Liquid-phase 3D bioprinting of gelatin alginate hydrogels: influence of printing parameters on hydrogel line width and layer height

Maha Alruwaili ^{a, b}, Jose A. Lopez ^{a, c}, Kevin McCarthy ^{a, b}, Emmanuel G. Reynaud ^{a, c, *} and Brian J. Rodriguez ^{a, b, *}

^aConway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland

^bSchool of Physics, University College Dublin, Dublin, Ireland

^cSchool of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland *emmanuel.reynaud@ucd.ie and brian.rodriguez@ucd.ie

Abstract

Extrusion-based 3D bioprinting is a direct deposition approach used to create 3 dimensional (3D) tissue scaffolds typically comprising hydrogels. Hydrogels are hydrated polymer networks that are chemically or physically crosslinked. Often, 3D bioprinting is performed in air, despite the hydrated nature of hydrogels and the potential advantage of using a liquid phase to provide crosslinking and otherwise functionalize the hydrogel. In this work, we print gelatin alginate hydrogels directly into a crosslinking solution of calcium chloride and investigate the influence of nozzle diameter, distance between nozzle and surface, calcium chloride concentration, and extrusion rate on the dimensions of the printed hydrogel. The hydrogel layer height was generally found to increase with increasing extrusion rate and nozzle distance, according to the increased volume extruded and the available space, respectively. In addition, the hydrogel width was

generally found to increase with decreasing nozzle distance and crosslinking concentration corresponding to confinement-induced spreading and low crosslinking regimes, respectively. Width/height ratios of ~ 1 were generally achieved when the nozzle diameter and distance were comparable above a certain crosslinking concentration. Using these relationships, biocompatible 3D multilayer structures were successfully printed directly into calcium chloride crosslinking solution.

Keywords

Gelatin alginate, hydrogel, additive manufacturing, 3D printing, 3D bioprinting, biomaterials, extrusion, bioplotting

1. Introduction

Additive manufacturing by extrusion-based 3 dimensional (3D) bioprinting enables the direct deposition of biomaterials for the fabrication of 3D scaffolds [1–3]. The potential applications of 3D bioprinting span from regenerative medicine to tissue engineering [4–6]. Ideally, 3D bioprinting will enable the creation of biocompatible 3D scaffolds with tailored physical, chemical, and biological functionality [7]. Such scaffolds should be made of generally soft biopolymer hydrogels prepared with a stiffness suitable for the cell line to be investigated [3,8]. Notably, extrusion-based 3D bioprinting is typically performed in air, which places limits on the types of materials that can be printed [3,7,9–13]. The dimensions of a printed hydrogel and the print resolution, defined as the width and height of a single line, depend strongly on the hydrogel used and on the printing parameters nozzle diameter, distance between nozzle and surface (i.e., nozzle distance), and extrusion rate [14–17], as annotated in **Figure 1**. As hydrogels are hydrated 3D

polymer networks that are crosslinked by chemical or physical interactions, it is important to crosslink bioprinted hydrogels to maintain their structure and keep bioprinted hydrogels in a liquid environment so as to avoid the detrimental effects of dehydration [18–20]. Several strategies have been employed to ionically crosslink extruded hydrogels, including crosslinking a structure post printing [21], lowering the print into crosslinking solution during printing [22], coaxial/microfluidic print head designs to crosslink during extrusion [23,24], crosslinking during printing using an aerosol system [25], pre-crosslinking the hydrogel prior to extrusion [26], among others [27]. In another strategy, first reported in 2000 as 3D plotting or 3D bioplotting, extrusion of materials (e.g., moisture curable silicone resin, alginate, agar, agarose, and gelatin) is performed directly in crosslinking solution (Figure 1) on a submerged, often roughened, print surface [28– 31]. Printing in non-reactive support solutions and gels has also been demonstrated [32–34]. While examples of printing alginate-based hydrogels directly into crosslinking exist [29,35–39] and scaffolds printed in crosslinking solution were reported to improve printing outcomes [39] and cell viability [36] compared to printing in air, experiments have typically been performed using only one nozzle diameter and one crosslinking solution [29,35-37,39]. Furthermore, typically the width, but not the layer height, of the printed hydrogels is reported, the influence of extrusion rate is not investigated, and the nozzle distance is not mentioned or kept constant. Compared to printing in air, printing into a crosslinking solution brings additional challenges, such as swelling, and understanding the influence of printing parameters on print dimensions and resolution becomes crucial for the fabrication of 3D scaffolds. For example, the choice of nozzle distance for the second layer requires knowledge of the first layer height. In this work, we print biocompatible [40,41] and biodegradable [42,43] gelatin alginate hydrogels directly into a crosslinking solution of calcium chloride (CaCl₂). By investigating the influence of nozzle diameter, nozzle distance,

CaCl₂ concentration, and extrusion rate on the dimensions of the printed hydrogel, a parameter space for printing multilayer structures was identified and successfully demonstrated. This work provides a strategy for testing hydrogels for liquid-phase 3D bioprinting, which may expand the types of hydrogels that can be used in extrusion-based 3D bioprinting, and allow the fabrication of 3D scaffolds that provide an environment similar to the *in vivo* extra cellular matrix for tissue engineering and drug toxicity applications.

Figure 1. (A) Schematic of a syringe extruding gelatin alginate hydrogel onto a support in liquid; nozzle diameter is the inner diameter of the nozzle and nozzle distance is the separation between the end of the nozzle and the print surface.

2. Materials and methods

2.1. Gelatin alginate

To prepare gelatin alginate hydrogels, gelatin (0.06 g/ml type B, Sigma-Aldrich) and sodium alginate (0.05 g/ml type P1, Sigma-Aldrich) powders were mixed using a magnetic stirrer at 200 rpm in deionized water at 65 °C for 10 minutes. Typically, 3 g of gelatin and 2.5 g of alginate were added to 50 ml of deionized water and 0.01 g of orange food dye (U8-OSL0-PS8Q, Preema) was added during mixing to better visualize the nominally transparent printed structures. The heated hydrogel was loaded into a 20 ml sterile syringe with Luer lock tip (BDAM302237, VWR) prior to printing.

2.2. Crosslinking solution

Calcium chloride (CaCl₂) powder (MFCD00149613, Fisher Scientific) was dissolved in deionized water to prepare crosslinking solutions with concentrations of 20–160 mM.

2.3. 3D bioprinting

An Ultimaker Original 3D printer was modified to enable syringe-based extrusion, as shown in **Figure 2**. The syringe holder consisted of polylactic acid parts 3D printed on an Ultimaker 3. The parts were used (1, 2) to hold the stepper motor (SM42HT38-1684AL, Smart Automation Motor Manufacturing Co., Ltd.), (3) to interface with the lead screw, and (4) to replace the syringe plunger ((5) a plunger cap (15889152, Fisher Scientific) was affixed to the end of the printed plunger), and (6) mount the syringe, as shown schematically in **Figure 2A,B** and fully assembled in **Figure 2C**. In this manner, syringe extrusion was controlled by the stepper motor using even numbered extrusion rates in the range 6–24 mm/s. For reference, 12 mm/s corresponds to an

extrusion rate of ~ 0.04 ml/s for the gelatin alginate hydrogel prepared. The print head speed in x and y was kept constant at 2 mm/s, within the 1-10 mm/s range typically reported for bioprinting [44]. The hydrogel temperature was maintained at 65 °C using a self-adhesive heating element (PPI Adhesive Products Limited) wrapped around (7) an aluminum cylinder holding (8) a 20 ml plastic syringe (15889152, Fisher Scientific), as shown in **Figure 2D**, and controlled using an Arduino Uno (not shown). Plastic tapered dispensing needles (Somerset Solders Ltd) with inner nozzle diameters of 0.58 mm, 0.84 mm, 1.20 mm, and 1.60 mm were used in this work.

Prior to printing, a 90 mm diameter Petri dish lid (Fisher Scientific) was sanded (80-grit sandpaper, ZG-02-SZ-80, ZesGood) to roughen the surface and promote print attachment. 2 ml of CaCl₂ crosslinking solution was then placed in the plastic petri dish. One layer comprising 4 connected lines, 40 mm in length and separated by 4 mm, was then printed using nozzle distances of 0.3, 0.5, and 0.8 mm, CaCl₂ concentrations of 20–160 mM within the range of typical CaCl₂ values [45], and previously described extrusion rates and nozzle diameters. One layer comprising 10 connected lines, 60 mm in length and separated by 4 mm, each printed with a different extrusion rate between 6–24 mm/s, was also used (e.g., **Figure S1**).

