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Evaluating the use of machine learning
in the assessment of joint angle using
a single inertial sensor
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Abstract

Introduction: Joint angle measurement is an important objective marker in rehabilitation. Inertial measurement units

may provide an accurate and reliable method of joint angle assessment. The objective of this study was to assess whether

a single sensor with the application of machine learning algorithms could accurately measure hip and knee joint angle, and

investigate the effect of inertial measurement unit orientation algorithms and person-specific variables on accuracy.

Methods: Fourteen healthy participants completed eight rehabilitation exercises with kinematic data captured by a 3D

motion capture system, used as the reference standard, and a wearable inertial measurement unit. Joint angle was

calculated from the single inertial measurement unit using four machine learning models, and was compared to the

reference standard to evaluate accuracy.

Results: Average root-mean-squared error for the best performing algorithms across all exercises was 4.81�

(SD¼ 1.89). The use of an inertial measurement unit orientation algorithm as a pre-processing step improved accuracy;

however, the addition of person-specific variables increased error with average RMSE 4.99� (SD¼ 1.83�).

Conclusions: Hip and knee joint angle can be measured with a good degree of accuracy from a single inertial meas-

urement unit using machine learning. This offers the ability to monitor and record dynamic joint angle with a single

sensor outside of the clinic.
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Introduction

The assessment of joint angle is a commonly used clin-
ical measurement tool in rehabilitation medicine and
serves as a key objective marker in monitoring treat-
ment effectiveness, patient progress, and is often used to
guide treatment interventions.1 For example, after
orthopaedic surgery such as total knee replacement,
the restoration of joint range of motion is an essential
rehabilitation focus and is achieved through targeted
exercise programmes which commence immediately in
the hospital setting and continue on in the home envir-
onment for numerous weeks. A reduced range of
motion post-operatively can have significant impact
on functional activities of daily life including walking
and rising from sitting, and in more intensive pursuits

such as cycling.2,3 As increasing numbers of healthcare
providers move towards value-based care, the use of
objective outcome measures, such as joint angle,
holds even greater importance and as such, the use of
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valid and reliable methods to assess joint angle is
imperative.

The current norm in clinical practice is to measure
joint angle in a single plane at an isolated joint with a
universal goniometer. These are inexpensive and
portable and are considered easy to use.4 However,
post-operative joint angle assessment with a universal
goniometer can only be captured with a trained exam-
iner when the patient attends clinic appointments.4

These measurements are often taken several weeks
apart, at a single time-point, with a static posture,
and do not necessarily provide the data to inform
judgement on the overall trend of progress, with meas-
ures potentially being affected by short-term pain or
swelling.1 Whilst this method is more accurate than
visual estimate,5,6 the use of the universal goniometer
is subject to high levels of variance in inter and intra-
tester reliability.7,8

In an effort to offer a more robust method of meas-
urement, the use of smartphone applications and iner-
tial measurement unit (IMU) systems to measure joint
angle has been investigated.9–14 Both tools harness data
analytics to obtain clinical measurements in an attempt
to remove human error. Whilst smartphone applica-
tions still require an examiner and static posture to
operate, wearable IMU systems have the potential to
offer a continuous method of assessment of joint angle
remotely during home-exercises, without the need for
an examiner or a maintained static posture. Measures
of joint angle derived from IMU systems have the
potential to be built into biofeedback devices designed
to support the patient in their rehabilitation pro-
gramme away from the clinic.15–16

Current methods of joint angle assessment with
IMUs typically require multiple sensors with one
IMU per limb segment.11,13,14,17–19 At present, it is
common to use an orientation algorithm, such as the
Madgwick filter,20 Kalman filter,21 or complementary
filter22 to compute the IMU orientation of each indi-
vidual sensor.17,18,23,24 In the interest of usability and
cost, minimising the number of sensors required is pre-
ferred; however, there is a lack of research outlining
predictive algorithms, or joint angle estimation with a
single IMU.25 A recent study was the first to investigate
joint angle measurement with a single IMU.26 The
authors represented joint angle as a Fourier series and
optimised a cost function structured using kinematic
data, with a mean error of 3.2� across four exercises.
However, their method required the input of a number
of additional variables including limb segment length
data for each participant.

