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Abstract— Digital transmitter (DTX) offers the desired signal 
efficiency and flexibility than its analog counterpart by merging 
signal amplification and modulation. Yet, the high-speed digital 
baseband interface is challenging and bulky for achieving low 
out-of-band noise. This Brief is an analytical study of the DTX 
linear interpolation technique, which can be adapted easily for 
optimizing the replica rejection and noise-filtering capabilities of 
the DTX. 
 

Index Terms— Digital transmitter (DTX), linear interpolation, 
quantization noise, replicas. 
 

I. INTRODUCTION 
OR digital transmitter (DTX) design, switching power 
amplifier is usually deployed to improve the power 

efficiency. However, it is not trivial to add filters in the signal 
path. Charge-based filtering technique was proposed to 
suppress the noise floor [1] but the charge sharing operation 
limits its output power to be low. Thus, without filtering for 
both noise and sampling replicas, a SAW-less DTX is difficult 
to fulfill the stringent requirement of the out-of-band noise (–
160 dBc/Hz) [2]. An in-phase and quadrature (I/Q) DTX can 
outperform a polar one in the noise floor level (e.g., –130 and –
112 dBc/Hz at 100 MHz offset in [3], [4]) as the latter one 
suffers from the time misalignment of the amplitude modulated 
and phase modulated paths [4-6].  

The noise floor of an I/Q mixing digital-to-analog converter 
(DAC) is dominated by the quantization noise of the DAC array 
[7] which is strongly related with its baseband sampling 
frequency and resolution. For example, the signal with a 
sampling rate of 320 MS/s is ∼6 dB lower than the one with 80 
MS/s [8]. The noise floor can be suppressed by increasing 
either of them but the high speed digital input/output (I/O) 
interface is challenging [9] and bulky. Also, the resolution is 
limited by the device matching [7]. For example, an effective 
number of bits (ENOB) of 6.9-bit was achieved with a 
resolution of 9 bits [3]. Rather than these, exploiting an on-chip 
interpolation for the baseband signal can relax the speed of the 
digital interface. In this work, the tradeoffs between the 
resolution, sampling frequency and linear interpolation is 
analyzed. They affect the noise and replica rejection. Section II 
presents the analysis the DAC noise with respect to its 
resolution and sampling rate. Section III introduces the linear 
interpolative I/Q DTX for suppressing sampling replicas and  

noise floor. Section IV shows the simulation results and the 
conclusion is drawn in Section V. 
 

II. DAC NOISE 
The signal-to-noise ratio (SNR) of a DAC with respect to 

quantization noise can be formulated as 
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,        (1) 

 
where 𝑃4 is the signal power in mW, 𝑃56(𝑓) is the noise power 
density in mW/Hz and 𝑓4  is the sampling frequency of the 
DAC. When the signal frequency is not a sub-harmonic of 𝑓4, 
the quantization noise can be regarded as random and is flat in 
the frequency domain. Thus, (1) can be calculated as, 
 

𝑆𝑁𝑅(𝑑𝐵) = &'
&)*(.:)

− 10𝑙𝑜𝑔𝑓4 + 3.01.    (2) 
 
As the SNR of the DAC is related to the ENOB 𝑆𝑁𝑅(𝑑𝐵) =
6.02𝑁 + 1.76, the relative noise floor level 𝑃56	/𝑃4 in dBc/Hz 
can be derived as, 

 
𝑃56/𝑃I(𝑑𝐵) = −(6.02𝑁 + 10𝑙𝑜𝑔𝑓4 − 1.25),  (3) 

 
where 𝑁 is the ENOB of the DAC. The noise floor level can 

be suppressed by increasing either the ENOB of the DAC or the 
sampling frequency. Every 6-dB lower noise floor can be 
realized by adding 1-bit resolution, or quadrupling the sampling 
frequency, as shown in Fig. 1. Considering the I/O pin count, 
raising the resolution of the DAC is more favorable as we only 
have (𝑁 + 1) bits for each channel to obtain a 6-dB lower noise 
floor. However, we have to increase 𝑓4 by 4×, or equivalently 
having 4𝑁 bits for each channel with the same 𝑓4, for the same 
data throughput. 