Preliminary attempts at printing established that if the distance between the nozzle and the substrate was too large, the printed gel would not adhere to the substrate, and that if the distance was too small, the hydrogel would not exit the nozzle. Within these extremes and depending on the parameters selected, it is reasonable to expect, under the chosen conditions, that the cross section of a single printed line would have a geometry similar to one of the three categories shown in **Figure 3**: where (i) the width is roughly equal to the height (width/height ratio less than 1.3),

(ii) the width is greater than the height (width/height ratio greater than or equal to 1.3 and less than or equal to 2), or (iii) the width is more than twice the height. The category height/width ratios are defined quantitatively only for classification purposes; however, qualitatively, they are intended to identify shapes that might be suitable for multilayer stacking or fusion [17], depending on crosslinking concentration. Understanding the relationships between printing parameters and printed line geometry is a critical first step towards the fabrication of multilayer objects printed in a crosslinking solution.

Figure 2. (A, B) Representations of the bespoke syringe holder from two perspectives. (C) Photograph of the entire print head. (D) 20 ml syringe filled with 10 ml of gelatin alginate hydrogel with orange dye.

Figure 3. Schematic showing the height and width of the structure printed into CaCl₂ crosslinking solution and three possible printing outcomes or categories depending on print parameters used: (i) width/height ratio less than 1.3, (ii) width/height ratio greater than or equal to 1.3 and less than or equal to 2, and (iii) the width is more than twice the height.

2.4. Optical characterization

After printing and after crosslinking for 10 minutes, the printed hydrogel layer was sliced with a scalpel (Steel Blade) from the middle, gently removed from the petri dish using tweezers (Round Tip Micro Tweezers 160 mm, Nizbets), and placed on a glass slide for imaging (e.g., **Figure S2**). To image the dimensions of the hydrogel (line height and width determined as mean and standard deviation from 10 measurements each), a camera (P/S G1X II, Canon) was used. A crosslinking time of 10 minutes was chosen to reflect a reasonable time between printing subsequent layers and to minimize the effect of swelling behavior across a broad concentration range (**Figure S3**).

3. Results and discussion

3.1 Influence of nozzle diameter and nozzle-surface distance

As in any fused filament fabrication or direct deposition approach, nozzle diameter and distance are key parameters that essentially define print resolution and layer height, respectively. Given the importance of these parameters, their influence on print dimensions in crosslinking solution was investigated specifically in a liquid-phase bioprinting set-up. Average height and widths of gelatin alginate hydrogel lines printed using an extrusion rate of 12 mm/s into a 60 mM CaCl₂ solution for nozzle distances of 0.3, 0.5, and 0.8 mm which are typical values for 3D bioprinting [46,47] with the nozzle diameters used: 0.58, 0.84, 1.20, and 1.60 mm are shown in Figure 4. Nozzle distances of 0.3 and 0.5 mm yielded hydrogels of height slightly greater than the nozzle distance. The heights were generally independent on nozzle diameter (Figure 4A). Under these conditions, the hydrogel height was generally initially confined by nozzle distance and likely swelled as the nozzle moved away along the printing path. The height for a nozzle distance of 0.8 mm was the same as for 0.5 mm (~ 0.75 mm regardless of nozzle diameter). Given that the widths are also similar under these conditions, it is likely that for the extrusion rate and print head speed selected, the volume extruded is insufficient for the hydrogel height to be affected by the nozzle distance at 0.5 mm and above. The hydrogel widths increased linearly with increasing nozzle diameter for all distances (Figure 4B). Due to the smaller than nozzle diameter distance, the hydrogel expanded laterally during extrusion at the concentration and extrusion rate used, resulting in a width that increased with increasing nozzle diameter that was slightly larger than the nozzle diameter.

Figure 4. (A) Height and (B) width of gelatin alginate hydrogels printed into 60 mM CaCl₂ using nozzle distances of 0.3, 0.5, and 0.8 mm, an extrusion rate of 12 mm/s, and nozzle diameters of 0.58, 0.84, 1.20, and 1.60 mm.

The data plotted in **Figure 4**, available in in Supporting Information as **Table S1**, was also plotted as a function of distance instead of nozzle diameter, as shown in **Figure S4**. From these representations, we concluded that the height values generally increased with increasing distance whereas width values generally decreased with increasing distance for all nozzle diameters investigated, in agreement with the trends identified from **Figure 4**. Similar behavior was observed for hydrogels printed into 80 mM and 100 mM CaCl₂, as shown in **Figure S5** and **Table S2** and **Figure S6** and **Table S3**, respectively.

Nozzle diameter (mm)	Distance (mm)	Width/Height ratio	Category
	0.3	1.48 ± 0.02	ii
0.58	0.5	0.84 ± 0.01	i
	0.8	0.82 ± 0.02	i
	0.3	1.76 ± 0.02	ii
0.84	0.5	1.20 ± 0.05	i
	0.8	1.13 ± 0.02	i
	0.3	2.50 ± 0.05	iii
1.2	0.5	1.71 ± 0.05	ii
	0.8	1.31 ± 0.01	ii
	0.3	3.45 ± 0.02	iii
1.6	0.5	2.30 ± 0.07	iii
	0.8	2.24 ± 0.01	iii

Table 1. Dependence on nozzle diameter and distance for a CaCl₂ concentration of 60 mM and an extrusion rate of 12 mm/s of the ratio of the width to the height of the printed hydrogel structures.

For the largest nozzle diameters (1.2 and 1.6 mm), the prints generally fall into category iii of **Figure 3**; however, for nozzle distances of 0.5 and 0.8 mm for the 1.2 mm nozzle diameter, the ratios of width to height are less than 2 (**Table 1**), falling into category ii. For nozzle diameters of 0.84 and 0.58 mm, the prints are close to category i except for the smallest nozzle distance (0.3 mm), which leads to category ii prints. Notably, whereas the ratios of the two 0.84 mm category i prints are greater than 1, the ratios of the two 0.58 mm category i prints are less than 1. Ratios less than 1 likely result when the distance is roughly equal to or greater than the nozzle diameter. The closest agreement between nozzle diameter and hydrogel height and width was obtained for a nozzle diameter of 0.84 mm and a distance of 0.8 mm, which resulted in a hydrogel having a height of 0.78 \pm 0.02 mm and a width of 0.88 \pm 0.01 mm (1.13 \pm 0.02 mm width/height ratio); however, such agreement is expected to depend strongly on the crosslinking concentration used.

3.2 Influence of crosslinking concentration

While similar print dimensions were obtained for hydrogels printed into $60-100 \text{ mM CaCl}_2$, (**Figures 4, S5, S6**) it is necessary to further characterize the influence of crosslinking concentration across a broader concentration range. Gelatin alginate hydrogels were printed into CaCl₂ concentrations in the range of 20–160 mM using a 12 mm/s extrusion rate as a function of nozzle diameter and distance and the dimensions (height, width, and ratio of width to height) of the resulting hydrogel structures were measured and plotted (**Figure 5**).

For a nozzle distance of 0.3 mm and a nozzle diameter of 0.58 mm, hydrogel widths were greater than the heights for concentrations 60 mM and below (**Figure 5A**). Above 60 mM, the heights and widths were similar, resulting in ratios of \sim 1, corresponding to category i. The heights and widths were also comparable to the nozzle diameter. For larger nozzle diameters, low concentrations also resulted in hydrogel widths greater than the heights. As the nozzle distance was smaller than the nozzle diameter in **Figure 5A**, the widths remained larger than the height for all concentrations. It was not possible to achieve a category i print for larger nozzle diameters for a nozzle distance of 0.3 mm; however, the ratio is closest to 1 at intermediate concentrations corresponding also to conditions when the widths were comparable to the nozzle diameters.

For a nozzle distance of 0.5 mm and nozzle diameters of 0.58 mm and 0.84 mm, hydrogel widths and heights were comparable, and ratios close to 1 were achieved at most concentrations, corresponding to category i (**Figure 5B**). For larger nozzle diameters, widths were greater than heights, resulting in ratios > 1 and corresponding to categories ii and iii. For a 0.8 mm nozzle distance and a 0.58 mm nozzle diameter, heights were generally larger than widths, with ratios < 1 (**Figure 5C**). For a 0.84 mm nozzle diameter, heights and widths were similar above 60 mM, with ratios close to 1. For the larger nozzle diameters, widths were larger than heights and category i prints could not be obtained.

The data shown in Figure 5 highlights the interplay between nozzle distance and diameter and CaCl₂ concentration when printing gelatin alginate. At low concentrations, widths are generally larger than the nozzle diameter and heights are generally determined by the nozzle distance when the distance is less than the nozzle diameter; The gelatin alginate spreads out laterally with a low degree of crosslinking. When the nozzle distance is greater than the nozzle diameter, heights can be larger than widths except at the lowest crosslinking concentrations. From Figure 5, category i prints with width/height ratios of ~ 1 appear most likely to occur when the nozzle diameter and distance have similar dimensions and the concentration is greater than 60 mM. Ratios of ~ 1 are possible to obtain when the nozzle distance is slightly smaller than the nozzle diameter (e.g., 0.3 mm and 0.58 mm, respectively) at concentrations that result in moderate swelling to offset the initial nozzle confinement. If the nozzle distance is significantly greater than the nozzle diameter, ratios < 1 can be obtained. If the distance is significantly less than the diameter, ratios > 1 are generally expected. While these parameters allow the print geometry and therefore the print resolution and layer height to be tuned at an extrusion rate of 12 mm/s, the role of extrusion rate also needs to be investigated and understood.

