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ABSTRACT
This paper demonstrates a model transformation tool
between the Building Information Model (BIM) and
Modelica schemas for Building Energy Performance
Simulation (BEPS) purposes. Automated reuse of data
in BIMs to accelerate BEPS model development is
now a promising approach for engineers. However,
using BEPS tools such as Modelica to generate build-
ing simulation models is currently difficult and time
consuming due to the largely manual data input. The
ability to import data of a BIM into Modelica-based
BEPS tool would improve this process significantly.
In order to address the challenge, this paper proposes
a model transformation prototype to convert Indus-
try Foundation Classes (IFC) based BIMs into object-
oriented Modelica simulation models. The proposed
approach uses SimModel data model as a placeholder
for IFC. SimModel currently contains richer HVAC
data definitions than IFC for the purposes of BEPS
and can be easily extended to store the additional data
required by Modelica. This prototype demonstrates
the potential to reduce development time of Modelica
models by reusing building information data stored in
BIMs.

INTRODUCTION
In traditional building simulation programs, e.g.,
DOE-2, ESP-r, and EnergyPlus, component models
frequently integrate their own numerical solver and
mix program flow logic with equations that simulate
physical behavior (Wetter et al., 2014, 2011; Wetter,
2009). This leads to a program code that is difficult to
use for the design and analysis of building energy and
control systems. On the other hand, equation-based
object-oriented Modelica modeling is separating the
numerics from the engineering equations. Thus, the
equations are more transparent and the user has more
flexibility to change component behavior. This can ef-
fectively speed up the process of developing innova-
tive building energy models, since the user can easily
customize components.
Traditional manual BEPS model development often
takes significant effort and can result in numerous er-
rors and omissions, and inevitably adds dramatically
to the cost of the project (Bazjanac and Maile, 2004;
Bazjanac and Crawley, 1997). A promising solution to
the problem proposes linking BIM to Modelica (Yan
et al., 2013; Jeong et al., 2014; Wimmer et al., 2014;

Basarkar et al., 2012; Aksamija, 2012) in a manner that
allows designers, e.g., control engineers, simulation
specialists, energy consultants, etc., to create Model-
ica models by reusing building information data stored
in BIMs.
Yan et al. (2013) and Jeong et al. (2014) present the
most relevant works in model conversion from BIM to
Modelica. However, their work focuses on transform-
ing geometry for thermal and daylighting modeling
based on the Lawrence Berkeley National Laboratory
(LBNL)’s Modelica Buildings library (Wetter, 2009).
Their methodology, using Auto Revit APIs, converts
building models defined in a proprietory CAD format.
In this paper, we focus on converting HVAC systems
from IFC-based BIMs into Modelica, in order to accel-
erate BEPS model development. The targeted Mod-
elica BEPS library AixLib (EBC, 2014; Constantin
et al., 2014) was developed specifically for the sim-
ulation of HVAC systems of buildings. Other libraries
such as LBNL’s Buildings (Wetter, 2009) are focusing
on HVAC systems of the building sector as well.
We will use SimModel (O’Donnell, 2011) as a place-
holder for IFC in our development. Because IFC is
the open standard for BIM but does not contain ade-
quate HVAC data definitions for BEPS. SimModel is
the only BIM format that contains the necessary data
for BEPS and the structure of this data model aligns
with the structure of IFC. In addition, geometry defini-
tions contained in IFC can be imported into SimModel
and HVAC definitions added. This is the starting point
for our work. The outcome is a prototype that trans-
forms SimModel into Modelica data.
The model transformation from SimModel to Model-
ica presents a unique challenge that must account for
significant differences in their respective model struc-
tures. For example, the model component and param-
eter definitions, the modeling hierarchy and level of
detail (LOD) of SimModel and Modelica differ sub-
stantially.
Due to different naming conventions and data repre-
sentations, the semantic definitions of parameters and
components in these two models differ. For instance,
the boiler efficiency curve of SimModel is defined by
profile functions, and is represented with fixed values
in a matrix in Modelica. Moreover, there is a hierar-
chy of building and HVAC components stored in Sim-
Model but Modelica maintains its structure by defining
explicit physical connections between model compo-



Figure 1: System pipeline for model transformation. The SimModel use case is stored as a SimXML file (left), the
transformed Modelica model is stored in the .mo file (right) as an output of the system GUI (middle).

