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ABSTRACT
Buildings during operation are dynamic environments
where changes to control strategies and space usage
regularly occur. As a result of these and other issues
a performance gap between design intent and actual
building performance emerges. This paper seeks to
address the operational performance gap and optimise
building performance by identifying inconsistencies in
building operation. This is achieved through the com-
bined use of a calibrated simulation model output data
and the implementation of a breakout detection algo-
rithm based on measured time-series building data. A
number of alternative breakout detection algorithms
are reviewed in comparison to the chosen technique
in this paper. This paper outlines a statistically ro-
bust methodology to identify breakouts for measured
time-series building performance data. Time-series
data from the sports centre within University College
Dublin (UCD) swimming pool hall were analysed.
Unintended shifts in swimming pool return humidity
levels above an acceptable level of 70% were identi-
fied by the breakout detection algorithm. A calibrated
simulation model is referred to and the building system
or zone set-point is reset to the recommended optimal
value. The engineering value of this process is that it
can be run in real time, as time-series data is produced,
to accurately identify shifts in performance for build-
ing managers and reduce the performance gap.

Introduction
Buildings consume 40% of global energy, 25% of
global water, 40% of global resources and emit 33%
of global GHG emissions (United Nations Energy Pro-
gramme, 2011). It is widely recognised that build-
ings do not perform efficiently with European and
American legislators commissioning directives such
as the Energy Performance of Buildings Directive
(2002/91/EC) (recast 2010) (European Union, 2010)
and ASHRAE Standard 90.1 (ASHRAE, 2005) to
combat the issue. In spite of these directives, indoor
environmental needs of occupants are not always sat-
isfied. Overall, buildings do not perform adequately
in terms of environmental performance and associated
energy consumption (Scofield, 2012). A solution to
building performance inefficiency may lie in the vast
quantities of data now being produced by buildings
(RIBA and ARUP, 2013)

Buildings are becoming more intelligent, by 2020 an
estimated 19.5% of the global building stock will be
”Smart Buildings” containing 50 billion devices con-
nected to the Internet of Things (Memoori, 2014).
Commercial building managers are beginning to see
the merit in analysing building performance data to
inform decision making (Granderson et al., 2013).
This analysis typically takes the form of visualisations,
where building managers try to spot trends in time-
series data (Donnelly, 2012; Aberer and Tan, 2009).
However, it is difficult to evaluate the effectiveness of
visualisations without considering their support in the
decision making process of building managers (Khan
and Hornbæk, 2011). Building managers may simply
not have the time, resources and be equipped with the
correct tools and skills to generate insight from build-
ing performance data (O’Donnell, 2009).

With global data production increasing at a rate of 40%
annually, visual detection of performance problems by
building managers is not a practical solution (IDC,
2014). A number of automated analytical processes
can aid building managers in detection of performance
problems. One such approach is the breakout detec-
tion algorithm which identifies problems caused by
unintended shifts in building performance. Break-
out detection is a form of changepoint detection that
identifies when the probability distribution of a time-
series changes. From a building performance perspec-
tive, the breakout algorithm has only been used once
previously in a model calibration context (Miller and
Schlueter, 2015). The algorithm was used to iden-
tify macro level changes in eight years of historical
power meter time-series data. The algorithms focus
was to determine continuous areas of performance that
are similar and transition performance periods, with a
minimum time-span of six months allowed between
the detection of subsequent breakouts.

Dynamic building energy models are extensively used
to model the environmental and energy performance
of buildings. However, these models are developed
during design but are typically not updated for use
in operation (Coakley et al., 2016). Therefore the
methodology proposed in this paper combines short
term forecasts of building performance, represented by
calibrated simulation output data, and measured time-
series data used in a scalable breakout detection algo-
rithm to identify unintended shifts in building perfor-



mance.
The objective of this paper is to minimise the per-
formance gap and optimise indoor environmental per-
formance through the combined use of data analysis
and simulation. A statistically robust methodology is
presented to identify breakouts in time-series build-
ing data. The effectiveness of this statically robust
methodology is demonstrated by means of a case study
that analyses return humidity time-series data from
UCD swimming pool hall. The following section ex-
amines the merits of a number of alternative breakout
detection algorithms in comparison to the chosen tech-
nique in this paper.

