.	In	cases	where	participants	were	under	the	age	of	18,	written	

informed	consent	was	also	obtained	from	a	parent	or	guardian.	

4.3 Procedures 

The	testing	protocol	was	explained	to	participants	upon	their	arrival	at	the	laboratory.	

Prior	to	formal	testing	all	participants	performed	a	ten-minute	warm-up	on	an	exercise	

bike	(Lode	B.V.,	Groningen,	The	Netherlands)	maintaining	a	power	output	of	100W	and	

constant	cadence	of	75-85	revolutions	per	minute.	Following	completion	of	the	warm-up,	

a	 Chartered	 Physiotherapist	 secured	 the	 IMUs	 to	 pre-determined	 specific	 anatomic	

locations	on	the	participant	as	follows:	the	spinous	process	of	the	5th	lumbar	vertebra,	

the	mid-point	 of	 both	 the	 right	 and	 left	 femurs	 (determined	 as	 half	way	between	 the	

greater	 trochanter	 and	 lateral	 femoral	 condyle),	 and	 on	 both	 shanks	 2cms	 above	 the	

lateral	malleolus	 (Figure	 1).	 The	 orientation	 and	 location	 of	 the	 IMUs	was	 consistent	

across	participants.		

	

	
Figure	1:	Image	showing	the	five	IMU	positions:	(1)	the	spinous	process	of	the	5th	lumbar	vertebra,	(2&3)	the	
mid-point	of	both	femurs	on	the	lateral	surface	(determined	as	half	way	between	the	greater	trochanter	and	

lateral	femoral	condyle),	(4&5)	both	shanks	2cm	above	the	lateral	malleolus 



A	pilot	study	was	undertaken	to	determine	the	most	appropriate	sampling	rate	and	the	

ranges	for	the	accelerometer	and	gyroscope	on	board	the	IMUs.	For	the	pilot	study,	data	

were	acquired	(512	samples/s)	during	performance	of	the	squat,	lunge,	deadlift,	single-

leg	squat	and	tuck	 jump	exercises.	A	Fourier	 transform	was	then	used	to	estimate	the	

spectral	extent	of	the	signals	which	was	found	to	be	less	than	20	Hz.	Therefore,	a	sampling	

rate	of	51.2	samples/s	was	chosen	based	upon	the	Shannon	sampling	theorem	and	the	

Nyquist	criterion	(28).	Each	IMU	was	configured	to	stream	triaxial	accelerometer	(±	2	g),	

gyroscope	(±	500	o/s)	and	magnetometer	(±	1.9	Ga)	data	with	the	sensor	ranges	chosen	

based	upon	data	from	the	pilot	study.	Each	IMU	was	calibrated	for	these	specific	sensor	

ranges	using	the	Shimmer	9DoF	Calibration	application	(29).	

	

Participants	were	required	to	complete	a	full	3-repetition	maximum	(3RM)	strength	test	

for	 the	 barbell	 squat	 (29).	 Following	 a	 warm-up	 on	 an	 exercise	 bike,	 participants	

completed	 a	 set	 of	 barbell	 squat	 exercises	 with	 a	 resistance	 that	 allowed	 for	 8-12	

repetitions	comfortably.	After	resting	for	1-minute,	the	load	was	increased	by	10-20%	

and	 they	 performed	 a	 further	 4-6	 repetitions.	 This	 was	 followed	 by	 a	 2-minute	 rest	

period.	Following	this	they	performed	3	repetitions	with	near	maximum	load.	They	then	

rested	for	2-4	minutes.	If	they	passed	the	previous	set,	the	weight	was	incremented	by	5-

10%	and	another	3-repetition	set	was	completed.	This	load	increment	was	repeated	until	

the	participant	could	no	longer	lift	the	weight	in	a	safe	manner	for	three	repetitions.		

	

4.4 Data Labelling 

All	repetitions	were	recorded	using	a	HD	video	camera	placed	in	front	of	the	participants.	

The	 video	 recordings	 of	 each	 exercise	 repetition	 were	 reviewed	 by	 a	 Chartered	

Physiotherapist	 with	 over	 seven	 years	 experience	 in	 musculoskeletal	 and	 sports	

physiotherapy.	 Each	 exercise	 repetition	 was	 separated	 and	 reviewed	 on	 multiple	

occasions	systematically.	For	each	repetition,	the	Chartered	Physiotherapist	first	deemed	

if	exercise	technique	was	“acceptable”.	The	criteria	for	acceptable	technique	were	based	

upon	the	recommendations	detailed	in	National	Strength	and	Conditioning	Association	

guidelines	(27).	For	safety	reasons	participants	completed	the	exercise	in	a	squat	rack.	