nents and containment relationships. Currently, Sim-
Model only entails the predefined LOD originating in
EnergyPlus, on the contrary, Modelica allows the def-
inition of deeper LODs.
The missing hierarchical structure on Modelica side
is not a major problem for SimModel transformation,
since the conversion is from a hierarchy structure to a
more flexible model representation. Furthermore, the
increased LOD of Modelica requires the ability for the
user to add additional data. In contrast, the semantic
mismatches on model definitions are more problem-
atic, Wimmer et al. (2014) define parameter and com-
ponent mapping rules between SimModel and Model-
ica that are integrated into this prototype.
In this paper, the System Overview section illustrates
the system processing pipeline of model transforma-
tion and Technical Specifications provides a detailed
description of the system prototype. In order to
demonstrate the entire pipeline, the Experiment sec-
tion illustrates an automatically generated Modelica
model transformed from the first SimModel use case.
Conclusions and future work are discussed in the final
sections.

SYSTEM OVERVIEW
In order to address the fundamental differences (LOD,
hierarchy, schematic mismatches) between SimModel
and Modelica data models, the prototype of our sys-
tem, shown in Figure 1, is developed for simulation
specialists to bridge these gaps with the following
stages:
A given SimModel use case of specific HVAC systems
and its building geometry are stored in an XML-based
data file SimXML. This SimXML file, generated by
Simergy (LBNL, 2014), is the data source of the trans-
formation prototype application.
The data model stored in SimXML file will be loaded

by a graphical user interface (GUI) to validate its
XML syntax according to the XML Schema Definition
(XSD) of SimModel. If no error is found in SimXML,
the model hierarchy of SimXML data will be parsed
and converted into C++ class instances, in memory,
by calling APIs generated in the SimModel skeleton
class.
Subsequently the user can input additional simulation
parameter values through the GUI for specified HVAC
properties. Afterwards, a Modelica code generator
embedded in the GUI generates Modelica model based
on the Mapping Rules and output a .mo file to save the
Modelica code (Figure 1, Transformation prototype).
In the background of the system GUI, a multi-layer
XML Binding is developed based on an open source
XSD binding parser CodeSythesis XSD (CodeSyn-
thesis, 2011) to generate the C++ skeleton class of
SimModel by parsing SimModel XSD. The Mapping
Rules illustrated in the background is a data container
designed for saving mapping rules (Wimmer et al.,
2014) between SimModel and Modelica objects. In
this prototype, we focus on a specific Modelica build-
ings library AixLib (EBC, 2014; Constantin et al.,
2014) and develop mapping rules that define object
and property mappings for HVAC use cases.

TECHNICAL SPECIFICATIONS
Technical specifications of the model transformation
system are presented in following sub-sections:
• An overview of SimModel hierarchy, including

the XML binding framework generated for pars-
ing SimXML.

• Geometry and HVAC representations of Sim-
Model and AixLib are compared to illustrate
model differences.

• Different data mapping rules are defined to con-
vert SimModel into Modelica.



Figure 2: SimModel hierarchical structure (designed for BEPS) includes five sub-schema namespaces: Sim
Resource, Sim Geometry, Sim Core, Sim Building and Sim MEP.

• Lastly, the data structure of Modelica model is
analyzed to support the transformation triggered
by data mapping rules.

SimModel Hierarchy
SimModel hierarchical structure contains five sub-
schema namespaces to store energy performance-
related data, e.g., building geometry, HVAC system,
physical property data assigned to the HVAC system
and simulation configuration. Figure 2 illustrates par-
ent classes of each sub-schema namespace displayed.
The corresponding IFC classes are also marked in Fig-
ure 2 by red text.
Sim Resource: located in the bottom layer of the Sim-
Model hierarchy, represents the resource data assigned
to building elements or HVAC systems. Besides ba-
sic IFC functionalities, illustrated by blue octagons
in figure 2, additional functions maintaining energy-
performance data are extended by SimModel to sup-
port BEPS. For example, the object SimTemplate is
designed as an object container storing various library
entries into a reusable template. E.g., the construction
template contains all the different material layer sets
for different building elements as defined by a given
standard.
Sim Geometry: this geometry schema provides
multiple-representation of geometry shapes defined
for rendering the building envelope or the other inner
structures, e.g., building site, building storey, ceiling,
etc.
Sim Core: basic data types and model structures of
SimModel objects are defined in this core schema.
For example, the object id, object model name and

its model type are defined in SimObject class of this
schema.
Sim Building: high-level building element structures,
e.g., building site, storey, reference to the low-level ge-
ometric shapes, are defined in this schema. Based on
these high-level building elements, different thermal
zone definitions and their HVAC group information
are stored in the SimGroup class of this sub-schema.
Sim MEP: mechanical, electrical and plumbing el-
ements of HVAC systems are defined in this sub-
schema. As used in our use case example described
later in this paper, a hot water boiler, a water pump
and a heat radiator are defined by Sim MEP schema.