State of the Art
Building Management Systems (BMS) often have pre-
programmed alarm notifications for important criteria
such as room temperature, room humidity etc. If room
temperature for example goes outside a specified pre -
programmed limit an alarm notification is triggered in
the BMS for the building manager to check. The build-
ing manager is eventually overrun by alarms, ensuring
that many building problems continue indefinitely. A
building manager’s focus is not optimal operation but
simply keeping the building operational (O’Donnell
et al., 2013).
Analytics of time-series building data is emerging,
with a variety of techniques and potential application
cases. Machine learning models has been used exten-
sively to predict building energy consumption (Ahmed
et al., 2011; Korolija et al., 2013). By feeding this time
series building data to statistical techniques such as
linear regression, neural networks, support vector ma-
chines etc., predictions of future building performance
can be generated. These statistical approaches do not
explicitly model the buildings’ physical systems, but
instead use a number of carefully selected variables
such as outside air temperature, historical building per-
formance data, occupancy etc. to develop correlated
outputs such as the predicted energy consumption of
a building (Li et al., 2009). However, these statis-
tical models need to be trained and tested on exten-
sive quantities of time-series data, in the region of two
years worth, to produce a performance prediction. Ad-
ditionally, this quantity of time-series data is needed
for each input (e.g occupancy) that is used in the sta-
tistical model.
Machine learning models have also been used in a
number of analysis contexts for Fault Detection and
Diagnosis (FDD) in buildings. West et al. (2011) de-
veloped a FDD approach for HVAC subsystems based
on statistical machine learning and information theory.
A probabilistic relationship was established between
groups of points when the HVAC subsystem was expe-
riencing faults and operating normally. Support Vector
Machines (SVM) were used in tandem with a genetic
algorithms with parameter tuning for FDD in chillers
by (Han et al., 2011). Parameter tuning was used to se-

lect the best parameters to optimise SVM performance
while additionally simplifying the detection and diag-
nosis process. The number of parameters used in SVM
was reduced from 64 to 8 by parameter tuning, greatly
simplifying the detection and diagnosis process. Of
particular interest, when reviewing the methods de-
scribed above is the combined use of a number sta-
tistically based techniques to detect and diagnose per-
formance problems in buildings.
A simpler approach, one that works with a single
time-series and does not require a combination of
techniques to accurately identify building performance
problems is proposed. Breakout detection, a technique
that works with a univariate or single time-series and
does not require the same quantity of data to run ef-
fectively. A breakout characterised by either a mean
shift or a ramp up from one steady state to another in
a given time-series (James et al., 2014). Since break-
out detection is run using a single time-series the di-
agnosis of the performance problem is much easier,
with methods such as parameter tuning not necessary.
Given the large number of building services that are
now producing data, visual detection of breakouts is
not a feasible solution. An algorithmic approach one
that can detect breakouts in building performance data
in real-time via statistical learning will be used in this
paper.
This breakout detection technique, known as the E-
Divisive with Medians (EDM), developed by (Twitter,
2014), uses a modified variant of energy statistics that
is more resilient to anomalies through the use of robust
statistics such as the median. The concept of energy
statistics is to compare the distances of means of two
random variables contained within a larger time-series.
A hypothesis test is used to determine if this differ-
ence is statistically significant. However the presence
of outliers or anomalies would limit the effectiveness
of using the mean in this process as a single outlier
can have a significant effect on the mean of a time-
series. To that end, EDM builds the technique on a
robust statistic, the median. The EDM algorithm is ro-
bust to anomalies and able to detect multiple breakouts
in a time-series.
Robust statistics perform strongly for data taken from
a wide range of probability distributions, especially for
non-normal distributions. The use of robust statistics
for breakout detection was first proposed by (Vallis
et al., 2014). EDM is a non - parametric approach,
meaning is does not make any prior assumptions of
the form of the data distribution.
Breakouts can appear in data that do not conform to
any known regular distribution, thus rendering tech-
niques that presume a specific distribution less effec-
tive. Pruned Extract Linear Time (PELT) is a breakout
detection technique that makes a prior assumption that
the data is normally distributed. A number of quan-
titative metrics have been used to compare the perfor-
mance of EDM and PELT. These metrics include Time