The	barbell	was	placed	on	the	rack	just	above	shoulder	level	and	loaded	appropriately.	

The	participant	then	stepped	under	the	bar	and	placed	it	on	the	back	of	their	shoulders,	



slightly	below	 their	neck.	The	bar	was	held	with	both	 arms	 and	 lifted	off	 the	 rack	by	

pushing	with	 the	 legs	and	 straightening	 the	 torso.	The	participant	 then	 stepped	away	

from	the	rack	and	completed	the	squatting	movement.	Their	chest	was	held	up	and	out	

with	their	head	tilted	slightly	up.	As	participants	moved	into	the	squat	position	they	were	

instructed	to	allow	hips	and	knees	to	flex	while	keeping	their	torso	to	floor	angle	constant.	

They	were	required	to	keep	their	heels	on	the	 floor	and	knees	aligned	over	their	 feet.	

Participants	continued	flexing	at	the	hips	and	knees	until	their	thighs	were	parallel	to	the	

floor.	As	they	moved	upward	a	flat	back	was	maintained	and	their	chest	was	held	up	and	

out.	Hips	and	knees	were	to	be	extended	at	the	same	rate	with	heels	on	floor	and	knees	

aligned	over	feet	until	the	starting	position	was	reached.	The	bar	was	then	placed	back	

on	 the	 rack.	 If	 a	 repetition	 was	 not	 completed	 as	 above,	 then	 the	 Chartered	

Physiotherapist	selected	the	most	dominant	deviation	from	a	pre-defined	list	(Table	1).	

This	method	of	data	 labelling	replicates	methods	 from	recently	published	work	 in	 the	

field	of	IMU	based	exercise	technique	classification	systems	(21).		

	

4.5 Signal Processing and Statistical Analysis 

Nine	signals	were	collected	from	each	IMU;	accelerometer	x,	y,	z,	gyroscope	x,	y,	z	and	

magnetometer	 x,	 y,	 z.	 Data	 were	 analysed	 using	 MATLAB	 (2012,	 The	 MathWorks,	

Natwick,	USA).	To	eliminate	unwanted	high-frequency	noise	during	each	repetition,	the	

nine	signals	were	low	pass	filtered	at	fc	=	20	Hz	using	a	Butterworth	filter	of	order	n	=	8.	

Whilst	 classification	 is	 solely	 possible	 using	 features	 derived	 from	 the	 accelerometer,	

gyroscope	and	magnetometer	signals,	 the	use	of	additionally	derived	signals	 improves	

system	accuracy,	sensitivity	and	specificity.	As	such,	nine	additional	signals	were	then	

calculated	as	follows:	The	3-D	orientation	of	the	IMU	was	computed	using	the	gradient	

descent	 algorithm	 developed	 by	 Madgwick	 et	 al.	 (30).	 The	 resulting	 W,	 X,	 Y	 and	 Z	

quaternion	values	were	also	converted	to	pitch,	roll	and	yaw	signals.	The	pitch,	roll	and	

yaw	signals	describe	 the	 inclination,	measured	 in	 radians,	 of	 each	 IMU	 in	 the	 sagittal,	

frontal	 and	 transverse	 plane	 respectively.	 The	 magnitude	 of	 acceleration	 was	 also	

computed	 using	 the	 vector	 magnitude	 of	 accelerometer	 x,	 y,	 z.	 The	 magnitude	 of	

acceleration	describes	the	total	acceleration	of	the	IMU	in	any	direction.	This	is	the	sum	

of	 the	magnitude	 of	 inertial	 acceleration	 of	 the	 lumbar	 spine	 and	 acceleration	 due	 to	

gravity.	Additionally,	the	magnitude	of	rotational	velocity	was	computed	using	the	vector	

magnitude	of	gyroscope	x,	y,	z.		