XML Data Binding Framework
XML data binding is the process of extracting data
from a structure representation of XML documents
and presenting it as a hierarchy of objects that corre-
spond to a document vocabulary. This allows data-
centric applications to manipulate XML data in a way
that is more natural than using the Document Object
Model (DOM).
Using the SimModel XSD (XML instance specifica-
tion), we generate C++ classes that:
• Reflect the tree structure of the XML schema as

in-memory object.
• Access the data stored in the tree efficiently, e.g.,

SAX (Simple API for XML)-like mapping.
In general, approaches for automated mapping of
XML Schemata to C++ are broadly classified into two
categories (CodeSynthesis, 2011): 1) in-memory tree
mapping and 2) stream-oriented parsing. The tree
mapping represents the information stored in XML



documents as a tree-like data structure suitable for in-
memory processing. Stream-oriented paring is a SAX-
like mapping which represents the data stored in XML
as a hierarchy of vocabulary-specific parsing events.
Table 1 summarizes key advantages of these two C++
binding methods:

Table 1:
Binding method comparison between tree mapping
and stream-oriented parsing (CodeSynthesis, 2011)

TREE MAPPING STREAM-
ORIENTED

Ready to use default
data type mapping sys-
tem for mapping XML
schema types to suit-
able C++ types

Support customized
type mapping sys-
tem to construct your
own in-memory data
representation

Complete XML docu-
ment view and referen-
tial integrity

Perform immediate
processing as parts of
the XML document
become available

Optional association
with underlying DOM
nodes

Handle XML docu-
ments that are too large
to fit into memory

Support serializa-
tion back to DOM
or XML, ID/IDREF
cross-referencing, etc.

Small footprint, includ-
ing code size and run-
time memory consump-
tion

Based on the pros and cons of XML binding meth-
ods described above, we developed a multi-layer XML
binding parser that combines advantages of these
two bindings to generate C++ skeleton classes of
SimModel. As a result, the generated C++ Sim-
Model skeleton represents the given vocabulary of a
SimXML as well as parsing and serialization code.
The new developed parser will generate a complete
structure view of a SimXML file based on the tree
mapping. Then parsing only parts of the SimXML file
into memory objects via the stream-oriented binding
for handling SimXML files that are too large to fit into
memory.
The structure of the multi-layer XML binding parser
developed for SimModel is illustrated in Figure 3:
Underlying XML Parser: this is a system specified
XML parser library which makes it easy to give our
binding skeleton the ability to read and write XML
data. A shared library is provided for parsing, gener-
ating, manipulating, and validating XML documents
using the DOM, SAX, or SAX2 APIs.
Type Mapping: this layer is used to define type map-
ping between XML schema and C++ types. The XML
binding compiler, e.g., CodeSythesis XSD, XMLSpy,
has a set of predefined mapping rules that map built-in
XML schema types to suitable C++ types. By pro-
viding customized type maps user can override these
predefined rules. For instance, map the pump speed
defined in SimModel (see Figure 3) into a C++ enum
type pumpSpeed of two variables, i.e., ConstantSpeed

and VariableSpeed.
Generate Skeleton Class: the C++ skeleton class of
SimModel is generated by calling a user specified
XML data binding complier. In our system, we select
the open-source, cross-platform W3C XML schema
binding compiler CodeSythesis XSD as the default
SimModel XSD binding parser in order to provide
complete control of the skeleton class generated.
Override Virtual Functions in the Skeleton Class:
based on the generated skeleton class, the system GUI
can then access the data stored in a SimXML file by
overriding virtual functions that semantically corre-
spond to SimModel elements rather than dealing with
the intricacies of reading and writing XML.

Figure 3: The multi-layer XML binding parser for
mapping SimModel XSD into C++ skeleton class

Comparison of Geometric Representation between
SimModel and AixLib
In this section, we illustrate model differences in
geometry representations between SimModel and
AixLib (EBC, 2014; Constantin et al., 2014).
In the upper part of Figure 4, geometric hierarchy of
a single zone building office defined in SimModel is
decomposed into a top-down tree structure. The ge-
ometric representation of SimModel fully complies
with the spatial structure decomposition defined by
the IFC Implementation Guide (Liebich, 2009). As
sim classes displayed in Figure 4, the geometric build-
ing envelope is constructed by linking a set of geom-
etry elements, such as link SimSite with SimBuild-
ing, SimBuilding with SimBuildingStory, SimBuild-
ingStory with SimWindow, SimSlab and SimWall.
In contrast to the geometric hierarchy of SimModel,
there is no hierarchical geometry representation in
AixLib. The lower part of Figure 4 shows the trans-
formed building envelope defined in Modelica. The
resistor-capacitor (RC) models of outerwall (the wall
has a window) and innerwall (combined all internal
adiabatic walls in this case) are generated according
to the SimWall objects of SimModel. Afterwards, the
RC models of outerwall and innerwall are linked to the
thermal zone.