To Detect, meaning the exact point of the breakout to
when the algorithms identifies it and ”Precision” is the
ratio of true positives over the sum of true positives
and false positives. The EDM algorithm outperformed
the PELT algorithm in the presence of anomalies, if
anomalies were smoothed or if anomalies were re-
moved in the majority of data sets (James et al., 2014).
However, the PELT algorithm executes faster than the
EDM algorithm due to PELT’s stronger assumption
that the data is normally distributed. Other approaches
to identify breakouts in time-series data such as sim-
ple moving average have been shown to be sensitive to
outliers and noise in the data for small window sizes
(Mathworks (accessed Novermber 2016), 2016).
To summarise, the EDM algorithm is a mechanism to
determine if a new segment of time-series data is con-
siderably different from the previous through the use
of distance statistics robust to anomalies. It has shown
to outperform existing approaches that make prior as-
sumptions about the underlying time-series data and
can detect multiple breakouts per time-series.

Context Based Analysis
Breakout detection analysis can be undertaken at a
range of resolutions (i.e. building, system, component
level etc.) if time-series data exists, for that particular
analysis context or building object. Considering the
number of potentially available data points produced
by a building, a structure is needed to organise these
data points. This structure can be viewed as a formal
representation of different building objects.
The full scope of building objects for an individ-
ual building have been previously defined by (Maile
et al., 2010), it includes building, floors, spaces, zones,
HVAC systems and HVAC system components align
with the hierarchy Industry Foundation Classes (IFC)
(ISO16739). Thus, enabling, a building object hierar-
chy to be established from both a spatial perspective
and a HVAC perspective. A HVAC building object hi-
erarchy for an example building is illustrated in Figure
1.

Figure 1: An example building object hierarchy
(Maile et al., 2010).

A number of relationships are contained within the

HVAC object hierarchy, the building - system relation-
ship is a PartOf relationship, as is the system - compo-
nent. The only exception is the component - zone ob-
ject relationship which is a Is- ServerdBy relationship,
this can be clearly seen in Figure 1 with the compo-
nents (water cylinder, heating coil, switch) providing
energy to the zone, in this case to rooms 338 within
the UCD engineering building.
If time-series data exists related to the energy con-
sumption of HVAC System 1 in Figure 1 for exam-
ple, the breakout detection can be implemented and
identify a ramp up in HVAC energy consumption. The
same logic can be applied to any object within the
building object hierarchy.

Methodology
The methodology presented in this paper combines: 1)
measured time-series data used in a scalable break-
out detection algorithm to identify unintended shifts
in building performance and 2) short term forecasts of
building performance, represented by calibrated simu-
lation output data, to reset and guide operational per-
formance (Figure 3).
The key inputs for the methodology are time-series
data relevant to the analysis context. The key outputs
from the methodology are identification of unintended
shifts in building performance resulting in an enhance-
ment in building performance.
Breakouts can occur in data that conform to any known
distribution. Thus techniques that assume data con-
forms to a certain distribution are less effective. EDM
is a non-parametric approach that makes fewer as-
sumptions about the nature of underlying distribution.
This is of paramount importance as many data do not
conform to the commonly assumed normal distribu-
tion, as demonstrated by Figure 2. A density plot, is a
non-parametric technique for visualising the underly-
ing distribution of a continuous variable.