Comparing with a single DAC, the SNR and noise-floor 
level of an in-phase/quadrature (I/Q) 2 × 𝑁-bit DAC remain 
unchanged since the I- and Q-channel signals are orthogonal. 
The total power of signal and noise are the power sums of the 
individual channels. Besides, the quantization noise is also 
filtered by the zero-order hold (ZOH), but its response is 
frequency dependent and will be discussed in Section IV. 
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III. INTERPOLATIVE I/Q DTX 

A. Sampling Replicas Suppression 
As the complex baseband signal 𝑠(𝑡) has a finite sampling 

frequency. The sampled signal 𝑠4(𝑡) can be expressed as, 
 

𝑠4(𝑡) = 𝑠(𝑡)∑ 𝛿(𝑡 − 𝑛𝑇4)S
TUVS ,      (4) 

 
which is the multiple of the signal and an infinite impulse train, 
where 𝑇4 is the sampling period. Since the Fourier transform of 
the impulse train is also an impulse train with a spacing of 𝑓4, 
replicas of the fundamental signal occur at the multiples of 𝑓4. 
As adding reconstruction filters is not trivial in DTX design, the 
replicas can only be filtered by ZOH response. A ZOH signal 
can be defined as 𝑠WXY(𝑡) = 𝑠4(𝑡) ∗ ℎ\(𝑡)  where ∗  is the 
convolution operation and ℎ\(𝑡) which can be expressed as, 
 

ℎ\(𝑡) = ]1/𝑇4 |𝑡| ≤ 𝑇4/2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.      (5) 

 
The frequency response of ℎ\(𝑡) can be calculated as, 
 
𝐻\(𝑗𝑓) = 𝐹{ℎ\(𝑡)} = ∫ ℎ\(𝑡)𝑒Vijk,l𝑑𝑡

S
VS = \

km0,
sin	(𝜋𝑇4𝑓),
   (6) 

 
where 𝐹{. } is the Fourier transform operation. Thus, the ZOH 
can provide a 𝑠𝑖𝑛𝑐  response for the replicas. Suppose the 
maximum frequency of the baseband signal is at 𝑓::,tuv, the 
replica with the least suppression is at 𝑓4 − 𝑓::,tuv. In order to 
have ≥40-dB rejection for the replicas, the over-sampling rate 
𝑂𝑆𝑅 = 𝑓4/𝐵𝑊 should be ≥50 that is unacceptably high, where 
𝐵𝑊 is the signal bandwidth which is 2× of 𝑓::,tuv for a double 
sideband signal. 

 

To suppress the replicas, a continuous linear interpolated 
signal 𝑠yz(𝑡) = 𝑠4(𝑡) ∗ ℎyz(𝑡)  is a possible solution, where 
ℎyz(𝑡) = ℎ(𝑡) ∗ ℎ(𝑡). Thus, the continuous linear interpolation 
operation can achieve a 𝑠𝑖𝑛𝑐j  rejection. Yet, a continuous 
linear interpolation requires infinite resolution and sampling 
frequency in the digital domain or bulky ramp generation 
circuits in the analog domain.  

Here the linear interpolation function can be approximated as 
a staircase response. The staircase signal can be simply 
generated by full adders from the original binary data if the 
interpolation ratio is a power of two. Then, the resolution and 
the sampling frequency of the interpolated signal are increased 
accordingly. A linearly interpolated-by-2 response can be 
expressed as, 

 

ℎj(𝑡) = {
1/𝑇4 |𝑡| ≤ 𝑇4/4

1/(2𝑇4) 𝑇4/4 < |𝑡| ≤ 3𝑇4/4
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.   (7) 

 
The frequency response of ℎj(𝑡) can be calculated as, 

 
𝐻j(𝑗𝑓) = 𝐹{ℎj(𝑡)} =

\
km0,

sin	(𝜋𝑇4𝑓)cos	(
km0,
j
).   (8)  

 
Comparing with the ZOH response, the linear linearly 

interpolated-by-2 response has additional zeros at the odd 
multiples of 𝑓4 . The required 𝑂𝑆𝑅  is relaxed to 6.47 for 
achieving 40-dB replica rejection near 𝑓4. However, the replica 
near 2𝑓4  is not rejected by the addition zeros due to the 
interplated-by-2 operation. The required 𝑂𝑆𝑅  is 25 for 
achieving 40-dB replica rejection in the vicinity of 2𝑓4. 