Figure 4: Geometric comparison between SimModel and AixLib. As illustrated by blue arrows, geometric
hierarchy of SimModel wall elements will be transformed into Modelica RC models.

Comparison of HVAC Representation between
SimModel and AixLib
Figure 5 shows a hot water looping system defined in
SimModel and AixLib respectively.

Figure 5: HVAC Comparison between SimModel and
AixLib. The use case is visualized in Simergy (upper)

and Dymola (lower).

Generally, the following differences occur between

HVAC systems defined in SimModel and Modelica-
based BEPS libraries, e.g., AixLib:

1. HVAC Component and Parameter Mapping: nor-
mally a HVAC component or parameter defined in
SimModel will be transformed into a correspond-
ing component or parameter defined in Modelica,
e.g., in Figure 5, the hot water boiler of SimModel
is mapped to the same type of boiler in Modelica.
Nevertheless, some HVAC components or param-
eters have to be mapped into multiple Modelica
components or parameters. For example, the Sim-
Model radiator in Figure 5 has to be transformed
into a radiator and an additional valve as a radiator
is controlled separately in Modelica.

2. Looping Flow Direction: SimModel supports di-
rectional looping flow in a predefined system con-
figuration. Modelica can support bi-directional
flows in a flexible configuration. As shown in Fig-
ure 5, each HVAC component of SimModel has an
inlet and outlet port, e.g., the red triangles on the
boiler and radiator.

3. Different Model LOD: currently, SimModel only



supports predefined LOD originating in Energy-
Plus, on the contrary, Modelica allows to define
deeper LODs based on simulation requirements.
As shown in Figure 6, the detailed model structure
of boiler is defined in the 2nd model level. More
detailed models of internal components of the 2nd
level can be defined in deeper LODs, such as in
3rd and 4th levels.

Figure 6: Deeper LODs of Modelica Model

Mapping rules from SimModel to Modelica
Based on the comparison between SimModel and
AixLib, 6 different mapping rules are defined to con-
vert SimModel into Modelica:

1. One to One Mapping: a single parameter or com-
ponent of SimModel will be mapped into another
parameter or component of Modelica.

2. Many to One Mapping: multiple SimModel pa-
rameters or components will be converted into a
single Modelica parameter or component.

3. One to Many Mapping: a single SimModel param-
eter or component will be converted into multiple
Modelica parameters or components.

4. Gap: additional data needs to be added into Sim-
Model in order to represent the Modelica parame-
ter or component.

5. Transformation: a parameter or component in
SimModel will be transformed into a different rep-
resentation in Modelica. For example, the bound-
ary conditions of HVAC components are nor-
mally represented by matrix-based data instances
in SimModel, and will be defined by functions in
Modelica.

6. Combination: it is a combined mapping from rule
1 to 5. Different combinations of these rules are
possible. For example, a matrix-based data pairs
in Modelica represent the part-load factor and its
corresponding energy efficiency of a boiler. We
need to map the maximum and minimum values
of the part-load ratio defined in SimModel (2 pa-
rameters) into the upper and lower bounds of the
single Modelica parameter part-load factor based
on rule 2, and interpolate the other value instances
of the part-load factor in between the upper and
lower bounds. Then substitute these interpolated
factor values into a profile function of SimModel

to calculate their corresponding boiler efficiencies
based on rule 5. Afterwards, the efficiency values
will be saved into the matrix-based data pairs.

These mapping rules, mainly driven by a set of use
cases, will be a first step to illustrate the model trans-
formation between SimModel and Modelica. The def-
inition of these rules is described in Wimmer et al.
(2014).

