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Modellazione di reti segnate pesate
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Abstract In this paper we introduce a new modelling approach to analyse weighted
signed networks by assuming that their generative process consists of two models:
the interaction model which describes the overall connectivity structure of the rela-
tions in the network without taking into account neither the weight nor the sign of the
dyadic relations; and the conditional weighted signed network model describes how
the edge signed weights form given the interaction structure. We then show how this
modelling approach can facilitate the interpretation of the overall network process.
Finally, we adopt a Bayesian inferential approach to illustrate the new methodology
by modelling the Sampson’s influence network.
Abstract In questo articolo, introduciamo un nuovo approccio modellistico per
analizzare reti segnate pesate supponendo che il loro processo generativo sia cos-
tituito da due modelli: il modello d’interazione che descrive la struttura connettiva
generale della rete senza tenere in considerazione né il peso né il segno degli archi;
e il modello per la rete segnata pesata che descrive come gli archi segnati pesati
si creino condizionatamente alla struttura d’interazione. Mostriamo quindi come
questo approccio modellistico possa facilitare l’interpretazione del processo re-
lazionale generale. Per concludere, adottiamo un approccio inferenziale bayesiano
per illustrare la nuova metodologia attraverso la modellazione della rete di Samp-
son sulle relazioni d’influenza.
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1 Exponential random graph models

Relations between actors on social networks often consist of positive and negative
interactions. And typically these interactions have weights assigned to them. The re-
lational structure of a network graph is represented by an adjacency matrix y whose
elements yi, j are defined by a value corresponding to the intensity of the interaction
between any pair of nodes.
Exponential random graph models (ERGMs) are a particular class of discrete linear
exponential families [8, 17] which represent the probability distribution of a network
Y on a fixed set of nodes as:

p(y|θ) = h(y)exp{θ ′s(y) − ψ(θ)}, (1)

where h(y) is a reference distribution [10] specifying the model for the data be-
fore any network effect is considered; s(y) is a known vector of p network statistics
measuring the quantity of some selected sub-graph configurations in the network
[14], θ ∈ Rp is the parameter vector associated to the vector of network statistics,
and ψ(θ) is a normalising constant which is typically computationally difficult to
evaluate for all but trivially small networks [12]. The dependence hypothesis at the
basis of the ERGMs is that the observed network structure is the result of a genera-
tive process in which edges self organise into sub-network configurations. There is
a wide range of possible network configurations which gives the flexibility to adapt
ERGMs to various different contexts. A positive parameter value for θi results in a
tendency for the certain configuration corresponding to si(y) to be observed in the
data than would otherwise be expected by chance.

2 ERGMs for weighted signed networks

A weighted signed network graph between N nodes can be described by N × N
adjacency matrix Y where:

Yi, j =

{
yi, j ̸= 0, i connected to j;
yi, j = 0, i not connected to j.

The connection value of yi, j represents the weight of positive and negative edges
between nodes.
ERGMs have recently been generalised to binary signed networks [9]. In this paper
we adopt a new modelling approach for weighted signed networks by assuming the
existence of two distinct processes: the interaction process determining the presence
or absence of an interaction between the nodes (see also [11]), and the conditional
weighted signed process which is describing the joint structure of the positive and
negative weight relations given the interaction process. We distinguish between an
interaction variable A and a weighted signed variable X by assuming that the prob-
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Fig. 1 Structure of the model:
(a) interaction process; (b)
conditional weighted signed
network process.
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ability of Y represents the joint probability of A and X:

Pr(Y = y) = Pr(X = x, A = a) = Pr(X = x | A = a)× Pr(A = a).

In particular, we assume that the overall weighted signed network process can be
jointly modelled by a joint conditional weighted ERGM process for the positive
weighted edges (X+) and the negative weighted edges (X− ), so that for any dyad
(i, j) we have:

{
Pr(Yi, j = yi, j | Yi, j > 0) = Pr(X+

i, j = x+i, j | Ai, j = 1,θ+
X )× Pr(Ai, j = 1 | θ A);

Pr(Yi, j = yi, j | Yi, j < 0) = Pr(X −
i, j = x−i, j | Ai, j = 1,θ −

X )× Pr(Ai, j = 1 | θ A),

where:
Ai, j =

{
ai, j = 1, i connected to j;
ai, j = 0, i not connected to j.

It is important to notice that positive and negative processes are not conditionally
independent given A as the two signed structures X+ and X− are mutually exclusive
given A.
We therefore propose to model the interaction process assuming that A | θ A ∼
ERGM(θ A) and the weighted network process assuming that X is modelled by two
joint weighted signed ERGM processes: one for positive edge relations and one for
negative edge relations with parameters θ+

X and θ −
X , respectively. Figure 1 shows

the structure of the interaction/weighted signed modelling framework proposed.
The conditional weighted ERGM processes can be defined according to specific
forms of weighted network model. ERGM modelling approaches for weighted net-
works include the multi-valued curved ERGMs [18], generalised ERGMs for in-
ference on networks with continuous edge values [6]; Geometric/Poisson reference
ERGMs for ordinal/count networks [10]; and the hierarchical multilayer ERGM ap-
proach for polytomous networks [4].
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3 Bayesian inference

Bayesian methods are becoming increasingly popular as techniques for modelling
social networks. Following the Bayesian paradigm, prior distribution is assigned to
θ . The posterior distribution of θ given the observed network data y is:

p(θ |y) = p(y|θ)p(θ)
p(y)

.