Figure 5. Width, height, and width/height ratio of hydrogels printed into various CaCl₂ concentrations using nozzle distances of (A) 0.3 mm, (B) 0.5 mm, and (C) 0.8 mm, an extrusion rate of 12 mm/s, and nozzle diameters of 0.58, 0.84, 1.20, and 1.60 mm. In A, as denoted with an asterisk, the data point for the ratio for 1.6 mm nozzle diameter at 20 mM is off the scale shown (8.46 \pm 0.04). Data is provided in **Tables S4–S15**.

3.3 Influence of extrusion rate

So far, all data were obtained from hydrogels printed with an extrusion rate of 12 mm/s. As extrusion rate defines the rate at which the hydrogel is extruded, and therefore the volume extruded in a given time, it is a key printing parameter to understand. In order to determine the influence of the extrusion rate on the hydrogel dimensions, the hydrogel was printed into CaCl₂ concentrations in the range of 20–100 mM with even numbered extrusion rates in the range 6–24 mm/s for a nozzle distance of 0.5 mm and nozzle diameters of 0.58, 0.84, 1.20, and 1.60 mm. As shown in

Figure 5, concentrations above 100 mM did not strongly affect the measured hydrogel print dimensions. For a given nozzle diameter, increasing the extrusion rate increased the volume of hydrogel extruded. From **Figure 6**, it is clear that the height and width generally increased linearly with increasing extrusion rate. A strong dependence on concentration was not observed, but the height and more so the width were generally slightly larger for lower concentrations. Given the linear dependence of the height and width on extrusion rate, it is reasonable to expect that plots such as in **Figure 5**, obtained at different extrusion rates, could be used to determine which parameters can be used to produce a print of desired line geometry, print resolution, and layer height.

Figure 6. Height and width of gelatin alginate hydrogels printed with different extrusion rates (6–24 mm/s) and concentrations (20–100 mM) using a nozzle distance of 0.5 mm and nozzle diameters of (A) 0.58 mm, (B) 0.84 mm, (C) 1.20 mm, and (D) 1.60 mm. Data is provided in **Tables S16–S23**.

3.4 3D bioprinting of multilayer structures

The data presented above effectively maps the printing parameter space and allows us to select or predict the dimensions of the printed hydrogel and to choose appropriate nozzle distances for subsequent layers. Based on the expected line height and width for printing parameters discussed above, we printed 4-layer structures with different nozzle diameters into 60 mM $CaCl_2$ with an extrusion rate of 12 mm/s (**Figure 7**). The initial and subsequent nozzle distances were chosen according to **Table S1**, as indicated in **Table 2**. Each layer was printed in ~ 4 s with no delay between subsequent layers.

Figure 7. Multilayer gelatin alginate hydrogel structures printed into a 60 mM CaCl₂ solution with an extrusion rate of 12 mm/s, and nozzle diameters of (A) 0.58 mm, (B) 0.84 mm, (C) 1.20 mm, and (D) 1.60 mm.

Table 2. Chosen parameters for multilayer gelatin alginate hydrogel structures printed into a 60 mM $CaCl_2$ solution with an extrusion rate of 12 mm/s and resulting structure dimensions. The first layer was printed using a nozzle distance of 0.3 mm; subsequent layers were printed with a nozzle distance of 0.5 mm. All values have units of mm.

Nozzle diameter	Expected initial layer height	Expected line width	Structure height	Structure line width
0.58	0.46 ± 0.01	0.68 ± 0.02	2.70 ± 0.03	0.67 ± 0.07
0.84	0.55 ± 0.02	0.97 ± 0.01	2.70 ± 0.04	0.98 ± 0.06
1.20	0.56 ± 0.01	1.40 ± 0.05	2.60 ± 0.06	1.20 ± 0.08
1.60	0.55 ± 0.02	1.90 ± 0.01	2.67 ± 0.05	1.60 ± 0.10

Initial nozzle distances of 0.3 mm and subsequent nozzle distances of 0.5 mm were chosen for all nozzle diameters; the first layers were expected to be ~ 0.55 mm in height and subsequent layers were expected to be ~ 0.75 mm in height. The final height of the 4-layer structures was therefore expected to be in the range of 2–3 mm. As shown in **Table 2**, the final structure height was 2.60-2.70 mm and the overall average layer height was 0.67 ± 0.02 mm. For each of the nozzle diameters used, it was possible to obtain a multilayer structure with similar overall height and tunable line widths that depend on the nozzle diameter, concentration, and extrusion rate used, demonstrating the potential of liquid-phase 3D bioprinting. Similar 2-layer prints were found to be biocompatible; human mesenchymal stem cell viability was assessed using an Alamar Blue assay (DAL1025, Thermo Fisher) over 7 days relative to an empty well plate on grid structures printed using an extrusion rate of 12 mm/s, a nozzle diameter of 0.84 mm, and first and second layer nozzle distances of 0.3 mm and 0.5 mm, respectively, in 60 mM and 100 mM CaCl₂ crosslinking solution (**Figure S7**). Stem cells were seeded onto the prints after printing, as shear stress during extrusion

can lead to cell death [37] and stem cell differentiation is particularly sensitive to mechanical factors [48].

The results presented here provide a simple guide for testing new hydrogels for liquid-phase 3D bioprinting. Characterizing the effect of printing parameters on the geometry of the resulting hydrogel layer provides critical information relating to the selection of nozzle distance for subsequent layers. Notably, a variable nozzle distance may be required in order to obtain certain multilayer structures, depending on the hydrogel used and the printing parameters. In this work, control over line width and structure geometry is demonstrated, however, liquid-phase 3D bioprinting into crosslinking solution is expected to provide hydrogels with tunable mechanical properties as well [49], making it an attractive approach for generating tissue culture scaffolds with tunable functional properties.

4. Conclusions

Liquid-phase 3D bioprinting requires careful consideration of the print parameters: nozzle distance, nozzle diameter, crosslinking concentration, and extrusion rate. Proper selection of these parameters can allow the geometry of gelatin alginate hydrogel prints to be tuned, from lines with a ribbon-like geometry, where the width is larger than the height, to structures with width/height ratios of ~ 1 . At low crosslinking concentrations, widths are generally larger than heights. When the nozzle distance is much less than the nozzle diameter, the printed structure, confined by the nozzle, expands laterally. Width/height ratios of ~ 1 are generally achieved when the nozzle diameter and distance are comparable above a certain crosslinking concentration. Print speed is another important parameter [17,45], and the approach described should be undertaken each time

a different print speed is used. This approach can be generalized and applied to other gels for liquid phase 3D bioprinting prior to attempting multilayer prints. 3D bioprinting in liquid allows hydrogel prints to remain fully hydrated during and after printing and to tune the properties of the print through choice of crosslinking concentration.

Acknowledgements

This research was funded by the Ministry of Higher Education of Saudi Arabia under the King Abdullah Scholarship Program (IR10133), Enterprise Ireland (CF-2016-0389-P), the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement number 644175, and Science Foundation Ireland (13/TIDA/B2701). This project was co-funded by the European Regional Development Fund (ERDF) under Ireland's European Structural and Investment Funds Programmes 2014-2020.

References

- M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies, Int. J. Adv. Manuf. Technol. 67 (2013) 1721–1754. doi:10.1007/s00170-012-4605-2.
- R. Lozano, L. Stevens, B.C. Thompson, K.J. Gilmore, R. Gorkin, E.M. Stewart, M. in het Panhuis, M. Romero-Ortega, G.G. Wallace, 3D printing of layered brain-like structures using peptide modified gellan gum substrates, Biomaterials 67 (2015) 264–273. doi:10.1016/j.biomaterials.2015.07.022.
- [3] S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong, M. Xing, 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances, Bioact. Mater. 3 (2018) 144–156. doi:10.1016/j.bioactmat.2017.11.008.