A potential alternative method of joint angle meas-
urement with data from a single IMU is to use machine
learning (ML) algorithms. ML algorithms are used
widely to find patterns in data and build models to

make predictions. This can be done with discrete
data, known as classification, or regression, where the
prediction output is continuous data, such as joint
angle.27 Supervised learning is one of the two categories
of ML algorithms and involves learning a model which
best maps input features to labelled outputs. There are
wide-varieties of supervised learning algorithms includ-
ing models such as linear regression, polynomial regres-
sion, decision trees, and random forest regression.28–30

As such, supervised ML regression algorithms may
offer the ability to measure continuous joint angle
during rehabilitation exercises captured by IMUs.

To date, the use of ML to assess continuous joint
angle captured by IMUs has not been heavily studied.
Therefore, the aim of this study was to explore if it is
possible to accurately measure joint angle with a single
IMU and ML algorithms. This was done by exploring
three fundamental questions; (1) which is the best per-
forming ML algorithm to predict joint angle from a
single IMU, (2) whether the input of additional
anthropometric variables improves the accuracy of
such an assessment method, and (3) whether an IMU
orientation algorithm is required in addition to ML
algorithms to provide this joint angle.

Methods

Participants

A sample of 14 participants (6 female and 8 male,
age¼ 28� 3 years, height¼ 172� 9.5 cm, weight¼ 75�
13 kg, BMI 25� 4) were recruited from the University.
Subjects were eligible to participate in this study if they
were over 18 years of age and were capable of perform-
ing the eight rehabilitation exercises. Exclusion criteria
included: (1) diagnosed neurological conditions and
(2) lower limb musculoskeletal injury in the past six
months. Ethical approval was obtained from the
University Human Research Ethics Committee.
All subjects provided written informed consent prior
to participation.

Rehabilitation exercises

Each participant performed eight lower limb exercises
routinely prescribed in the early-stages following ortho-
paedic surgery under instruction and supervision of a
Chartered Physiotherapist. The exercises ranged from
lying, sitting and standing positions and were specific-
ally chosen to correspond with standard exercises fol-
lowing total hip and knee replacement surgery.31,32 The
heel slide, straight leg raise, inner range quadriceps, and
seated active knee extension for the knee utilising an
IMU on the shin, with supine hip abduction, standing
hip flexion, standing hip abduction, and standing hip
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extension for hip rehabilitation, with an IMU placed on
the thigh. A detailed description of these exercises can
be found in Table 1. Participants were allowed three
practice repetitions prior to data collection. All exer-
cises were performed continuously for 60 s.
Participants were instructed to vary the joint angle
between maximal and sub-maximal repetitions across
the set in a self-selected random order.

Data acquisition

A three-dimensional (3D) motion capture system, con-
sidered the gold standard tool for dynamic measure-
ment of lower limb joint angle with a low error of
measurement,7 was used as the reference standard.
This CODA motion capture system comprised of a uni-
lateral, right-sided, eight marker set-up, and three
motion capture cameras (Charnwood Dynamics,
Leicestershire, UK). Two IMUs were used to collect
tri-axial accelerometer and gyroscope data from each
participant (Shimmer, Dublin, Ireland),33 and all knee
rehabilitation exercises were analysed with data solely
from the shin sensor (Figure 1: IMU 2), with the thigh
sensor being used for hip joint angle measurement
(Figure 1: IMU 1). Additional variables including sex,

age, height, weight, hip-knee length and ankle-knee
length were also recorded. These additional metrics
were included to account for variances in joint angle
between participants attributed to anthropometric vari-
ability. Each participant was required to wear a pair of
skin tight Lycra shorts or leggings and a light shirt
rolled up past the navel in order to obtain an unob-
structed view of all testing equipment. The markers and
IMUs were then applied by the same Chartered
Physiotherapist for all subjects and were positioned as
described in Figure 1. The markers and IMUs were
fixed to the skin, or Lycra, with double-sided adhesive
tape. Synchronous kinematic data acquisition was con-
ducted using three CODA mpx1 units sampling at
100Hz and the two IMUs, calibrated prior to testing,
sampling at 102.4Hz, with accelerometer and gyro-
scope ranges configured to � 2G and � 500�/s, respect-
ively, mirroring the configuration of similar
research.34,35 3D motion capture data acquisition was
performed with a single CODA motion analysis system,
while IMU data were captured using the Multi
Shimmer Sync Android tablet application (Shimmer,
Dublin, Ireland). Both systems recorded 60 s segments
of continuous kinematics during eight post-operative
rehabilitation exercises. A set of exercises was only