Generalizing it to be a 2� -step response, the frequency 
response can be derived to be, 

 
𝐻j�(𝑗𝑓) =

\
km0,

sin	(𝜋𝑇4𝑓)∏ cos	(km0,
j�
)�

TU\ .    (9) 
 
Replicas up to (2� − 1)-th harmonics can be rejected. The 

replicas rejection with different interpolation rates are 
compared in Fig. 2(a) to (d). To achieve 40-dB rejection for all 
sampling replicas, the required 𝑂𝑆𝑅 for different linear 
interpolation rate is summarized in Table I. It shows that the 
𝑂𝑆𝑅 is limited by the non-suppressed replicas when the 
interpolation rate is up to 8. The 𝑂𝑆𝑅 is halved for every 2× 
interpolation due to the \

,
 rejection. Yet, the first replica is 

dominant for 16× interpolation because extra interpolation 
steps do not contribute to the first replica rejection. The optimal 
interpolation rate is 8/16 where the required 𝑂𝑆𝑅 for achieving 
40-dB replica rejection is 6.25/5.4. A 16× can further reduce the 
required 𝑂𝑆𝑅 by 13.6% from the 8× one but the operating 
frequency for the 16× interpolation circuit will be almost 1.72× 
higher. For instance, the effective bandwidth of a 20-MHz 
IEEE 802.11g signal is 16.25 MHz. The minimum required 𝑓4 
to achieve 40-dB replica rejection for 8×/16× interpolation is 
101.6/87.75 MHz. Thus, choosing 𝑓4 to be 120/100 MHz for 
them can leave some margin for the rejection due to 
mismatches. The operating frequency of the interpolation  

 
 
Fig. 1.  Noise floor level versus sampling frequency over different ENOBs. 
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circuit will be 960MHz/1.6GHz, so implementing 16× 
interpolation can be much more power hungry. Also, a 
band-limited output matching network can possibly contribute 
to the eighth replica rejection which means the required OSR 
for the 8× interpolation can be further decreased. 

 

B. Sampling Replicas Suppression 
The quantization noise can be filtered by the interpolation 

responses while they are frequency dependent. The filtered 
power spectral density (PSD) of the quantization noise can be 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
expressed as, 

 
𝑁�(𝑓) = �𝐻j�(𝑗𝑓)�

j𝑃56       (10) 
 

The noise floor level is usually reported at a specific 
frequency offset from the carrier frequency in transmitter 
design. Rather than that, the average power gain within a 
certain bandwidth can be defined as, 

 
𝑅(2�, 𝑓u, 𝑓�) = 10𝑙𝑜𝑔 � \

,�V,�
∫ �𝐻j�(𝑗𝑓)�

j𝑑𝑓,�
,�

�,  (11) 
 

which is proportional to the total noise power. Certain values of 
𝑅(2�, 𝑓u, 𝑓�)  at different bands with different interpolation 
ratios are summarized in Table II. Without interpolation, the 
quantization noise is suppressed by 13.5 dB with the ZOH 
effect while it is suppressed by 26.5 dB with 8× interpolation.  
When the offset frequency is smaller than 13𝑓4/16 , the 
rejection is even lower but the noise is gradually dominated by 
the spectrum regrowth due to the nonlinearity of the circuit as 
the offset frequency decreases. 

  

 
 

 Fig. 2. Replicas rejection versus different OSR for, linearly interpolated (a) by-2, (b) by-4, (c) by-8, and (d) by-16, comparing with zero order hold. 
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TABLE I 

REQUIRED OSR FOR ACHIEVING 40-DB REPLICA REJECTION AT DIFFERENT 
INTERPOLATION RATES. 