- [4] E.D.F. Ker, A.S. Nain, L.E. Weiss, J. Wang, J. Suhan, C.H. Amon, P.G. Campbell,
 Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment, Biomaterials 32 (2011) 8097–8107.
 doi:10.1016/j.biomaterials.2011.07.025.
- [5] L.K. Narayanan, P. Huebner, M.B. Fisher, J.T. Spang, B. Starly, R.A. Shirwaiker, 3Dbioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells, ACS Biomater. Sci. Eng. 2 (2016) 1732–1742. doi:10.1021/acsbiomaterials.6b00196.
- [6] C. Mandrycky, Z. Wang, K. Kim, D.-H. Kim, 3D bioprinting for engineering complex tissues, Biotechnol. Adv. 34 (2016) 422–434. doi:10.1016/j.biotechadv.2015.12.011.
- S. V Murphy, A. Atala, 3D bioprinting of tissues and organs, Nat. Biotechnol. 32 (2014)
 773–785. doi:10.1038/nbt.2958.
- [8] F. Pati, J. Jang, D.-H. Ha, S. Won Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, D.-W. Cho, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink, Nat. Commun. 5 (2014) 11. doi:10.1038/ncomms4935.
- B. Zhang, L. Gao, L. Ma, Y. Luo, H. Yang, Z. Cui, 3D Bioprinting: A novel avenue for manufacturing tissues and organs, Engineering (2019) in press. doi:10.1016/j.eng.2019.03.009.
- S. Vijayavenkataraman, W.C. Yan, W.F. Lu, C.H. Wang, J.Y.H. Fuh, 3D bioprinting of tissues and organs for regenerative medicine, Adv. Drug Deliv. Rev. 132 (2018) 296–332. doi:10.1016/j.addr.2018.07.004.
- [11] T. Jiang, J.G. Munguia-Lopez, S. Flores-Torres, J. Kort-Mascort, J.M. Kinsella, Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication,

Appl. Phys. Rev. 6 (2019). doi:10.1063/1.5059393.

- [12] S. Kyle, Z.M. Jessop, A. Al-Sabah, I.S. Whitaker, 'Printability' of candidate biomaterials for extrusion based 3D printing: State-of-the-art,' Adv. Healthc. Mater. 6 (2017) 1–16. doi:10.1002/adhm.201700264.
- [13] T. Gao, G.J. Gillispie, J.S. Copus, A.K. PR, Y.-J. Seol, A. Atala, J.J. Yoo, S.J. Lee, Optimization of gelatin–alginate composite bioink printability using rheological parameters: a systematic approach, Biofabrication 10 (2018) 034106. doi:10.1088/1758-5090/aacdc7.
- P. Datta, A. Barui, Y. Wu, V. Ozbolat, K.K. Moncal, I.T. Ozbolat, Essential steps in bioprinting: From pre- to post-bioprinting, Biotechnol. Adv. 36 (2018) 1481–1504. doi:10.1016/j.biotechadv.2018.06.003.
- K.H. Kang, L.A. Hockaday, J.T. Butcher, Quantitative optimization of solid freeform deposition of aqueous hydrogels, Biofabrication 5 (2013) 035001. doi:10.1088/1758-5082/5/3/035001.
- Q. Gao, X. Niu, L. Shao, L. Zhou, Z. Lin, A. Sun, J. Fu, Z. Chen, J. Hu, Y. Liu, Y. He, 3D printing of complex GelMA-based scaffolds with nanoclay, Biofabrication 11 (2019)
 035006. doi:10.1088/1758-5090/ab0cf6.
- [17] Y. He, F. Yang, H. Zhao, Q. Gao, B. Xia, J. Fu, Research on the printability of hydrogels in 3D bioprinting, Sci. Rep. 6 (2016) 1–13. doi:10.1038/srep29977.
- [18] S. Naghieh, M.R. Karamooz-Ravari, M. Sarker, E. Karki, X. Chen, Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches, J. Mech. Behav. Biomed. Mater. 80 (2018) 111–118. doi:10.1016/j.jmbbm.2018.01.034.

- [19] A. Opdahl, T.S. Koffas, E. Amitay-Sadovsky, J. Kim, G.A. Somorjai, Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy, J. Phys. Condens. Matter. 16 (2004) R659–R677. doi:10.1088/0953-8984/16/21/R02.
- [20] Z. Tan, C. Parisi, L. Di Silvio, D. Dini, A.E. Forte, Cryogenic 3D printing of super soft hydrogels, Sci. Rep. 7 (2017) 16293. doi:10.1038/s41598-017-16668-9.
- [21] L. Ouyang, R. Yao, Y. Zhao, W. Sun, Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells, Biofabrication 8 (2016) 035020.
 doi:10.1088/1758-5090/8/3/035020.
- [22] A.G. Tabriz, M.A. Hermida, N.R. Leslie, W. Shu, Three-dimensional bioprinting of complex cell laden alginate hydrogel structures, Biofabrication 7 (2015) 045012.
 doi:10.1088/1758-5090/7/4/045012.
- [23] Q. Gao, Y. He, J. zhong Fu, A. Liu, L. Ma, Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery, Biomaterials 61 (2015) 203–215. doi:10.1016/j.biomaterials.2015.05.031.
- [24] J. Ma, Y. Wang, J. Liu, Bioprinting of 3D tissues/organs combined with microfluidics, RSC Adv. 8 (2018) 21712–21727. doi:10.1039/c8ra03022g.
- [25] S. Ahn, H. Lee, G. Kim, Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration, Carbohydr. Polym. 98 (2013) 936–942.
 doi:10.1016/j.carbpol.2013.07.008.
- [26] J.H.Y. Chung, S. Naficy, Z. Yue, R. Kapsa, A. Quigley, S.E. Moulton, G.G. Wallace, Bioink properties and printability for extrusion printing living cells, Biomater. Sci. 1 (2013) 763–773. doi:10.1039/c3bm00012e.

- [27] I.T. Ozbolat, Extrusion-based bioprinting, in: 3D Bioprinting, Elsevier, 2017: pp. 93–124.
 doi:10.1016/B978-0-12-803010-3.00004-4.
- [28] R. Landers, R. Mülhaupt, Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computerguided 3D plotting of polymers and reactive oligomers, Macromol. Mater. Eng. 282 (2000) 17–21. doi:10.1002/1439-2054(20001001)282:1<17::AID-MAME17>3.0.CO;2-8.
- [29] R. Landers, A. Pfister, U. Hübner, H. John, R. Schmelzeisen, R. Mülhaupt, Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques, J. Mater. Sci. 37 (2002) 3107–3116. doi:10.1023/A:1016189724389.
- [30] R. Landers, U. Hübner, R. Schmelzeisen, R. Mülhaupt, Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering, Biomaterials 23 (2002) 4437–4447. doi:10.1016/S0142-9612(02)00139-4.
- [31] A. Pfister, R. Landers, A. Laib, U. Hübner, R. Schmelzeisen, R. Mülhaupt, Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing, J. Polym. Sci. Part A Polym. Chem. 42 (2004) 624–638. doi:10.1002/pola.10807.
- [32] D.F. Duarte Campos, A. Blaeser, M. Weber, J. Jäkel, S. Neuss, W. Jahnen-Dechent, H. Fischer, Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid, Biofabrication 5 (2013). doi:10.1088/1758-5082/5/1/015003.
- [33] T. Bhattacharjee, S.M. Zehnder, K.G. Rowe, S. Jain, R.M. Nixon, W.G. Sawyer, T.E. Angelini, Writing in the granular gel medium, Sci. Adv. 1 (2015) e1500655.
 doi:10.1126/sciadv.1500655.
- [34] S.R. Moxon, M.E. Cooke, S.C. Cox, M. Snow, L. Jeys, S.W. Jones, A.M. Smith, L.M.

Grover, Suspended Manufacture of Biological Structures, Adv. Mater. 29 (2017) 1605594. doi:10.1002/adma.201605594.

- [35] A. Rajaram, D.J. Schreyer, D.X.B. Chen, Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds, J. Biomater. Sci. Polym. Ed. 26 (2015) 433–445. doi:10.1080/09205063.2015.1016383.
- [36] A. Rajaram, D. Schreyer, D. Chen, Bioplotting Alginate/Hyaluronic Acid Hydrogel
 Scaffolds with Structural Integrity and Preserved Schwann Cell Viability, 3D Print. Addit.
 Manuf. 1 (2016) 194–203. doi:10.1089/3dp.2014.0006.
- [37] F. You, X. Wu, X. Chen, 3D printing of porous alginate/gelatin hydrogel scaffolds and their mechanical property characterization, Int. J. Polym. Mater. Polym. Biomater. 66 (2017) 299–306. doi:10.1080/00914037.2016.1201830.
- [38] M. Sarker, M. Izadifar, D. Schreyer, X. Chen, Influence of ionic crosslinkers
 (Ca²⁺/Ba²⁺/Zn²⁺) on the mechanical and biological properties of 3D Bioplotted Hydrogel
 Scaffolds, J. Biomater. Sci. Polym. Ed. 29 (2018) 1126–1154.
 doi:10.1080/09205063.2018.1433420.
- [39] N. Soltan, L. Ning, F. Mohabatpour, P. Papagerakis, X. Chen, Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds, ACS Biomater. Sci. Eng. (2019). doi:10.1021/acsbiomaterials.9b00167.
- [40] S. Kim, M.E. Nimni, Z. Yang, B. Han, Chitosan/gelatin-based films crosslinked by proanthocyanidin, J. Biomed. Mater. Res. Part B Appl. Biomater. 75B (2005) 442–450. doi:10.1002/jbm.b.30324.
- [41] J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications,

Materials (Basel). 6 (2013) 1285–1309. doi:10.3390/ma6041285.