	

Each	exercise	repetition	was	extracted	from	the	IMU	data	and	resampled	to	a	length	of	

250	 samples.	 This	 time-normalisation	was	 undertaken	 in	 an	 attempt	 to	minimise	 the	

influence	 a	 participant’s	 repetition	 tempo	 had	 on	 signal	 feature	 calculations.	 It	 also	

ensured	consistent	computational	efficiency	in	applications	for	end	users	and	has	been	

used	 in	 recently	 published,	 similar	 work	 (19,	 21,	 22).	 Repetitions	 completed	 by	 the	

participant	where	the	IMU’s	Bluetooth	signal	dropped	were	excluded	from	analysis.	The	

total	number	of	repetitions	belonging	to	each	class	are	shown	in	Table	2.	Time-domain	

and	 frequency-domain	 descriptive	 features	 were	 computed	 in	 order	 to	 describe	 the	

pattern	of	each	of	the	eighteen	signals	when	the	barbell	squats	were	completed.	These	

features	 were	 namely	 'Mean',	 'RMS',	 'Standard	 Deviation',	 'Kurtosis',	 'Median',	

'Skewness',	‘	Range',	‘Variance',	'Max',	'Min',	'Energy',	'25th	Percentile',	'75th	Percentile',	

'Level	Crossing	Rate',	'Fractal	Dimension'	(31)	and	the	‘variance	of	both	the	approximate	

and	detailed	wavelet	coefficients	using	the	Daubechies	5	mother	wavelet	to	level	7’	(32).	

This	resulted	in	17	features	for	each	of	the	18	available	signals	producing	a	total	of	306	

features	per	IMU.	

	

Figure	2	summarises	the	above	whereby,	5	IMUs	recorded	9	signals	each,	9	more	signals	

were	 derived	 from	 these	 resulting	 in	 a	 total	 of	 18	 signals	 per	 IMU.	 17	 features	were	

computed	 per	 repetition	 for	 each	 signal	 from	 each	 IMU	 resulting	 in	 a	 total	 of	 1530	

features	 (306	per	 IMU,	 17	per	 signal).	 These	 features	were	 then	used	 to	develop	 and	

evaluate	a	variety	of	classifiers	as	described	below.	

	



	
Figure	 2:	 Diagram	 linking	 number	 of	 IMUs,	 number	 of	 recorded	 and	 derived	 signals,	 number	 of	 features	
extracted	and	the	variety	of	feature	combinations	used	to	test	classifiers	

	
The	random-forests	method	was	employed	to	perform	classification	(33).	This	technique	

was	chosen	as	it	has	been	shown	to	be	effective	in	analysing	exercise	technique	with	IMUs	

when	compared	to	the	Naïve-Bayes	and	Radial-basis	function	network	techniques	(34).	

128	 decision	

trees	 were	 used	 in	 each	 random-forest	 classifier.	 Classifiers	 were	 developed	 and	

evaluated	for	the	ten	combinations	of	IMUs	as	shown	in	Figure	2.	

	

Initially,	binary	classification	was	evaluated	to	establish	how	effectively	each	individual	

IMU	and	each	combination	of	IMUs	could	distinguish	between	acceptable	and	aberrant	

barbell	squat	technique.	All	repetitions	of	acceptable	technique	were	labelled	‘0’	and	all	

repetitions	performed	with	one	of	the	pre-defined	deviations	as	outlined	in	Table	1	were	

labelled	‘1’.	Multi-label	classification	was	then	evaluated	on	the	IMU	data	to	investigate	

how	 effectively	 each	 individual	 IMU	 and	 each	 IMU	 combination	 could	 be	 used	 to	

discriminate	between	acceptable	barbell	squat	technique	and	each	of	the	six	pre-defined	

deviations	 from	 acceptable	 technique	 as	 described	 in	 Table	 1.	 All	 repetitions	 of	



acceptable	performance	remained	labelled	as	‘0’	and	each	of	the	different	deviations	were	

labelled	‘1-6’.	

	

The	quality	of	the	global	exercise	classification	system	was	established	using	leave-one-

subject-out-cross-validation	(LOSOCV)	and	the	random-forests	classifier	with	128	trees	

(35).	Each	participant’s	data	corresponds	to	one	fold	of	the	cross	validation.	At	each	fold,	

one	participant’s	data	is	held	out	as	test	data	while	the	random	forests	classifier	is	trained	

with	all	other	participants’	data.	Where	each	class	in	the	training	data	did	not	have	an	

equal	number	of	instances	(i.e.	equal	number	of	acceptable	and	aberrant	repetitions	in	

binary	classification),	random	instances	of	the	over-represented	class(es)	were	removed	

in	order	to	balance	the	training	data.	The	held	out	data	is	used	to	assess	the	classifier’s	

ability	to	correctly	categorise	new	data	it	is	presented	with.	The	use	of	LOSOCV	ensures	

that	 there	 is	 no	biasing	of	 the	 classifiers,	 because	 the	 test	 subjects	data	 is	 completely	

unseen	by	the	classifier	prior	to	testing.		