Modelica Code Structure
In this section, we introduce the code structure of
BEPS models generated into a Modelica .mo file. The
following two parts are normally defined in the Mod-
elica .mo file to describe BEPS models:
• Model Component Initialization: in this section

model objects are initialized, e.g., HVAC com-
ponents pre-defined in the building library, with
specific parameter values. For example, the fol-
lowing code is to initialize a boiler of AixLib
with the maximum heat output 1300W fluid
volume (inside the heat generation unit) starts
at 328.15K: AixLib.HeatGeneration.Boiler
boiler(Q flow max=1300, volume( T(start=328.15,
fixed=true)))

• Equations for Object Connection: this part de-
fines the topological connections between phys-
ically connected objects, such as a connection
between boiler and pump shown in Figure 7:
connect(pump.port b, boiler.port a)

Figure 7: Connection between boiler and pump

Based on the code structure, Modelica code genera-
tor will automatically translate SimModel objects into
Modelica elements of AixLib according to the map-
ping rules described in previous section.

EXPERIMENT
Experiment Use Case Definition
We defined a generic SimModel use case based on
German guideline VDI 6020-1 that focuses on a heat-
ing system of a gas boiler for generation and a radi-
ator located in a single thermal zone (Figure 5). The
outcome Modelica .mo file generated for the use case
is verified by manually comparing with the baseline
model defined in AixLib.

XML Binding Result of SimModel
In our SimModel skeleton:
1. 5 C++ sub-namespaces are defined for storing

functional classes of Sim Resource schema, Sim
Geometry schema, Sim Core schema, Sim MEP
schema and Sim Building schema.

2. 2611 C++ functional classes of SimModel are gen-
erated and distributed in above 5 namespaces.



Development Result of System GUI
Figure 8 shows a GUI layout developed for our model
tranformation system.

Figure 8: System GUI developed for model
transformation from SimModel to Modelica

As shown in the GUI layout: 1) a hierarchy of Sim-
Model components are firstly extracted from SimXML
file through calling API functions of SimModel C++
skeleton class. 2) The extracted SimModel hierarchy
is then visualized in the GUI as a tree. 3) Property val-
ues of specified SimModel components, e.g., the pump
selected, will be displayed in the right side, and can
be customized by the user. 4) Modelica .mo file will
be automatically generated by clicking the lower-right
button Generate Modelica Model.

Transformation Result of Modelica Model
In Figure 9, a Modelica code example representing a
connection between pump and boiler is generated from
the SimConnection entity of SimXML file. As shown
in the SimXML code, the direction of hot water flow
is determined by connecting the SourcePort to Target-
Port. Nonetheless, the corresponding Modelica func-
tion connect is generated to support bi-directional wa-
ter flow.

Figure 9: Code generated for SimConnection

A Modelica-based BEPS model transformed from
the SimModel use case is illustrated in Figure 10.

NightSignal is a working schedule of the pump defined
in SimModel. const is the temperature set to the boiler.
baseParameters is a set of basic parameters defined in
Modelica. This use case is verified for demonstrating
the transformation system proposed.

Figure 10: Modelica model generated from the HVAC
system defined in SimModel use case.

HVAC component positions, illustrated in the graphi-
cal representation (see Figure 10) of .mo file, are de-
termined by their 2D coordinates. At present, we need
to assign these 2D coordinates manually for arranging
the diagram layout.

CONCLUSION
In this paper, we have developed a new model trans-
formation prototype between BIM and Modelica data
models for BEPS purposes. As SimModel is the only
BIM format that contains the necessary HVAC data
for BEPS and the structure of this data model aligns
with the structure of IFC, we use SimModel as a place-
holder for IFC in our development. We focus mainly
on converting HVAC systems from SimModel into
Modelica, in order to accelerate BEPS model develop-
ment. A generic use case of heating system is adopted
to demonstrate this prototype.
The model transformation from SimModel to Model-
ica presents a unique challenge that must account for
significant differences in their respective model struc-
tures, such as the model parameter and component def-
initions, the modeling hierarchy and LOD. The seman-
tic mismatches on model definitions are more difficult,
thus, we resolve this by defining parameter and com-
ponent mapping rules between SimModel and Model-
ica data models.
As a consequence, the prototype demonstrates the po-
tential to reduce development time of Modelica mod-
els by reusing building information data stored in a
BIM. Simulation specialists will be more flexible and
productive to focus on their creative work such as im-
proving the energy efficiency of a given design rather
than to waste time on manually importing data.

FUTURE WORK
This prototype development, mainly driven by the hot
water loop use case, will be a first step to make Mod-
elica more accessible to BEPS. Future work needs to
stimulate additional development for converting ge-
ometric representation of building envelope of Sim-



Model into Modelica objects based on the AixLib. In
order to show the generality of the model transforma-
tion prototype, additional data type mapping rules will
be developed to enhance the transformation of sup-
plementary HVAC components for more complicated
HVAC use cases. In the end, the diagram layout of
air and water loops will be arranged by automatically
assigning 2D coordinates of HVAC components.
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