Figure 2: Example data distribution of air-cooled
chiller electricity consumption, demonstrating that
time-series data is not always normally distributed

about the mean of the data.

The methodology comprises three key stages:

1. Assessment of the existence of seasonality in the



Figure 3: Methodology that combines measured time-series data used in a scalable breakout detection algorithm
to identify unintended shifts in building performance and calibrated simulation model output data, to reset and

guide operational performance.

data
2. Implementation of EDM breakout algorithm on

the data
3. Optimisation of building performance

Assessment of the existence of seasonality in the
data
The EDM algorithm has shown to be more suscep-
tible to false positives when seasonality exists in the
time-series (Magkian, 2016). A false positive can be
thought as a false alarm. That is, identification of
breakout by the EDM algorithm when in fact no break-
out existed. Therefore the data has to be tested for
seasonality and if present, it is removed. Time-series
decomposition is mathematical procedure that decom-
poses a time-series into a number of different time-
series. Seasonal Trend Decomposition using Loess
(STL) algorithm was used in this paper to divide the
original time-series into three components namely:
seasonality, trend and remainder. The STL algorithm
is available within R programming language via the stl
function (Hafen, 2016)

1. Seasonal: patterns that repeat with a fixed period
of time.

2. Trend: the underlying trend of the metric.
3. Remainder: Is the residuals of the time series after

allocation into the seasonal and trends time-series.

Implementation of EDM breakout algorithm on
data
The EDM algorithm is now run on context specific
time-series to identify if building performance has
shifted from one performance state to another or ex-
perienced a ramp up. A hypothesis test is used to

determine if this difference is statistically significant.
Specifically, within the EDM technique used in this
paper, the hypothesis test seeks to determine if a sig-
nificant changepoint exists or not in the time-series.
The null hypothesis (H0) is that no changepoint ex-
ists in the time-series. The alternative hypothesis (H1)
is that one significant changepoint exists in the time-
series. The calculation of a precise critical value to test
the hypothesis requires knowledge of the underlying
distribution, which is generally unknown. Therefore,
a permutation test is used to determine if the distance
in means of the two random variables is statistically
significant. Data from the two time-series is permuted
a finite or limited number of times to ensure the pro-
cess of comparing permuted time-series computation-
ally manageable. EDM tests at a significance level of
5% and completes 199 random permutations. It should
be should be noted that EDM does not provide signif-
icance values for each breakout detected.

Optimisation of building performance
If a shift in the context specific time-series is deemed
statistically significant by the hypothesis test con-
tained within the breakout algorithm, a breakout will
be detected. The Null hypothesis may be that a break-
out does not exist in the time-series. The Alternative
hypothesis would be a breakout does exist in the time-
series. If the breakout detection algorithm deems the
difference in the time-series to be statistically signifi-
cant, the null hypothesis will be rejected and a break-
out will be identified. This breakout algorithm can
identify either a mean shift or a ramp up from one
steady state to another in a given time-series.
Once a breakout is identified, the output data from the



Figure 4: Output from STL algorithm implemented on ACC electricity consumption data. The STL algorithm
divided the original time-series into three components. With a seasonality of one day clearly seen in the ACC

electricity time-series.

calibrated simulation model is referred to. This en-
ables identification of the optimal value, for the spe-
cific analysis context, at that particular moment in
time. The building system or zone set-point is reset to
the recommended optimal value, represented by cal-
ibrated simulation model output data. The building
manager is not expected to update the simulation as a
typical building energy manger would not possess en-
ergy modelling skills. The simulation model is instead
maintained by a building energy modeller. Malfunc-
tioning building objects such as boilers and chillers
can also be identified by the breakout detection algo-
rithm if time-series data exists for such building ob-
jects.

The time-series building data that is fed into the break-
out detection algorithm and simulated model output
data must have the same resolution (e.g. 15 minute,
30 minute etc.). This ensures that the measured data
resolution and the simulated model output data align,
when the simulated model is referred to.