	

The	 quality	 of	 the	 personalised	 exercise	 classification	 systems	was	 established	 using	

leave-one-out-cross-validation	 and	 a	 random	 forests	 classifier	 with	 128	 trees.	 Each	

repetition	corresponds	to	one	fold	of	the	cross	validation.	At	each	fold,	one	repetition	is	

held	 out	 as	 test	 data	 while	 the	 random	 forests	 classifier	 is	 trained	 with	 the	 same	

participant’s	other	completed	repetitions.	Where	each	class	in	the	training	data	did	not	

have	 an	 equal	 number	 of	 instances	 (i.e.	 equal	 number	 of	 acceptable	 and	 aberrant	

repetitions	in	binary	classification),	random	instances	of	the	over-represented	class(es)	

were	removed	in	order	to	balance	the	training	data.	The	held	out	data	is	used	to	assess	

the	classifier’s	ability	to	correctly	categorise	new	data	it	is	presented	with.	Participants	

were	not	included	for	this	analysis	if	they	did	not	have	at	least	2	repetitions	belonging	to	

each	class	being	classified	as	this	would	not	allow	for	training	and	test	data	for	that	class.		

	

The	 scores	 used	 to	measure	 the	 quality	 of	 classification	were	 total	 accuracy,	 average	

sensitivity	 and	 average	 specificity.	 Accuracy	 is	 the	 number	 of	 correctly	 classified	

repetitions	of	all	the	exercises	divided	by	the	total	number	of	repetitions	completed;	this	

is	calculated	as	the	sum	of	the	true	positives	(TP)	and	true	negatives	(TN)	divided	by	the	

sum	of	the	true	positives,	false	positives	(FP),	true	negatives	and	false	negatives	(FN):			

	



𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁	

	
In	 binary	 classification	 acceptable	 technique	 was	 considered	 the	 ‘positive’	 class	 and	

aberrant	 technique	was	considered	 the	 ‘negative’	 class.	As	 such,	 single	 sensitivity	and	

specificity	values	were	computed	to	establish	binary	classification	quality	for	each	IMU	

combination.	In	multi-label	classification,	the	sensitivity	and	specificity	were	calculated	

for	each	of	the	six	class	labels	as	outlined	in	Table	1.	Each	label	was	sequentially	treated	

as	the	‘positive’	class,	and	then	the	mean	and	standard	deviation	across	the	six	values	was	

taken.	Sensitivity	and	specificity	were	computed	using	 the	 formulas	below.	Sensitivity	

measures	the	effectiveness	of	a	classifier	at	identifying	a	desired	label,	while	specificity	

measures	the	classifier’s	ability	to	detect	other	labels.	

	

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	

	

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃	

	

In	 addition	 to	 these	 measures,	 receiver	 operating	 characteristic	 (ROC)	 curves	 were	

plotted	to	compare	the	quality	of	global	and	individualised	binary	classifiers.	A	single	ROC	

curve	was	created	for	individualised	classifiers	and	global	classifiers	by	pooling	the	true	

label	 score	and	predicted	 labels	 together	 for	all	participants.	The	MATLAB	 ‘perfcurve’	

function	 was	 used	 to	 generate	 the	 X	 and	 Y	 points	 for	 both	 ROC	 curves	

[https://uk.mathworks.com/help/stats/perfcurve.html].	

	

In	reviewing	the	accuracy,	sensitivity	and	specificity	scores	produced	by	each	classifier,	

90%	or	higher	was	considered	an	’excellent’	quality	result,	80%-89%	was	considered	a	

’good’	quality	result,	60-79%	was	considered	a	’moderate’	result	and	anything	less	than	

59%	was	 deemed	 a	 poor	 result.	 The	 authors	 chose	 these	 values	 after	 reviewing	 the	

aforementioned	 literature	 on	 identifying	 deviations	 from	 acceptable	 exercise	

performance	 using	 data	 derived	 from	 IMUs.	 In	 reviewing	 such	 literature,	 an	 existing	

accepted	standard	for	an	excellent,	good,	moderate	or	poor	classifier	could	not	be	found.	