From an ERGM viewpoint, direct evaluation of p(θ |y) requires the calculation of
both the likelihood p(y|θ) and the marginal likelihood or model evidence p(y)
which are typically intractable. According to our modelling framework, the param-
eter posterior distribution defined in Section 2 can be written as:

p(θ+
X ,θ

−
X ,θ A | x+,x− ,a) ∝ p(x+,x− | a,θ+

X ,θ
−
X )p(θ+

X ,θ
−
X )p(a | θ A)p(θ A). (2)

where:

• p(a | θ A) ∝ h(a) exp{θ As(a)} is the interaction ERGM likelihood;
• p(x+,x− | a,θ+

X ,θ
−
X ) is the joint weighted signed ERGM likelihood conditional

on the interaction relations;
• p(θ+

X ,θ
−
X ) and p(θ A) are the prior parameter distributions.

To estimate the parameter posterior density defined in Equation 2, we adapt the
approximate exchange algorithm for Bayesian ERGMs [1, 2] implemented in the
Bergm package [3] for R [13].

4 Application

Sampson’s monk directed network [15] contains ratings between monks related to
a crisis in a cloister in New England (USA). In particular, we focus on the posi-
tive/negative influence between monks and we want to use the ERGM generative
process defined above to describe the connectivity structure of the weighted signed
directed network.

4.1 Model specification

We include the following network statistics for the binary undirected interaction
ERGM model:

• Edge statistic (edges) is the number of edges in the network capturing the net-
work density effect.
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Fig. 2 Graph structure of the
Sampson’s monk network.
Weighted black edges corre-
spond to positive influence
relations; gray edges corre-
spond to negative influence
relations.
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• Geometrically weighted edgewise shared partner statistic (gwesp) captures the
tendency towards transitivity, i.e., the tendency of edges to be connected through
multiple triadic relations simultaneously [16]. We fix the decay parameter of the
gwesp statistic to be equal to 2.

We assume that the conditional weighted signed network model follows a con-
strained ERGM process with a uniform/truncated geometric reference distribution
[10, 7] so that h(x+,x− ;a) = 1.
We include the following directed network statistics for the joint conditional weighted
signed ERGM model:

• Weighted-sum statistic (sum) is the sum of the edge values capturing the weighted
density effect.

• Mutual-min statistic (mutual(min)) is the sum of the minimum weighted mu-
tual edge value capturing the weighted network reciprocity effect.

• Transitive-weights statistic (transitiveweights) captures the tendency to-
wards transitive clustering in the weighted network.

• Cyclical-weights statistic (cyclicalweights) captures the tendency towards
cyclical clustering in the weighted network.

It is important to emphasise that the set of the network statistics to include for
describing the positive and negative structures is not necessarily the same so that
we can formulate different connectivity hypothesis for the positive and negative
weighted network processes.

4.2 Prior specification

We specify vague prior distribution for all the parameters in both interaction and
conditional weighted signed network model:

θ+
X ∼ Np(µ = 0,Σ = 10 Ip); θ −

X ∼ Nq(µ = 0,Σ = 10 Iq); θ A ∼ Nr(µ = 0,Σ = 10 Ir).
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where I is the identity matrix. In this example, the model specification for the joint
weighted signed process consist of the same set of network statistics for both the
positive and the negative weighted structure.

4.3 Results

The posterior density estimates displayed in Table 1 show that the interaction net-
work process A|θ A is sparse (negative value for the edges parameter) and the in-
teractions tend to organise into triadic clusters (positive value for gwesp(2)). The
positive mutual(min) parameter estimate in the conditional positive weighted
signed ERGM process X+|X− ,A,θ+

X explains the tendency towards reciprocation
of positive influence relations. It is important to notice that the positive tendency
towards clustering that we generally expect in positive weighted networks is mainly
captured by the gwesp(2) effect in the interaction model. The negative triadic
parameter (transitiveweights and cyclicalweights) estimates for the
conditional negative weighted signed ERGM process X− |X+,A,θ −

X confirm the as-
sumption of the structural balance hypothesis of “the enemy of an enemy is a friend”
or “the friend of an enemy is an enemy” [5].

Table 1 Parameter posterior estimates for the interaction / weighted signed network model.
Network statistic Mean Std. Err.

Interaction edges − 1.42 0.51
gwesp(2) 0.19 0.06

Positive weights

sum − 0.11 0.21
mutual(min) 0.82 0.38
transitiveweights 0.03 0.20
cyclicalweights 0.01 0.16

Negative weights

sum 0.37 0.21
mutual(min) 0.22 0.40
transitiveweights − 1.56 0.35
cyclicalweights − 0.64 0.17

4.4 Model assessment

A way to examine the fit of the data to the estimated posterior distribution of the
parameters is to implement a graphical Bayesian goodness-of-fit procedure. In the
Bayesian context, simulated networks are simulated from a sample of 100 parame-
ter values randomly drawn from the estimated posterior distribution and compared
to the observed data according to some network statistics. The plots in Figure 3
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Fig. 3 Goodness of fit diagnostics plots showing the distribution of a set of networks simulated
from the estimated posterior density of Table 1 centred on the observed network statistics for (a)
Interaction model; (b) Positive weighted signed model; (c) Negative weighted signed model.

suggest that the proposed model is a reasonable fit to the observed data as most of
the probability mass of the simulated network statistics is concentrated around the
observed network statistics.

5 Discussion

We have presented a flexible model able to capture the dependence structure of
weighted signed networks. In particular, given the interaction between nodes in the
network we have proposed to model the weighted signed network dependencies by
introducing a weighted signed ERGM processes for joint modelling the structure
of negative and positive edges and adopting a Bayesian approach. As demonstrated
in the illustration, the model is able to facilitate the interpretation of the complex
dependence structure of weighted signed networks by making use of interpretable
network effects and the assessment of structural balance in signed networks.
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