Table 1. Rehabilitation exercises including the joint angle measured for each exercise with relevant IMU.

Exercise Description of exercise Joint angle measured

IMU

placement

Heel slide In supine lying, the exercise is performed by flexing the hip

and knee to slide the foot closer to the ipsi-lateral hip.

Knee flexion Shin

Supine hip abduction In supine lying, the exercise is performed by abducting the

hip, sliding the foot away and then back towards the

midline.

Hip abduction Thigh

Straight leg raise In supine lying, the exercise is performed by flexing the hip,

lifting the leg off the supporting surface while keeping the

knee in full extension.

Hip flexion Shin

Inner range quadriceps In supine lying, a roll is placed under the knee to be exer-

cised. The exercise is performed by contracting the

quadriceps muscles to bring the knee from a position of

slight flexion into full extension.

Knee flexion Shin

Seated active knee extension In sitting with the upper thigh supported on a chair, the

exercise is performed by contracting the quadriceps to

bring the knee from a position of flexion into full

extension.

Knee flexion Shin

Standing hip flexion In standing, the exercise is performed by lifting the leg

forwards, flexing at the hip and knee.

Hip flexion Thigh

Standing hip abduction In standing, the exercise is performed by lifting the leg out

to the side, whilst maintaining full knee extension.

Hip abduction Thigh

Standing hip extension In standing, the exercise is performed by lifting the leg

backwards out behind the body, whilst maintaining full

knee extension.

Hip extension Thigh

IMU: inertial measurement unit.
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repeated when the CODA marker visibility was less
than 99% for any of the eight markers.

Data processing

Reference joint angle calculation. The CODA system pro-
vided raw data in the form of the X, Y, Z positions of
each of the markers over time. These 3D co-ordinates
were first reduced to 2D, based on the plane of move-
ment the exercise occurred, in order to derive clinically
relevant metrics which are already used in current prac-
tice (e.g. heel-slide movement is in the Y-Z plane,
supine hip abduction is in the X-Y plane and standing
hip abduction is in the X-Z plane). Vectors were created
from the two markers on each limb involved in the
exercise movement and joint angles were calculated

using equation (1). The method of calculating the
joint angle based on vectors from the CODA system
is shown in equation (1).

� ¼ cos�1
û � v̂

kû k � kv̂ k

� �
ð1Þ

Synchronisation of the motion capture and IMU

systems. Prior to synchronisation, the IMU data were
down-sampled to 100Hz using linear interpolation. To
synchronise the systems, the participants were
instructed to perform a ‘‘kick’’ before exercise com-
mencement. The kick was performed in a perpendicular
plane to the exercise plane, so that the marker’s largest
displacement over the duration of the exercise in the

Figure 1. Infra-red markers 1–8 and IMUs 1 and 2 attached with double-sided adhesive tape to anatomical landmarks. Each marker is

attached to a battery pack. Only one IMU was used to calculate joint angle, the location dependent on the exercise performed.
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perpendicular plane was during the kick. For the
CODA system, the joint angle in the direction of the
kick was calculated using equation (1), and for
the IMU data the IMU orientation in relation to the
global frame was computed by using the Madgwick
orientation algorithm.20 These two data sources were
then synced on the peaks of the respective kick data
(Figure 2).