Therefore,	the	above	system	was	agreed	on	by	the	authors	to	facilitate	interpretation	of	

results.	

5 Results	
Table	2	shows	the	total	number	of	repetitions	collected	for	each	class,	as	labelled	by	the	

Chartered	 Physiotherapist.	 For	 binary	 classification,	 there	 were	 884	 acceptable	

repetitions	and	606	aberrant	repetitions	recorded.	

	

Table	2.		List	and	description	of	barbell	squat	exercise	labels	used	in	this	study	and	

the	 number	 of	 repetitions	 extracted	 of	 each	 class	 as	 labelled	 by	 the	 Chartered	

Physiotherapist	

Label	 Description	 Total	reps		
Acceptable	 Acceptable	technique	 884	
Knee	Valgus	 Knees	coming	together	during	downward	phase	 22	
Knee	Varus	 Knees	coming	apart	during	downward	phase	 183	
Knees	Too	
Forward	

Knees	ahead	of	toes	during	downward	phase	 50	

Heels	
Elevated	

Heels	raising	off	the	ground	during	exercise	 7	

Bent	Over	 Excessive	flexion	of	hip	and	torso	during	exercise	 96	
Other	 Other	deviation,	not	highlighted	in	NSCA	guidelines	 250	

NSCA	=	National	Strength	and	Conditioning	Association	

	
Table	3	demonstrates	the	accuracy,	sensitivity	and	specificity	of	the	global	classification	

methods	in	binary	classification.		

	

Table	 3.	 	 Overall	 accuracy,	 sensitivity	 and	 specificity	 in	 binary	 classification	

(acceptable	 or	 aberrant	 technique)	 for	 each	 combination	 of	 IMUs	 following	

LOSOCV	using	global	classifiers	

Sensor(s)	 Accuracy	(%)	 Sensitivity	(%)	 Specificity	(%)	
All	5	Sensors	 64	 70	 28	

Lumbar	&	Shanks	 65	 69	 34	
Lumbar	&	Thighs	 62	 68	 21	
Both	Shanks	 66	 70	 38	
Both	Thighs	 63	 75	 26	
Left	Shank	 62	 70	 31	
Left	Thigh	 63	 69	 24	
Lumbar	 61	 68	 21	



Right	Thigh	 63	 70	 27	
Right	Shank	 62	 69	 45	

	
	
Table	 4	 shows	 the	 total	 accuracy,	mean	 sensitivity	 and	mean	 specificity	 of	 the	 global	

classification	methods	in	multi-class	classification	(detection	of	exact	deviation).	

	
Table	4.		Overall	accuracy,	average	sensitivity	and	average	specificity	in	multi-
label	classification	(exact	deviation)	for	each	combination	of	IMUs	following	
LOSOCV	using	global	classifiers	

Sensor(s)	 Accuracy	(%)	 Sensitivity	(%)		 Specificity	(%)		
All	5	Sensors	 59	 24	 84	

Lumbar	&	Shanks	 57	 25	 85	
Lumbar	&	Thighs	 57	 22	 84	
Both	Shanks	 53	 20	 85	
Both	Thighs	 52	 15	 82	
Left	Shank	 48	 19	 85	
Left	Thigh	 48	 15	 82	
Lumbar	 52	 19	 83	

Right	Thigh	 51	 14	 82	
Right	Shank	 55	 21	 86	

	
	
	
Table	 5	 demonstrates	 the	 mean	 accuracy,	 sensitivity	 and	 specificity	 scores	 for	 each	

individual	participant’s	personalised	barbell	squat	technique	binary	classifier	that	was	

evaluated	with	LOOCV.		

	

Table	 5.	 	 Average	 accuracy,	 sensitivity	 and	 specificity	 in	 binary	 classification	

(acceptable	or	aberrant	technique)	for	each	combination	of	IMUs	following	LOOCV	

using	personalised,	N	of	1	classifiers	

	

Sensor(s)	 Accuracy	(%)	±	SD	 Sensitivity	(%)	±	SD	 Specificity	(%)	±	SD	
All	5	Sensors	 82	±	13	 83	±	14	 84	±	14	

Lumbar	&	Shanks	 80	±	14	 81	±	16		 82	±	14	
Lumbar	&	Thighs	 82	±	12	 82	±	13	 87	±	11	
Both	Shanks	 79	±	16	 80	±	19	 81	±	15	
Both	Thighs	 83	±	11	 84	±	12	 88	±	12	
Left	Shank	 79	±	6	 81	±	17	 80	±	20	
Left	Thigh	 81	±	13	 81	±	13	 84	±	16	
Lumbar	 80	±	14	 81	±	15	 83	±	16	