Dependent on the analysis context in question, this
will result in an improvement in indoor environmen-
tal conditions or a reduction in building energy con-
sumption. The energy performance gap between mea-
sured and simulated energy consumption will narrow,
as measured building performance is aligned with sim-
ulated building performance. The EDM can be run
in real time as new data becomes available to identify
changes in building performance.

Case Study
The case study analysed time-series data from the
sports centre within UCD swimming pool hall in 2015.
The pool air is typically kept at 30◦C and relative hu-
midity should kept in the region of 50%-70%. With
this air temperature and the warm temperature of the
water (29-30◦C), there will be a lot of evaporation
from the pool. Humidity can rise quickly and if hu-
midity levels in the swimming pool rise above 70%
chemicals from the pool water become airborne.
The decomposition of the seasonal trend with the re-
turn humidity data is clearly demonstrated in the sea-
sonal time-series of Figure 4. The removal of season-
ality from the time-series will mitigate the effect of ex-
ternal air moisture content and solar gain on pool hu-
midity levels. The underlying trend in the data is also
clearly seen in Figure 4, with an increase in RH trend
coinciding with the detection of a breakout in Figure
5.

Simulation model development

The whole building energy simulation model was de-
veloped in EnergyPlus, while the HVAC and control
system of UCD swimming pool were developed in
Modelica. This was facilitated by the Building Con-
trols Virtual Test Bed (BCVTB).
The BCVTB is a software environment that allows
users to couple different simulation programs for co-
simulation, and to couple simulation programs with
actual hardware. For example, the BCVTB enables a
building to be simulated in EnergyPlus and the HVAC



Figure 5: Breakout detection algorithm illustrating the detection of a steady state shift in RH above an acceptable
value of 70%.

and control systems in Modelica, while exchanging
data between the software as they simulate.
The International Performance Measurement and Ver-
ification Protocol (IMVP) provided validation crite-
ria for simulation models to be calibrated to hourly
building data with a 5% difference between measured
and simulated data deemed acceptable (IPMVP, 2002).
Other validation criteria exist based on if the simula-
tion model is calibration to monthly measured building
data (ASHRAE, 2002; Nexant, 2008). Given the real-
time nature of this analysis, the acceptable difference
between measured and simulated is 5% based on the
validation criteria provided by IMVP.
Ideally real-time simulation modelling would be used
as the reference point for when a breakout is detected
and the building object has to be reset to the rec-
ommended optimal value. In practice generally, and
specifically within this paper an existing model will
was used with historical building data.

Results
Time-series data at 15 minute resolution were anal-
ysed from the sports centre within UCD swimming
pool hall. Traditionally, an alarm notification would
have been set off in the building management sys-
tem, notifying the Building Manager (BM) if RH lev-
els went above 70%. This is the case, as illustrated
by the RH time-series venturing above 70% RH (rep-
resented by the dashed blue line) multiple times in

Figure 5. Numerous alarms would have been sent to
the BM from the building management system. The
BM may simply ignore these alarms due their velocity
or she/he would have spent considerable time and re-
sources checking the environmental conditions within
the pool hall and HVAC system settings to ensure ev-
erything was satisfactory.
Maintaining relative humidity below 70% reduces
condensation on the structure and finish materials,
which can lead to rapid deterioration of structural ele-
ments and finish materials. Additionally, high humid-
ity levels provide uncomfortable conditions for occu-
pants.
The breakout detection algorithm was run on the pool
hall RH time-series data with two separate breakouts
detected (represented by the dashed red line) by the
algorithm in Figure 5. It should be should be noted
that EDM does not provide significance values for
each breakout detected. EDM automatically detects
based on a significance value of 5%, as discussed in
the above section. A basic visualisation is provided by
the EDM algorithm of the time-series with the location
of the detected breakouts. The computation time to run
the EDM algorithm on the RH time-series of approxi-
mately five thousand observations was just sixteen sec-
onds on a Dell laptop with a intel core i7 processor and
sixteen gigabytes of RAM.
The first breakout was detected on about 10th of April,
alerting the BM to a potential change in operating con-