IMU joint angle calculation. Data from a single IMU were
used to measure joint angle as specified in Table 1. Two
methods were used to calculate the joint angle from the
IMU raw data which are highlighted in Figure 3.
Method 1 derived joint angle from the raw IMU data
passing through an orientation algorithm which is regu-
larly used in literature pertaining to exercise analysis
with IMUs,20 whereas Method 2 modelled joint angle
straight from the raw IMU data. Four commonly used
ML regression algorithms were modelled on the IMU
datasets from each of these methods to estimate joint
angle, namely linear regression (LR), polynomial
regression (PR), decision tree regression (DT), and
random forest regression (RF). This culminated in a
total of eight models to estimate joint angle from the
IMU data (Figure 3). The additional anthropometric
variables of height, weight, age, sex and limb segment
length were used as additional features to investigate
their influence on accuracy. These additional variables

particular to each participant were included in the
models as part of the feature vector for each timepoint.

Hyperparameter tuning. In order to optimise the accuracy
of a ML model, a number of parameters that cannot be
learned through the ML training process (known as
hyperparameters) must be selected before initial train-
ing takes place. These hyperparameter values are then
adjusted, in this case through manual search, over mul-
tiple train and test iterations to identify the optimal
model configuration, which is then used for analysis.
In this study, L2 penalty coefficient values were
explored for the linear regression and polynomial
regression, with the polynomial regression model also
searching cubic and quadratic features. The decision
tree and random forest models searched for the optimal
maximum depth value, with estimator values also
trialled in the random forest model.

Accuracy analysis. The loss metric for all of the models
was mean squared error. The root-mean squared error
(RMSE) and the coefficient of determination (R2) were
computed to compare the predicted joint angle from the
IMU to the reference 3D-motion capture system across
every data point (Figure 4), for each of the four ML
models in all eight exercises. Leave-one-subject-out
cross validation was used with 14 folds, and the
RMSE values stated in the results are the mean

Figure 2. An example of CODA and IMU data synchronised from the peaks of the ‘‘kick’’ angles.

Argent et al. 5



Figure 3. Flowchart illustrating the process of IMU joint angle calculation. The input label for the training of the models is the raw

IMU values, with the output being the joint angle derived from the reference standard CODA.

Figure 4. Randomly selected sample of one participant illustrating joint angle comparison between reference standard CODA and

IMU. RMSE was calculated across every data point in the exercise set sampled at 100 Hz for each participant.
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RMSE and R2 of the test data in each of the 14 folds
with the standard deviation (SD) provided to show the
variance between participants. To maximise clinical
application, healthcare professionals are primarily
interested in the peak joint angles achieved.
Therefore, the same RMSE analysis was also con-
ducted on the isolated maximum and minimum joint
angles for each repetition.

Results

Table 2 illustrates the best performing algorithm, aver-
age RMSE and R2 across all participants for each exer-
cise. The average RMSE for the best performing
algorithm across all eight exercises was 4.81�

(SD¼ 1.89), with a maximum value of 6.19�. This
increased to 4.99� (SD¼ 1.83), with a maximum of
6.92� when participant-specific additional variables
were included. There was variance between the best
performing algorithm dependent on the exercise being
conducted, although the use of the orientation algo-
rithm improved performance on the majority of the
tested models (11 out of 16).

For clinical relevance, the mean RMSE and R2 for
the maximum and minimum joint angles of each exer-
cise repetition are also outlined in Table 2. The average
RMSE for these joint angles across all eight exercises
was 5.02� (SD¼ 1.99), with a maximum value of 6.79�,

resulting in an average increase of 0.21� (SD¼ 0.54)
from the entire time-series. When participant-specific
additional variables were included, the RMSE
increased to 5.43� (SD¼ 2.07), with a maximum of
7.41�, resulting in an average increase of 0.44�

(SD¼ 0.46) compared to every data-point.

Discussion

The aim of this study was to investigate whether it is
possible to use a single IMU with ML algorithms to
accurately measure lower limb joint angles, and which
algorithm is most effective in doing so. Furthermore, it
explored whether additional anthropometric variables
were required to improve the accuracy of such a
method, and whether an IMU orientation algorithm
was required in addition to the ML methods to provide
this joint angle. The results identified low levels of
RMSE which suggest that it is possible to measure
joint angle with a single IMU with the assistance of a
variety of ML algorithms. Additional variables such as
sex, age and limb segment lengths reduced the accuracy
of this method.