Right	Thigh	 80	±	16	 84	±	12	 82	±	17	



Right	Shank	 80	±	15	 78	±	17	 82	±	15	
	
Figure	3	shows	an	ROC	curve	 for	all	participants	when	both	global	and	 individualised	

classification	methodologies	were	used	for	a	binary	classification	system	based	on	data	

from	the	left	thigh	IMU.		The	area	under	the	curve	(AUC)	for	the	global	method	was	0.52	

and	the	AUC	for	the	personalised	method	was	0.98.		

	
Figure	3:	ROC	curves	comparing	binary	classification	systems	when	using	global	and	personalised	

classification	methodologies	using	data	from	the	left	thigh	IMU.	'Acceptable'	technique	was	considered	the	
‘true’	class.	

Table	 6	 demonstrates	 the	 mean	 accuracy,	 sensitivity	 and	 specificity	 scores	 for	 each	

individual	participant’s	personalised	barbell	squat	 technique	multi-class	classifier	 that	

was	evaluated	with	LOOCV.		

	

Table	6.		Overall	accuracy,	average	sensitivity	and	average	specificity	in	multi-label	

classification	 (exact	 deviation)	 for	 each	 combination	 of	 IMUs	 following	 LOOCV	

using	personalised,	N	of	1	classifiers	

	

Sensor(s)	 Accuracy	(%)	±	SD	 Sensitivity	(%)	±	SD	 Specificity	(%)	±	SD	



All	5	Sensors	 70	±	20	 73	±	17	 88	±	12	
Lumbar	&	Shanks	 69	±	20	 71	±	18		 90±	8	
Lumbar	&	Thighs	 70	±	17	 70	±	15	 87	±	9	
Both	Shanks	 70	±	18	 71	±	17	 89	±	7	
Both	Thighs	 70	±	16	 72	±	13	 88	±	11	
Left	Shank	 67	±	20	 71	±	17	 86	±	12	
Left	Thigh	 69	±	18	 70	±	18	 89	±	9	
Lumbar	 67	±	20	 70	±	19	 89	±	10	

Right	Thigh	 70	±	16	 72	±	13	 86	±	12	
Right	Shank	 67	±	20	 71	±	15	 88	±	8	

	

6 Discussion 

The	aims	of	this	study	were	to:	(a)	determine	if	an	IMU	system	is	capable	of	distinguishing	

between	acceptable	and	aberrant	barbell	squat	technique;	(b)	determine	the	capabilities	

of	an	IMU	system	at	identifying	specific	natural	deviations	from	acceptable	barbell	squat	

technique;	 and	 (c)	 compare	 a	 personalised	 (N	 of	 1)	 classifier	 to	 a	 global	 classifier	 in	

identifying	the	above.	The	results	of	this	paper	indicate	that	an	IMU	system	is	not	capable	

of	detecting	aberrant	barbell	squat	technique	using	global	classifiers	as	demonstrated	by	

the	 low	 specificity	 scores	 (Table	3).	However,	 good	 levels	 of	 accuracy,	 sensitivity	 and	

specificity	are	achieved	using	a	personalised	classifier	(Table	5).	Similarly,	the	ability	of	

an	IMU	system	to	identify	specific	deviations	in	technique	is	poor	using	a	global	classifier	

(Table	4)	however	these	results	are	improved	to	moderate	levels	using	a	personalised	

classifier	(Table	6).		

	

To	the	best	of	the	authors’	knowledge	this	is	first	paper	to	demonstrate	the	ability	of	an	

IMU	 system	 to	 identify	 natural	 deviations	 during	 performance	 of	 the	 barbell	 squat	

exercise.	To	date	there	has	been	a	lack	of	research	investigating	the	ability	of	IMU	systems	

to	 classify	 technique	 in	 lower	 limb	 compound	 exercises.	 Whilst	 global	 classification	

techniques	replicating	those	used	in	this	paper	have	been	shown	to	successfully	classify	

naturally	occurring	deviations	 in	 the	single	 leg	squat	 (21,	36),	 they	were	shown	to	be	

ineffective	 in	 classifying	 barbell	 squat	 technique.	 Additionally,	we	 have	 demonstrated	

that	a	personalised	classifier	out	performs	a	global	classifier	in	assessing	barbell	squat	

technique	(Figure	3,	Tables	3-6).	This	is	likely	due	to	a	number	of	factors.	As	outlined	in	