- [42] D.M. Kirchmajer, R. Gorkin III, M. in het Panhuis, An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing, J. Mater. Chem. B. 3 (2015) 4105–4117. doi:10.1039/C5TB00393H.
- [43] K.Y. Lee, D.J. Mooney, Alginate: Properties and biomedical applications, Prog. Polym.
 Sci. 37 (2012) 106–126. doi:10.1016/j.progpolymsci.2011.06.003.
- [44] A. Munaz, R.K. Vadivelu, J. St. John, M. Barton, H. Kamble, N.T. Nguyen, Threedimensional printing of biological matters, J. Sci. Adv. Mater. Devices. 1 (2016) 1–17. doi:10.1016/j.jsamd.2016.04.001.
- [45] M.D. Sarker, S. Naghieh, A.D. McInnes, L. Ning, D.J. Schreyer, X. Chen, Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments, Bioprinting 14 (2019) e00045. doi:10.1016/j.bprint.2019.e00045.
- [46] A. Habib, B. Khoda, Development of clay based novel hybrid bio-ink for 3D bio-printing process, J. Manuf. Process. 38 (2019) 12. doi:10.1016/j.jmapro.2018.12.034.
- [47] D.N. Heo, S. Lee, R. Timsina, X. Qiu, N.J. Castro, L.G. Zhang, Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering, Mater. Sci. Eng. C. 99 (2019) 582–590. doi:10.1016/j.msec.2019.02.008.
- [48] D. Li, J. Zhou, F. Chowdhury, J. Cheng, N. Wang, F. Wang, Role of mechanical factors in fate decisions of stem cells, Regen. Med. 6 (2011) 229–240. doi:10.2217/rme.11.2.
- [49] D. Williams, P. Thayer, H. Martinez, E. Gatenholm, A. Khademhosseini, A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting, Bioprinting 9 (2018) 19–36. doi:10.1016/j.bprint.2018.02.003.

Supporting Information

Liquid-phase 3D bioprinting of gelatin alginate hydrogels: influence of printing parameters on hydrogel line width and layer height

Maha Alruwaili^{a,b}, Jose A. Lopez^{a,c}, Kevin McCarthy^{a,b}, Emmanuel G. Reynaud^{a,c,*} and Brian J. Rodriguez^{a,b,*}

^aConway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland

^bSchool of Physics, University College Dublin, Dublin, Ireland

^cSchool of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland

*emmanuel.reynaud@ucd.ie and brian.rodriguez@ucd.ie

Figure S1. Gelatin alginate hydrogel layer printed into 80 mM CaCl₂ using a nozzle distance of 0.5 mm, a nozzle diameter of 0.58 mm, and various extrusion rates (6–24 mm/s).

Figure S2. Images of gelatin alginate hydrogel cross sections printed into 60 mM CaCl₂ using a nozzle distances of 0.5 mm, an extrusion rate of 12 mm/s, and nozzle diameters of (A) 0.58, (B) 0.84, (C) 1.20, and (D) 1.60 mm.

Figure S3. Swelling behavior of crosslinked gelatin alginate was determined by measuring the weight of hydrogels prepared in well plates at different time points (10 - 1440 minutes) as a function of crosslinking concentration in the range 20 - 100 mM and comparing them to the weight of dry non-crosslinked hydrogels. Each sample was prepared in triplicate and the swelling percentage was calculated as *Swelling* (%) = $[(Ws - Wd)/Wd] \times 100$ where *Ws* is the weight of the swollen hydrogels and *Wd* is the weight of the dry non-crosslinked hydrogel. For concentrations of 20 mM and 40 mM, the hydrogels continued to expand until reaching equilibrium after ~ 240 minutes and ~ 120 minutes, respectively. Concentration dependent shrinkage of alginate-based hydrogels has been observed previously [1]. A crosslinking time of 10 minutes was chosen for bioprint characterization to minimize the effect of the swelling behavior.

Table S1. Height and width dependence on nozzle diameter and distance for a CaCl₂ concentration of 60 mM and an extrusion rate of 12 mm/s.

Nozzle diameter (mm)	Distance (mm)	Height (mm)	Width (mm)
	0.3	0.46 ± 0.01	0.68 ± 0.02
0.58	0.5	0.76 ± 0.01	0.64 ± 0.01
	0.8	0.76 ± 0.01	0.62 ± 0.02
	0.3	0.55 ± 0.02	0.97 ± 0.01
0.84	0.5	0.76 ± 0.02	0.91 ± 0.05
	0.8	0.78 ± 0.02	0.88 ± 0.01
	0.3	0.56 ± 0.01	1.40 ± 0.05
1.2	0.5	0.75 ± 0.01	1.28 ± 0.05
	0.8	0.75 ± 0.01	1.19 ± 0.01
1.6	0.3	0.55 ± 0.02	1.90 ± 0.01
1.6	0.5	0.74 ± 0.05	1.70 ± 0.05
	0.8	0.75 ± 0.01	1.68 ± 0.01

Figure S4. (A) Height and (B) width of gelatin alginate hydrogels printed into a 60 mM CaCl₂ solution using nozzle diameters of 0.58, 0.84, 1.20, and 1.60 mm and nozzle distances of 0.3, 0.5, and 0.8 mm.

Figure S5. (A) Height and (B) width of gelatin alginate hydrogels printed into 80 mM CaCl₂ using nozzle distances of 0.3, 0.5, and 0.8 mm, an extrusion rate of 12 mm/s, and nozzle diameters of 0.58, 0.84, 1.20, and 1.60 mm.

Table S2. Dependence on nozzle diameter and distance for a $CaCl_2$ concentration of 80 mM and an extrusion rate of 12 mm/s of the ratio of the width to the height of the printed hydrogel structures.

Nozzle diameter (mm)	Distance (mm)	Width/height ratio	Category
	0.3	1.09 ± 0.03	i
0.58	0.5	0.72 ± 0.02	i
	0.8	0.71 ± 0.01	i
	0.3	1.55 ± 0.02	ii
0.84	0.5	1.04 ± 0.02	i
	0.8	1.00 ± 0.01	i
	0.3	2.24 ± 0.03	iii
1.2	0.5	1.50 ± 0.01	ii
	0.8	1.48 ± 0.03	ii
	0.3	2.93 ± 0.02	iii
1.6	0.5	2.00 ± 0.02	iii
	0.8	1.88 ± 0.03	ii

Figure S6. (A) Height and (B) width of gelatin alginate hydrogels printed into 100 mM CaCl₂ using nozzle distances of 0.3, 0.5, and 0.8 mm, an extrusion rate of 12 mm/s, and nozzle diameters of 0.58, 0.84, 1.20, and 1.60 mm.

Table S3. Dependence on nozzle diameter and distance for a CaCl₂ concentration of 100 mM and an extrusion rate of 12 mm/s of the ratio of the width to the height of the printed hydrogel structures.

Nozzle diameter (mm)	Distance (mm)	Width/height ratio	Category
	0.3	1.07 ± 0.04	i
0.58	0.5	0.74 ± 0.01	i
	0.8	0.69 ± 0.01	i
	0.3	1.53 ± 0.01	ii
0.84	0.5	1.09 ± 0.01	i
	0.8	1.03 ± 0.05	i
	0.3	2.12 ± 0.01	iii
1.2	0.5	1.56 ± 0.04	ii
	0.8	1.51 ± 0.04	ii
	0.3	2.74 ± 0.02	iii
1.6	0.5	2.08 ± 0.04	iii
	0.8	2.01 ± 0.02	iii

Table S4. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 0.58 mm, a nozzle distance of 0.3 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	1.05 ± 0.05	0.34 ± 0.01	3.05 ± 0.02
40	0.88 ± 0.01	0.39 ± 0.02	2.24 ± 0.02
60	0.68 ± 0.02	0.46 ± 0.01	1.48 ± 0.01
80	0.63 ± 0.04	0.58 ± 0.02	1.10 ± 0.03
100	0.58 ± 0.06	0.54 ± 0.03	1.08 ± 0.04
120	0.54 ± 0.02	0.47 ± 0.01	1.16 ± 0.02
140	0.53 ± 0.02	0.44 ± 0.01	1.19 ± 0.02
160	0.51 ± 0.01	0.40 ± 0.02	1.27 ± 0.01