 

 
 

 

Linear Interpolation Rate 1× 2× 4× 8× 16×
Required OSR 50 25 12.5 6.25 5.4

Dominant Replica 1st 2nd 4th 8th 1st
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The 8× interpolation can provide 2.2 bits more than the ZOH 
effect. By combining the noise suppression from the filtering 
and the noise floor derived in Section II, the overall achievable 
noise floor can be calculated. Suppose the sampling frequency 
is chosen to be 120 MHz, without interpolation, a noise floor of 
–150/–160 dBc/Hz is achievable with 9.5/11.1-bit ENOB. 

However, a noise of –160 dBc/Hz is achievable with 9.0-bit 
ENOB with 8× interpolation. 

 

IV. SIMULATION RESULTS AND DISCUSSION 
An IEEE 802.11g orthogonal frequency division multiplexing 

 
TABLE II 

THE NOISE REJECTION ABILITY OF THE INTERPOLATION FUNCTIONS AT DIFFERENT BANDS. 
 

 
 

 
 

–10.3 dB –16.7 dB –28.9 dB –19.2 dB –14.9 dB –13.5 dB –13.5 dB –14.9 dB
–18.3 dB –29.4 dB –51.2 dB –32.1 dB –23.0 dB –18.5 dB –16.5 dB –16.5 dB
–19.8 dB –31.4 dB –54.2 dB –36.3 dB –28.3 dB –25.1 dB –24.9 dB –27.2 dB
–20.1 dB –31.9 dB –54.9 dB –37.2 dB –29.4 dB –26.5 dB –26.5 dB –29.1 dB
–20.2 dB –32.0 dB –55.1 dB –37.5 dB –29.7 dB –26.8 dB –26.9 dB –29.5 dB

 
 

 Fig. 3. The OFDM spectrum for, (a) without linear interpolation, (b) with 8× linear interpolation, and the PSD of the quantization noise for, (c) without linear 
interpolation, and (d) with 8× linear interpolation. 
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(OFDM) signal is generated to verify the derived results. The 
sampling frequency is chosen to be 120 MHz as explained. 

The simulated OFDM spectrums and are plotted in Fig. 3(a) 
and (c). The first replica is suppressed to –24.4/–47.2 dBc 
without/with interpolation, respectively. The PSDs of the 
quantization noise are plotted in Fig. 3(b) and (d). The noise 
level at DC matches the theoretical values as derived in Section 
II. The noise floor of 2×9/2×10/2×11/2×12-bit ENOB is –147/–
153/–159/–165 dBc/Hz all at 95 MHz offset without 
interpolation. The noise floor of 9-bit ENOB can be –160 
dBc/Hz at 96 MHz offset with 8× interpolation. In practical 
measurement extra caution should be taken for generating the 
test signal as the noise floor can be easily overwhelmed by the 
spectrum leakage due to limited memory length. 

Note that even the suppressed replicas are 20 to 40 dB higher 
than the noise floor. To further suppress the replicas, higher 
order interpolation or RF filtering is necessary. The former 
requires FIR filters operating up to 1 GHz to increase the 
sampling rate and resolution. However, the truncation effect 
will cause addition noise and DC error [10, 11]. The latter 
requires high-Q bandpass filter which is bulky and power 
inefficient. Otherwise, a higher sampling frequency has to be 
chosen. 

 

V. CONCLUSION 
The linear interpolation technique not only can suppress the 

replicas of the sampling in an RF DTX, but also can lower the 
quantization noise floor level. In this Brief, we have analyzed in 
details the tradeoff between the sampling frequency and 
resolution with the linear interpolation ratio. The results are 
backed by quantitative examples concerning the practical 
hardware limits at RF. It is revealed that linear interpolation can 
aid effectively sampling-frequency reduction without 
sacrificing the replica rejection. It can also relax the resolution 
of the baseband signal for smaller I/O pin count. 
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