Table	 2	 the	 number	 of	 acceptable	 repetitions	 far	 outnumbers	 any	 other	 label.	 This	



unbalanced	data	set	makes	it	difficult	to	create	global	classifiers	that	can	be	used	for	all	

individuals	 (24,	 25).	 As	 many	 deviations	 were	 seen	 sporadically,	 the	 use	 of	 a	 global	

classifier	to	identify	specific	deviations	in	the	barbell	squat	may	require	the	collection	of	

a	data	set	consisting	of	larger	amounts	of	each	deviation.		The	inter-subject	variability	in	

movement	patterns	that	are	considered	acceptable	in	barbell	squat	technique	may	also	

exceed	 the	 intra-subject	 variability	 between	 acceptable	 technique	 and	 aberrant	

technique.	This	would	make	the	creation	of	global	classifiers	exceptionally	difficult.	It	is	

likely	 that	 this	 is	 not	 the	 case	 for	 the	 single	 leg	 squat	 and	 hence	 global	 classification	

methodologies	worked	better	for	classifying	deviations	in	this	exercise.	

	

It	is	difficult	to	directly	compare	results	with	previous	work	in	the	area	due	to	differences	

in	exercises	investigated,	sensor	positions	and	classifier	techniques	employed.	However,	

the	results	presented	in	this	paper	using	a	personalised	classifier	compare	favourably	to	

other	research	in	the	area	(16-19).	The	majority	of	research	to	date	has	investigated	the	

ability	of	IMU	systems	to	monitor	technique	in	simple	exercises	such	as	straight	leg	raises	

(16),	dumbbell	curls	(18),	or	heel	slides	(19).	This	paper	describes	an	evaluation	of	an	

IMU	system’s	ability	to	quantify	barbell	squat	technique,	a	more	complex	exercise	that	

involves	multiple	joints.	This	system	has	also	demonstrated	the	ability	to	identify	a	total	

of	seven	different	classes	(Table	2).	The	lower	number	of	classes	in	some	of	the	studies	

(16,	 18,	 19)	 may	 make	 it	 easier	 for	 classifiers	 to	 identify	 specific	 deviations	 and	

subsequently	 produce	 higher	 accuracy,	 sensitivity	 and	 specificity	 scores.	 However,	 it	

must	be	noted	that	all	of	these	systems	used	a	global	classifier	in	distinguishing	between	

exercise	technique	and	many	of	the	studies	classified	deviations	that	were	deliberately	

induced.	As	shown	in	Table	4	the	ability	of	a	global	classifier	to	identify	specific	deviations	

in	 barbell	 squat	 technique	 is	 poor.	 Therefore,	 a	 personalised	 classifier	 may	 be	 more	

suitable	when	assessing	this	exercise	in	a	clinical	setting	where	technique	deviations	are	

natural.		

	

The	results	presented	in	Table	5	and	Table	6	show	that	a	single	IMU	system	is	comparable	

to	a	multiple	 IMU	system	in	determining	barbell	squat	 technique	using	a	personalised	

classifier.	Multiple	IMU	systems	are	more	expensive	than	a	single	IMU	system	due	to	the	

need	to	purchase	additional	sensors.	Furthermore,	they	are	less	practical	for	end	users	

as	 there	 is	 an	 increased	 risk	 of	 placement	 error	 in	 addition	 to	 power	 usage	 and	



BluetoothTM	 connectivity	 issues.	 For	 these	 reasons	 a	 reduced	 IMU	 set-up	 is	 more	

desirable	 for	 daily	 environment	 applications	 (37).	 Therefore,	 the	 single	 IMU	 system	

results	presented	in	this	paper	increase	the	likelihood	of	clinical	adoption.		

	

A	personalised	classifier	offers	a	number	of	benefits	compared	to	a	global	classifier	when	

assessing	barbell	squat	technique.	Most	obviously,	the	higher	levels	of	accuracy	would	

mean	 an	 improved	 user	 experience	 in	 a	 clinical	 setting.	 A	 personalised	 classifier	 also	

allows	for	analysis	to	be	performed	on	data	sets	that	are	unbalanced,	like	the	one	shown	

in	Table	2.	Furthermore,	personalised	classifiers	are	also	more	computationally	efficient	

than	global	classifiers	as	they	are	developed	using	less	training	data	and	therefore	require	

less	memory.	This	would	improve	processing	time	and	increase	battery	life.		