Table S5. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 0.58 mm, a nozzle distance of 0.5 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	0.90 ± 0.01	0.54 ± 0.01	1.68 ± 0.01
40	0.67 ± 0.02	0.68 ± 0.02	0.99 ± 0.02
60	0.64 ± 0.01	0.76 ± 0.01	0.84 ± 0.01
80	0.58 ± 0.02	0.81 ± 0.03	0.72 ± 0.02
100	0.56 ± 0.01	0.75 ± 0.02	0.75 ± 0.01
120	0.52 ± 0.01	0.68 ± 0.01	0.76 ± 0.01
140	0.50 ± 0.01	0.63 ± 0.04	0.79 ± 0.02
160	0.47 ± 0.02	0.58 ± 0.03	0.81 ± 0.02

Table S6. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 0.58 mm, a nozzle distance of 0.8 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	0.88 ± 0.01	0.54 ± 0.01	1.63 ± 0.01
40	0.64 ± 0.02	0.71 ± 0.01	0.91 ± 0.01
60	0.62 ± 0.02	0.76 ± 0.01	0.81 ± 0.02
80	0.58 ± 0.01	0.82 ± 0.01	0.71 ± 0.01
100	0.53 ± 0.02	0.76 ± 0.02	0.70 ± 0.01
120	0.52 ± 0.03	0.69 ± 0.02	0.75 ± 0.02
140	0.48 ± 0.01	0.64 ± 0.02	0.75 ± 0.01
160	0.46 ± 0.01	0.59 ± 0.01	0.78 ± 0.01

Table S7. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 0.84 mm, a nozzle distance of 0.3 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	1.50 ± 0.06	0.34 ± 0.01	4.40 ± 0.03
40	1.30 ± 0.02	0.39 ± 0.02	3.32 ± 0.02
60	0.97 ± 0.01	0.55 ± 0.02	1.77 ± 0.01
80	0.89 ± 0.02	0.57 ± 0.03	1.55 ± 0.02
100	0.83 ± 0.01	0.54 ± 0.02	1.54 ± 0.01
120	0.80 ± 0.04	0.48 ± 0.01	1.65 ± 0.02
140	0.77 ± 0.04	0.45 ± 0.02	1.70 ± 0.03
160	0.70 ± 0.03	0.40 ± 0.05	1.72 ± 0.04

Table S8. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 0.84 mm, a nozzle distance of 0.5 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	1.26 ± 0.03	0.51 ± 0.01	2.45 ± 0.02
40	0.97 ± 0.05	0.67 ± 0.01	1.44 ± 0.02
60	0.91 ± 0.05	0.76 ± 0.02	1.19 ± 0.03
80	0.83 ± 0.01	0.80 ± 0.02	1.04 ± 0.02
100	0.80 ± 0.01	0.73 ± 0.02	1.09 ± 0.01
120	0.74 ± 0.06	0.65 ± 0.01	1.13 ± 0.02
140	0.71 ± 0.01	0.63 ± 0.04	1.13 ± 0.02
160	0.69 ± 0.03	0.59 ± 0.05	1.17 ± 0.04

Table S9. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 0.84 mm, a nozzle distance of 0.8 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	1.24 ± 0.03	0.54 ± 0.02	2.30 ± 0.02
40	0.94 ± 0.04	0.71 ± 0.05	1.33 ± 0.04
60	0.88 ± 0.01	0.78 ± 0.02	1.13 ± 0.01
80	0.84 ± 0.04	0.83 ± 0.01	1.00 ± 0.01
100	0.77 ± 0.05	0.75 ± 0.04	1.03 ± 0.05
120	0.74 ± 0.04	0.68 ± 0.02	1.10 ± 0.03
140	0.69 ± 0.01	0.65 ± 0.02	1.06 ± 0.01
160	0.66 ± 0.03	0.62 ± 0.03	1.06 ± 0.03

Table S10. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 1.20 mm, a nozzle distance of 0.3 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	2.13 ± 0.03	0.34 ± 0.01	6.24 ± 0.01
40	1.85 ± 0.05	0.42 ± 0.03	4.36 ± 0.04
60	1.40 ± 0.05	0.56 ± 0.01	2.51 ± 0.03
80	1.32 ± 0.05	0.59 ± 0.02	2.24 ± 0.03
100	1.21 ± 0.06	0.56 ± 0.01	2.12 ± 0.01
120	1.13 ± 0.01	0.54 ± 0.02	2.09 ± 0.01
140	1.04 ± 0.04	0.48 ± 0.01	2.16 ± 0.01
160	1.01 ± 0.04	0.43 ± 0.01	2.31 ± 0.02

Table S11. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 1.20 mm, a nozzle distance of 0.5 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	1.81 ± 0.04	0.51 ± 0.02	3.50 ± 0.03
40	1.36 ± 0.02	0.68 ± 0.03	2.00 ± 0.02
60	1.28 ± 0.05	0.75 ± 0.01	1.70 ± 0.02
80	1.20 ± 0.01	0.79 ± 0.01	1.50 ± 0.01
100	1.12 ± 0.04	0.71 ± 0.04	1.57 ± 0.04
120	1.08 ± 0.06	0.66 ± 0.02	1.64 ± 0.03
140	1.01 ± 0.01	0.64 ± 0.04	1.56 ± 0.02
160	0.99 ± 0.03	0.64 ± 0.01	1.55 ± 0.01

Table S12. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 1.20 mm, a nozzle distance of 0.8 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	1.76 ± 0.03	0.53 ± 0.04	3.32 ± 0.03
40	1.36 ± 0.05	0.70 ± 0.02	1.94 ± 0.03
60	1.19 ± 0.01	0.75 ± 0.01	1.58 ± 0.01
80	1.17 ± 0.03	0.79 ± 0.02	1.49 ± 0.03
100	1.10 ± 0.05	0.73 ± 0.04	1.51 ± 0.04
120	1.04 ± 0.05	0.68 ± 0.02	1.52 ± 0.03
140	0.99 ± 0.05	0.66 ± 0.01	1.49 ± 0.02
160	0.96 ± 0.03	0.65 ± 0.03	1.48 ± 0.03

Table S13. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 1.60 mm, a nozzle distance of 0.3 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	2.87 ± 0.06	0.33 ± 0.03	8.46 ± 0.04
40	2.52 ± 0.06	0.42 ± 0.01	5.90 ± 0.03
60	1.90 ± 0.01	0.55 ± 0.02	3.40 ± 0.01
80	1.73 ± 0.04	0.59 ± 0.02	2.94 ± 0.02
100	1.56 ± 0.03	0.56 ± 0.01	2.75 ± 0.02
120	1.47 ± 0.03	0.54 ± 0.01	2.73 ± 0.01
140	1.43 ± 0.03	0.48 ± 0.06	2.98 ± 0.04
160	1.38 ± 0.06	0.43 ± 0.01	3.21 ± 0.04

Table S14. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 1.60 mm, a nozzle distance of 0.5 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	2.40 ± 0.03	0.51 ± 0.03	4.65 ± 0.03
40	1.83 ± 0.04	0.68 ± 0.06	2.69 ± 0.06
60	1.70 ± 0.05	0.74 ± 0.05	2.28 ± 0.05
80	1.60 ± 0.04	0.80 ± 0.01	2.00 ± 0.02
100	1.49 ± 0.05	0.71 ± 0.03	2.08 ± 0.04
120	1.43 ± 0.05	0.66 ± 0.03	2.15 ± 0.04
140	1.36 ± 0.05	0.65 ± 0.02	2.09 ± 0.03
160	1.34 ± 0.02	0.64 ± 0.04	2.08 ± 0.03

Table S15. Height, width, and ratio of the width to the height of the printed hydrogel structures as a function of concentration for a nozzle diameter of 1.60 mm, a nozzle distance of 0.8 mm, and an extrusion rate of 12 mm/s.

Concentration (mM)	Width (mm)	Height (mm)	Ratio
20	2.37 ± 0.04	0.53 ± 0.02	4.48 ± 0.03
40	1.79 ± 0.06	0.71 ± 0.02	2.50 ± 0.03
60	1.68 ± 0.01	0.75 ± 0.02	2.24 ± 0.01
80	1.54 ± 0.02	0.82 ± 0.03	1.88 ± 0.03
100	1.48 ± 0.01	0.73 ± 0.02	2.02 ± 0.02
120	1.41 ± 0.01	0.68 ± 0.02	2.05 ± 0.01
140	1.34 ± 0.05	0.67 ± 0.06	2.01 ± 0.06
160	1.31 ± 0.01	0.65 ± 0.02	2.01 ± 0.02

Table S16. Height of the printed hydrogel structures as a function of CaCl₂ concentration (20–100 mM) and extrusion rate (6–24 mm/s) with a nozzle diameter of 0.58 mm and a nozzle distance of 0.5 mm.