In this study, the best performing ML algorithm
with solely the input of sensor data from a single
IMU to measure joint angle resulted in an average
RMSE of 4.81� using leave-one-subject-out cross valid-
ation. These results indicate that the novel approach

Table 2. Results showing the best performing algorithm, mean R2 and mean RMSE for data from both the entire time-series and the

maximum and minimum joint angles for each repetition.

Entire data-set

Maximum and minimum

joint angles

Exercise Additional variables Algorithm R2 RMSE (�) (SD) R2 RMSE (�) (SD)

Heel slide Sensor data only Orientation PR 0.98 5.70 (2.29) 0.99 5.19 (2.21)

Sensorþ additional variables Orientation LR 0.98 5.50 (2.50) 0.98 5.85 (2.42)

Inner range quadriceps Sensor data only Orientation PR 0.59 3.98 (2.43) 0.75 3.95 (2.14)

Sensorþ additional variables Orientation LR 0.51 4.02 (2.16) 0.65 4.42 (2.24)

Straight leg raise Sensor data only Raw PR 0.92 3.62 (1.32) 0.95 3.76 (1.17)

Sensorþ additional variables Orientation LR 0.93 3.54 (1.02) 0.93 3.48 (1.60)

Seated active knee extension Sensor data only Raw RF 0.96 6.08 (1.63) 0.97 6.79 (2.44)

Sensorþ additional variables Raw RF 0.95 6.92 (2.04) 0.96 7.41 (2.68)

Supine hip abduction Sensor data only Orientation PR 0.85 3.46 (2.16) 0.92 3.54 (1.67)

Sensorþ additional variables Orientation RF 0.82 3.93 (2.11) 0.90 4.08 (1.78)

Standing hip abduction Sensor data only Orientation LR 0.86 4.16 (2.18) 0.92 4.21 (2.54)

Sensorþ additional variables Orientation PR 0.88 4.34 (1.80) 0.93 4.49 (1.93)

Standing hip extension Sensor data only Orientation PR 0.37 5.31 (1.40) 0.54 6.58 (1.56)

Sensorþ additional variables Orientation LR 0.38 5.59 (1.09) 0.51 7.06 (1.49)

Standing hip flexion Sensor data only Raw RF 0.93 6.19 (1.67) 0.96 6.13 (2.19)

Sensorþ additional variables Raw LR 0.94 6.10 (1.89) 0.96 6.64 (2.43)

RMSE: root-mean-squared error.
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described in this paper is comparable to those using two
sensor models and a recently published single IMU
method. Bakhshi et al.11 used a two-IMU model to
assess knee joint ROM with errors ranging from 0.08
to 3.06� across four tasks.11 In this method, validation
was performed by a single participant and data down-
sampled to 5Hz. Another two sensor method published
by O’Donovan et al.36 measured ankle joint angle with
an error range from 0.5 to 4.09� in two subjects.36

Bonnet et al.26 is the only other study in the current
literature to use a single sensor method, although this
required the input of all anthropometric variables.26

The authors reported an average RMSE of 3.2�

across four exercises with their single sensor model.
However, it is unclear what validation process was
used to calculate these accuracy metrics. Finally, the
low RMSE identified in this study is also comparable
to those found in functional tasks such as gait.13,17,18

Yet these joint angles do not necessarily mirror the
standardised joint angle assessment methods that
would be familiar to healthcare professionals in clinical
practice.

In a clinical setting, it is desirable to minimise any
additional input that a user would be required to per-
form in order to use this method of measurement.
Overall, the addition of anthropometric variables to
these models does not appear to increase accuracy.
This has positive implications for the ease of implemen-
tation, as users will not be required to add further infor-
mation including measuring limb segment length.
Although the addition of person-specific variables is
not required to improve accuracy, it is apparent that
the use of an IMU orientation algorithm is still neces-
sary, with few models evaluated performing better with
raw IMU data.