	

The	main	disadvantage	associated	with	a	personalised	 classifier	 is	 that	 the	user	must	

collect	and	label	data	sets	from	individual	patients.	This	means	clinicians	must	monitor	

exercise	 technique	 in	 real	 time	 or	 use	 post-hoc	 video	 analysis	 and	 label	 this	

appropriately.	This	may	prove	time	consuming.	Furthermore,	this	does	not	lend	itself	to	

a	 “set-up	 and	 go”	 approach	 that	 involves	minimal	 interaction	with	 the	 user	 interface,	

which	is	more	preferable	for	end-users	(8).		However,	as	clinicians	often	monitor	exercise	

technique	 prior	 to	 allowing	 patients	 complete	 their	 exercises	 it	 may	 fit	 into	 clinical	

practice	 without	 issue,	 with	 clinicians	 labelling	 repetitions	 as	 they	 analyse	 exercise	

completion.	 Furthermore,	 the	 labelled	data	 set	 developed	using	 this	method	 could	 be	

used	to	build	global	classifiers	better	equipped	at	 identifying	natural	deviations	 in	the	

future.	This	is	because	all	labelled	data	that	is	collected	by	practitioners	could	be	stored	

and	used	to	build	the	large	data	set	necessary	to	improve	global	classifier	scores.		

	

	

A	challenging	aspect	of	 this	work	 is	 to	ascertain	whether	 the	results	presented	 in	 this	

paper	are	sufficient	for	real-life	applications.	It	 is	likely	that	the	classification	accuracy	

achieved	using	a	global	classifier	 is	 too	 low	 for	use	 in	healthcare	environments,	while	

those	produced	by	a	personalised	classifier	may	be	acceptable.	However,	it	is	important	

to	note	that	what	is	considered	an	acceptable	level	of	classification	accuracy	is	likely	to	

be	 influenced	by	 application	domain	 (injury	 rehabilitation,	 strength	 and	 conditioning,	

musculoskeletal	 injury	 risk	 screening,	 etc.)	 and	 end	 user	 profile	 (rehabilitation	



professionals,	sports	coaches,	strength	and	conditioning	staff,	recreational	gym	users).	

Our	research	team	is	undertaking	further	projects	to	determine	usability,	functionality	

and	 user	 perceptions	 of	 wearable	 technology	 to	 assess	 exercise	 biomechanics.	 This	

information	 is	 being	 gathered	 from	 a	 range	 of	 professionals	 and	 patients,	 who	

incorporate	 exercises	 such	 as	 the	 barbell	 squat	 in	 their	 rehabilitation	 programme,	

exercise	routine	and	injury	risk	screening	protocols.	It	is	envisaged	that	this	will	provide	

greater	 indication	 as	 to	 the	 levels	 of	 accuracy	 end	 users	 would	 define	 as	 acceptable.	

Furthermore,	this	work	will	contribute	new	information	regarding	how	best	to	provide	

actionable	feedback	to	these	users	that	allows	for	safe	and	effective	exercise	completion.		

7 Conclusion 

Our	results	show	that	a	system	based	on	data	derived	from	body	worn	IMUs	can	classify	

acceptable	 and	 aberrant	 barbell	 squat	 biomechanics	 with	 good	 overall	 accuracy,	

sensitivity	and	specificity	using	a	personalised	classifier.	These	classification	scores	are	

maintained	 even	with	 a	 single	 IMU.	The	 ability	 to	 identify	 specific	 deviations	 is	more	

difficult	 but	 can	 be	 achieved	 with	 a	 moderate	 level	 of	 overall	 accuracy	 using	 a	

personalised	 classifier.	 Our	 results	 are	 comparable	 with	 other	 research	 in	 the	 area,	

despite	the	barbell	squat	being	a	more	complex	exercise	then	many	of	those	previously	

investigated.	However,	most	of	this	research	has	been	carried	out	using	global	classifiers.	

While	this	may	allow	for	less	user	interaction,	it	produces	poor	levels	of	accuracy	when	

attempting	to	identify	specific	natural	deviations	during	performance	of	the	exercise.	As	

a	 result,	 the	 use	 of	 a	 personalised	 classifier	may	 be	more	 appropriate	 for	 identifying	

natural	deviations	in	barbell	squat	technique.	
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