Extrusion	20 mM	40 mM	60 mM	80 mM	100 mM
rate (mm/s)	Height (mm)	Height (mm)	Height (mm)	Height (mm)	Height (mm)
6	0.53 ± 0.02	0.55 ± 0.04	0.57 ± 0.02	0.54 ± 0.04	0.51 ± 0.02
8	0.56 ± 0.02	0.57 ± 0.03	0.60 ± 0.04	0.57 ± 0.03	0.54 ± 0.03
10	0.58 ± 0.03	0.60 ± 0.03	0.63 ± 0.04	0.60 ± 0.03	0.57 ± 0.03
12	0.61 ± 0.03	0.63 ± 0.02	0.66 ± 0.03	0.63 ± 0.03	0.60 ± 0.04
14	0.64 ± 0.02	0.66 ± 0.04	0.69 ± 0.04	0.66 ± 0.03	0.63 ± 0.03
16	0.67 ± 0.02	0.69 ± 0.04	0.72 ± 0.03	0.69 ± 0.04	0.66 ± 0.04
18	0.69 ± 0.03	0.72 ± 0.03	0.75 ± 0.02	0.71 ± 0.04	0.69 ± 0.03
20	0.72 ± 0.03	0.75 ± 0.04	0.78 ± 0.03	0.73 ± 0.02	0.72 ± 0.03
22	0.76 ± 0.04	0.78 ± 0.03	0.81 ± 0.04	0.76 ± 0.03	0.74 ± 0.04
24	0.78 ± 0.03	0.80 ± 0.02	0.83 ± 0.04	0.79 ± 0.04	0.77 ± 0.03

Table S17. Width of the printed hydrogel structures as a function of $CaCl_2$ concentration (20–100 mM) and extrusion rate (6–24 mm/s) with a nozzle diameter of 0.58 mm and a nozzle distance of 0.5 mm.

Extrusion	20 mM	40 mM	60 mM	80 mM	100 mM
rate (mm/s)	Width (mm)				
6	0.81 ± 0.03	0.77 ± 0.02	0.73 ± 0.04	0.70 ± 0.04	0.68 ± 0.03
8	0.82 ± 0.03	0.81 ± 0.04	0.76 ± 0.04	0.74 ± 0.03	0.71 ± 0.03
10	0.85 ± 0.02	0.84 ± 0.04	0.78 ± 0.03	0.78 ± 0.03	0.75 ± 0.04
12	0.88 ± 0.03	0.88 ± 0.02	0.82 ± 0.02	0.81 ± 0.04	0.79 ± 0.03
14	0.91 ± 0.03	0.91 ± 0.03	0.85 ± 0.03	0.84 ± 0.03	0.81 ± 0.04
16	0.93 ± 0.03	0.95 ± 0.02	0.88 ± 0.04	0.88 ± 0.03	0.85 ± 0.03
18	0.97 ± 0.02	0.99 ± 0.03	0.90 ± 0.04	0.91 ± 0.04	0.89 ± 0.04
20	1.19 ± 0.03	1.13 ± 0.04	0.94 ± 0.04	0.95 ± 0.03	0.92 ± 0.03
22	1.23 ± 0.04	1.18 ± 0.04	0.98 ± 0.02	0.98 ± 0.03	0.96 ± 0.04
24	1.27 ± 0.04	1.23 ± 0.04	1.21 ± 0.03	1.17 ± 0.03	1.08 ± 0.03

13

Table S18. Height of the printed hydrogel structures as a function of CaCl₂ concentration (20–100 mM) and extrusion rate (6–24 mm/s) with a nozzle diameter of 0.84 mm and a nozzle distance of 0.5 mm.

Extrusion	20 mM	40 mM	60 mM	80 mM	100 mM
rate (mm/s)	Height (mm)				
6	0.62 ± 0.03	0.60 ± 0.02	0.58 ± 0.04	0.56 ± 0.03	0.53 ± 0.04
8	0.65 ± 0.04	0.63 ± 0.04	0.61 ± 0.02	0.59 ± 0.04	0.56 ± 0.02
10	0.68 ± 0.03	0.66 ± 0.02	0.64 ± 0.04	0.61 ± 0.03	0.59 ± 0.02
12	0.71 ± 0.02	0.69 ± 0.02	0.67 ± 0.04	0.66 ± 0.02	0.62 ± 0.03
14	0.74 ± 0.02	0.71 ± 0.04	0.70 ± 0.04	0.69 ± 0.02	0.66 ± 0.02
16	0.76 ± 0.04	0.74 ± 0.03	0.73 ± 0.02	0.72 ± 0.03	0.69 ± 0.02
18	0.79 ± 0.02	0.77 ± 0.04	0.76 ± 0.03	0.75 ± 0.04	0.72 ± 0.02
20	0.82 ± 0.02	0.80 ± 0.03	0.78 ± 0.03	0.78 ± 0.04	0.75 ± 0.04
22	0.85 ± 0.04	0.83 ± 0.04	0.81 ± 0.04	0.80 ± 0.04	0.78 ± 0.04
24	0.88 ± 0.03	0.86 ± 0.04	0.83 ± 0.04	0.83 ± 0.04	0.80 ± 0.02

Table S19. Width of the printed hydrogel structures as a function of $CaCl_2$ concentration (20–100 mM) and extrusion rate (6–24 mm/s) with a nozzle diameter of 0.84 mm and a nozzle distance of 0.5 mm.

Extrusion	20 mM	40 mM	60 mM	80 mM	100 mM
rate (mm/s)	Width (mm)	Width (mm)	Width (mm)	Width (mm)	Width (mm)
6	0.84 ± 0.03	0.81 ± 0.04	0.78 ± 0.04	0.76 ± 0.04	0.73 ± 0.03
8	0.87 ± 0.03	0.83 ± 0.04	0.81 ± 0.03	0.79 ± 0.02	0.76 ± 0.03
10	0.91 ± 0.03	0.86 ± 0.03	0.84 ± 0.04	0.82 ± 0.04	0.79 ± 0.02
12	0.94 ± 0.03	0.89 ± 0.03	0.87 ± 0.04	0.85 ± 0.04	0.82 ± 0.03
14	0.97 ± 0.02	0.92 ± 0.04	0.90 ± 0.02	0.88 ± 0.03	0.85 ± 0.03
16	1.03 ± 0.04	0.95 ± 0.03	0.93 ± 0.04	0.91 ± 0.03	0.88 ± 0.03
18	1.06 ± 0.03	0.98 ± 0.03	0.96 ± 0.03	0.94 ± 0.03	0.91 ± 0.04
20	1.09 ± 0.03	1.01 ± 0.04	0.99 ± 0.04	0.97 ± 0.04	0.94 ± 0.04
22	1.12 ± 0.04	1.04 ± 0.03	1.03 ± 0.04	1.04 ± 0.03	0.97 ± 0.03
24	1.15 ± 0.04	1.08 ± 0.02	1.07 ± 0.03	1.06 ± 0.03	1.02 ± 0.04

Table S20. Height of the printed hydrogel structures as a function of CaCl₂ concentration (20–100 mM) and extrusion rate (6–24 mm/s) with a nozzle diameter of 1.20 mm and a nozzle distance of 0.5 mm.

Extrusion	20 mM	40 mM	60 mM	80 mM	100 mM
rate (mm/s)	Height (mm)	Height (mm)	Height (mm)	Height (mm)	Height (mm)
6	0.60 ± 0.03	0.63 ± 0.02	0.66 ± 0.04	0.63 ± 0.04	0.60 ± 0.03
8	0.63 ± 0.02	0.66 ± 0.02	0.68 ± 0.02	0.66 ± 0.02	0.63 ± 0.03
10	0.67 ± 0.04	0.69 ± 0.04	0.71 ± 0.03	0.68 ± 0.03	0.66 ± 0.03
12	0.69 ± 0.04	0.72 ± 0.04	0.74 ± 0.03	0.71 ± 0.04	0.69 ± 0.02
14	0.71 ± 0.02	0.75 ± 0.02	0.77 ± 0.03	0.74 ± 0.04	0.71 ± 0.03
16	0.73 ± 0.03	0.77 ± 0.03	0.81 ± 0.04	0.77 ± 0.04	0.74 ± 0.04
18	0.76 ± 0.02	0.80 ± 0.03	0.83 ± 0.02	0.80 ± 0.03	0.76 ± 0.04
20	0.79 ± 0.03	0.83 ± 0.04	0.86 ± 0.02	0.83 ± 0.04	0.79 ± 0.04
22	0.81 ± 0.04	0.85 ± 0.03	0.89 ± 0.02	0.86 ± 0.03	0.80 ± 0.02
24	0.84 ± 0.03	0.87 ± 0.03	0.91 ± 0.02	0.89 ± 0.03	0.83 ± 0.03

Table S21. Width of the printed hydrogel structures as a function of CaCl₂ concentration (20–100 mM) and extrusion rate (6–24 mm/s) with a nozzle diameter of 1.20 mm and a nozzle distance of 0.5 mm.