Figure 6: The calibrated simulation output data is referred to, enabling identification of the optimal value of pool
hall RH at that particular moment in time. In this instance it is approximately 60% RH.

ditions. However, the detected breakout may not be
relevant from an indoor environment perspective to the
BM, meaning that RH levels within the pool hall may
not have gone above 70%. This is the case, as pool
hall RH is approximately 55%. The BM should re-
fer to the output data from the calibrated simulation
model (Figure 6) to cross reference what the optimal
value should be for the pool hall RH at that particular
moment in time. The output data from the calibrated
simulation model ensures the BM does not waste valu-
able time and resources rechecking the settings of the
HVAC system that maintain the environmental condi-
tions within the pool hall.
The second breakout detected by the algorithm was
detected on the 14th of May. In this instance, pool
hall RH levels ramp up considerably and RH levels ap-
pear to be operating on a new steady above 70%. The
BM should again refer to the output data from the cal-
ibrated simulation model. A value of 60% RH would
be obtained from the simulation model, illustrated by
the solid red line in Figure 6. The BM would then
reset the operating of HVAC system that maintain the
environmental conditions within the pool hall until op-
timal operating conditions are reached. In this instance
60% RH. The difference between measured and sim-
ulated RH is 17%. This is quite a big difference and
substantially larger than the validation criteria percent-
age set out by IMVP of 5%. However, the operating
conditions within the swimming pool hall are outside
specified acceptable limits as detected by the breakout
detection algorithm. The calibrated simulation model
output value for RH is within specified limits of be-
tween 50% and 70%.
The RH time-series ventured above 70% RH (repre-

sented by the dashed blue line) a multitude of times
in the Figure 6. Given that the RH data is at a resolu-
tion of 15 minutes over a hundred alarms would have
been triggered in the BMS for the building manager
to review, which would take considerable time. Due
to the volume triggered in the BMS the building man-
ager will more than likely deem the alarms redundant
and move onto the latest problem or fire that needs
to be dealt with in the building. When an unintended
shift in building performance was detected (e.g. RH)
by the breakout detection algorithm, actual time-series
data from UCD pool hall were compared with output
data from the simulated model. The combined use of
the breakout detection algorithm and calibrated sim-
ulation output data ensures the BM is not overrun by
alarms, enabling he/she to do more work with avail-
able resources.

Conclusion and Future Work
This paper proposes the idea that data analysis and
simulation can be be used in tandem to optimise build-
ing performance and reduce the environmental and en-
ergy performance gap in buildings.
This work presents a novel combined approach to ad-
dress the performance gap. A scalable methodology
was implemented that identifies shifts in building per-
formance, with calibrated simulation used to reset and
guide operational performance. The engineering value
of this process is that it can be run in real time, as
time-series data is produced, to identify shifts in per-
formance and reduce the performance gap.
The combined approach can be viewed as a tool to im-
prove building performance and reduce the environ-
mental and energy performance gap, in the face of in-



creased regulation and specifications regarding build-
ing performance.
The methodology can be applied generally to any
building context, as long as time-series data is pro-
duced and a calibrated simulation model system ex-
ists related to the context in question. Specifically, this
context based analysis approach generates efficiencies
within the building performance sector, by enabling
building managers to identify the root cause of the
problem within the building and rectify it.
This work automates manual visual detection of per-
formance problems through trend analysis that is cur-
rently undertaken by building managers. Thus en-
abling building managers to do more work with the
resources available to them. This approach is scalable
across the building stock if time-series data exists.
Future work in this research process will look into a
context based analysis of building performance. This
analysis will take place on the building, system, com-
ponent and zone level of the building object hierarchy.
The delivered outcome from this process will be the
production of statistically based prediction models to
represent building performance.
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