When viewing the randomly selected sample in
Figure 4, there is a suggestion that the model may be
less accurate at the end of ranges of each exercise repe-
tition. As clinicians are particularly interested in these
end ranges, it is important to conduct further accuracy
analysis on these points. The results show that there is a
small increase in error at the maximum and minimum
joint angle, with mean RMSE at 5.02� However, this is
only an average 0.21� increase from the full time-series
and does not substantially affect the accuracy of the
models, providing the clinician with a convenient
method of measurement within five degrees of the
gold standard.

Further clinical implications of using such a method
of joint angle assessment include negating the need for
an examiner to perform measurements, therefore
removing any error from inter-tester reliability or incor-
rect placement of the universal goniometer.1,4,37 This
method of assessment can also offer real-time dynamic
joint angle feedback, compared to current methods of

goniometry requiring a static position. Whilst other
proposed methods are also able to complete this, to
the best of the authors’ knowledge, none have been
able to do this with a single IMU without the need
for limb segment length features to be inputted.

The sensor placement has also been carefully con-
sidered for the target user to position appropriately
without assistance. Similar work has used sensors on
the distal shank or multiple sensors,11,14,17,18,26 whereas
this system is designed for all of the hip rehabilitation
exercises to work with an IMU placed on the thigh, as
currently many users may be prevented from reaching
below the knee, particularly after total hip replace-
ment.38 The knee rehabilitation exercises have an
IMU located at the midpoint of the shin, ensuring
that users are able to place the sensor easily and main-
tain the same position for all exercises, although in both
cases, further ‘real-world’ validation is required to
ensure that IMU placement by untrained patients
does not detract from accuracy.

This study is not without its limitations. Results are
based on a sample of convenience of young healthy
adults in a highly controlled lab-based environment
with all placements of markers and IMUs performed
by an experienced therapist. Participants were required
to wear Lycra shorts and therefore there is the possi-
bility of minor movement from the markers during the
exercise. The exercises performed and joint angles mea-
sured are relatively early-stage rehabilitation exercises,
with motion primarily in a single plane from a standar-
dised starting position, as is usual practice. However,
this method may not be applicable to more complex
multi-planar functional movements such as in gait or
compound lower limb exercises. Finally some data
during two exercises were excluded due to technical
difficulties, with suspected issues with the marker bat-
tery packs leading to unreliable data from the 3D
motion capture system.

This work mirrors numerous previous studies that
have included RMSE as the loss metric,17,19,26,36

which is common in assessing the accuracy of regres-
sion tasks. However, there is some debate in the litera-
ture regarding the most appropriate indicator of
average model performance, and it is suggested that a
combination of metrics including RMSE and mean
absolute error are required to assess model perform-
ance.39,40 The use of RMSE does not necessarily pro-
vide an indication of whether systematic errors are
present in the model, or the precision of the model
over a given time period. Therefore, while this study
has shown potential for ML methods to measure joint
angle, further in-depth evaluation should be carried out
on unseen and uncontrolled data in order to determine
the validity, reliability (inter- and intra-person) and
minimum detectable changes of the proposed model.
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These limitations aside, the results from this study sug-
gest future work that can incorporate this novel method
of joint angle assessment into an exercise biofeedback
system that can be used in the home-setting, providing
continuous joint angle measurement with remote moni-
toring for the clinician. This would also offer clinicians a
reliable and dynamic method of assessing joint angle in
the clinic which removes any examiner-based error.
Additionally, future work should include validating this
method in a clinical population with sensor placement
performed by the participant, as well as building on the
training data used in this study with data from a wider
participant demographic. Finally, having shown the
potential of this method of joint angle measurement, an
interesting field of future work is to compare the accuracy
of this single IMU ML model with the traditional multi-
IMU approaches discussed in the wider literature.

Conclusions

This study illustrates a novel and effective method
of measuring joint angle across numerous exercises
using only a single IMU, with a good level of accur-
acy when compared to the gold standard. This model
is designed to maximise ease of clinical implementation
as it reduces the need for patient-specific features such as
limb segment length, sex and age to be input into the
model. This has potential to be built into an exercise
biofeedback platform to offer an accurate and dynamic
method of joint angle assessment outside of the clinic,
without the need for a trained examiner.
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