Extrusion	20 mM	40 mM	60 mM	80 mM	100 mM
rate (mm/s)	Width (mm)				
6	1.20 ± 0.04	1.18 ± 0.04	1.15 ± 0.04	1.12 ± 0.04	1.09 ± 0.04
8	1.23 ± 0.02	1.21 ± 0.03	1.18 ± 0.03	1.15 ± 0.02	1.12 ± 0.03
10	1.26 ± 0.04	1.24 ± 0.04	1.22 ± 0.03	1.18 ± 0.04	1.15 ± 0.03
12	1.29 ± 0.04	1.27 ± 0.03	1.26 ± 0.04	1.21 ± 0.03	1.18 ± 0.03
14	1.32 ± 0.03	1.31 ± 0.03	1.29 ± 0.04	1.24 ± 0.03	1.21 ± 0.02
16	1.35 ± 0.03	1.34 ± 0.04	1.32 ± 0.03	1.27 ± 0.03	1.24 ± 0.03
18	1.38 ± 0.03	1.37 ± 0.03	1.35 ± 0.04	1.30 ± 0.04	1.27 ± 0.02
20	1.42 ± 0.02	1.41 ± 0.04	1.38 ± 0.03	1.33 ± 0.03	1.30 ± 0.03
22	1.44 ± 0.04	1.43 ± 0.03	1.40 ± 0.04	1.36 ± 0.04	1.33 ± 0.03
24	1.48 ± 0.02	1.47 ± 0.02	1.43 ± 0.03	1.39 ± 0.03	1.36 ± 0.04

Table S22. Height of the printed hydrogel structures as a function of CaCl₂ concentration (20–100 mM) and extrusion rate (6–24 mm/s) with a nozzle diameter of 1.60 mm and a nozzle distance of 0.5 mm.

Extrusion	20 mM	40 mM	60 mM	80 mM	100 mM
rate (mm/s)	Height (mm)	Height (mm)	Height (mm)	Height (mm)	Height (mm)
6	0.59 ± 0.03	0.62 ± 0.03	0.66 ± 0.05	0.63 ± 0.03	0.61 ± 0.04
8	0.62 ± 0.04	0.65 ± 0.03	0.68 ± 0.03	0.66 ± 0.02	0.64 ± 0.03
10	0.65 ± 0.03	0.68 ± 0.05	0.70 ± 0.03	0.68 ± 0.04	0.67 ± 0.02
12	0.68 ± 0.05	0.71 ± 0.04	0.73 ± 0.02	0.71 ± 0.04	0.70 ± 0.03
14	0.70 ± 0.03	0.73 ± 0.04	0.75 ± 0.03	0.74 ± 0.03	0.73 ± 0.02
16	0.74 ± 0.04	0.76 ± 0.04	0.78 ± 0.03	0.77 ± 0.02	0.76 ± 0.04
18	0.77 ± 0.01	0.78 ± 0.03	0.81 ± 0.03	0.78 ± 0.02	0.77 ± 0.02
20	0.79 ± 0.02	0.81 ± 0.02	0.83 ± 0.04	0.81 ± 0.05	0.78 ± 0.03
22	0.82 ± 0.04	0.84 ± 0.04	0.85 ± 0.04	0.83 ± 0.03	0.80 ± 0.03
24	0.84 ± 0.02	0.86 ± 0.02	0.87 ± 0.04	0.85 ± 0.03	0.82 ± 0.04

Table S23. Width of the printed hydrogel structures as a function of CaCl₂ concentration (20–100 mM) and extrusion rate (6–24 mm/s) with a nozzle diameter of 1.60 mm and a nozzle distance of 0.5 mm.

Extrusion	20 mM	40 mM	60 mM	80 mM	100 mM
rate (mm/s)	Width (mm)				
6	1.67 ± 0.02	1.63 ± 0.04	1.58 ± 0.03	1.54 ± 0.02	1.49 ± 0.03
8	1.70 ± 0.02	1.67 ± 0.01	1.61 ± 0.05	1.58 ± 0.02	1.53 ± 0.04
10	1.74 ± 0.04	1.71 ± 0.02	1.65 ± 0.04	1.61 ± 0.02	1.57 ± 0.04
12	1.77 ± 0.02	1.75 ± 0.03	1.68 ± 0.04	1.64 ± 0.03	1.61 ± 0.03
14	1.81 ± 0.03	1.79 ± 0.02	1.71 ± 0.03	1.67 ± 0.03	1.65 ± 0.04
16	1.85 ± 0.01	1.82 ± 0.04	1.74 ± 0.03	1.71 ± 0.03	1.68 ± 0.03
18	1.88 ± 0.01	1.85 ± 0.04	1.78 ± 0.03	1.75 ± 0.03	1.71 ± 0.03
20	1.91 ± 0.01	1.89 ± 0.04	1.81 ± 0.04	1.79 ± 0.04	1.74 ± 0.03
22	1.94 ± 0.01	1.93 ± 0.03	1.84 ± 0.04	1.83 ± 0.03	1.78 ± 0.03
24	1.98 ± 0.01	1.96 ± 0.03	1.87 ± 0.04	1.86 ± 0.04	1.81 ± 0.02

Biocompatibility assessment

Umbilical cord-derived human mesenchymal stem cells (hMSCs) (ATCC PCS-500-010), were cultured in cell culture flasks (SIA0618, Sigma-Aldrich) in 7 ml of complete cell culture medium (CMEM). CMEM was made by combining 500 ml of Mesenchymal Stem Cell Basal Medium (ATCC PCS-500-030) with 10 ml of Mesenchymal Stem Cell Growth Kit for Adipose and Umbilical-derived MSCs - Low Serum (ATCC PCS-500-040), 0.5 ml of Gentamicin Amphotericin B Solution (ATCC PCS-999-002), and 0.5 ml of Penicillin Streptomycin Amphotericin B Solution (ATTC PCS-999-002). Flasks were incubated at 37°C, 5% CO₂ in humidified air for 3 weeks until cells reached 70–90% confluence. Media was removed and cells were then washed three times with Dulbecco's Phosphate Buffered Saline (DPBS). Then, 5 ml of trypsin-EDTA (0.05%, 59417C, Sigma-Aldrich) was applied and the cells were incubated at 37°C, 5% CO₂ in humidified air for ~6 min. The cells subsequently detached from the flask and the contents were transferred into a 15 ml tube (CLS430791, Sigma-Aldrich) and centrifuged at 4°C for 5 min at 1500 rpm (ROTOFIX 32A, Hettich) with 5 ml of additional CMEM. Supernatants were removed and the pellet was re-suspended with 1 ml CMEM, counted with a hemocytometer (BR717810, Sigma-Aldrich) and further diluted to a density of 10^5 cells per 100 µl CMEM.

2-layer grid structures were printed using an extrusion rate of 12 mm/s, a nozzle diameter of 0.84 mm, and first and second layer nozzle distances of 0.3 mm and 0.5 mm, respectively, in 60 mM and 100 mM CaCl₂ crosslinking solution (4 of each). Images of the nominally 40 mm x 40 mm structures printed in 60 mM and 100 mM CaCl₂ after rinsing in DPBS and CMEM are shown in **Figure S7A,B** in a 60 mm diameter Petri dish (P5481, Sigma-Aldrich).

1 ml containing 10^6 cells was seeded onto each print and into each empty control well of a 6 well plate (SIAL0516, Sigma-Aldrich): 4 60 mM prints, 4 100 mM prints, and 4 empty control wells. Well plates were incubated at 37°C, 5% CO₂ in humidified air. Cytotoxicity was assessed with Alamar Blue (DAL1025, Thermo Fisher). At each time point (1 day, 3, days, 5 days, and 7 days), 250 µl of Alamar Blue (1:1 in DPBS) was added to the 1 ml of CMEM in each well, which was then covered with aluminum foil and incubated at 37°C, 5% CO₂ in humidified air for not more than 2 hours. Subsequently, 100 µl of the solution was transferred into each of 3 wells of a 96-well plate (M9410-1CS, Sigma-Aldrich) and exposed to an excitation of wavelength of 560 nm using a microplate reader (Clariostar).

Figure S7. Images of the 2-layer prints printed in (A) 60 mM and (B) 100 mM CaCl₂ after rinsing in DPBS and CMEM. Cell viability based on absorbance and normalized to the empty well plate control at (C) day 1, (D) day 3, (E) day 5, and (F) day 7 where * p < 0.05, ** p < 0.01, and *** p < 0.001.

References

 C.K. Kuo, P.X. Ma, Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro, J. Biomed. Mater. Res. - Part A. 84 (2008) 899–907. doi:10.1002/jbm.a.31375.