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Abstract—This paper presents a generic foreground calibra-
tion algorithm which compensates for memoryless nonlinear
impairments in pipeline, SAR or hybrid ADC architectures.
Amplifier nonlinearity, comparator offsets, capacitance mismatch
and settling time errors are considered. During the calibration
process, each element of a look up table is computed by mapping
each raw ADC output value to an estimate of the corresponding
input, and the most likely input corresponding to each raw ADC
output is computed and stored in the table; this table is then
used during normal operation to map the raw values to the
calibrated ADC outputs. Complexity reduction techniques are
presented to facilitate an in-circuit hardware implementation in
order to reduce foreground calibration time. The algorithm’s
performance is evaluated using a SAR ADC model suffering from
various nonlinear impairments. Results are presented for settling
time errors, capacitor mismatch scenarios, and a wide range
of nonlinear amplifier parameters, demonstrating a significant
performance improvement in all cases.

Index Terms—ADC, transfer function, calibration, nonlinear-
ity.

I. INTRODUCTION

ADCs typically contain many sub-blocks, each of which
can suffer from nonlinear impairments; together these can limit
the performance of the ADC. For example, sample-and-hold
(S/H) circuits suffer from nonlinear behavior due to the gain
variation which occurs when the transistors move to the triode
region [1]. The relationship between the S/H input x and
output y can be mathematically modeled as

y =

∞∑
i=1

cix
i, (1)

where ci are the non-linearity coefficients. In [1], those coeffi-
cients are estimated, and the estimates are used to compensate
the effect of the nonlinearity through post-processing.

Architecture-dependent sources of nonlinearity also exist,
which include, but are not limited to,

1) Inter-stage operational amplifier nonlinearity in pipeline
ADCs: This effect can be modeled using a polynomial
expression as in (1). For example, the authors of [1] use
this model but limit their focus to the estimation of the
first and second order terms.
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2) Capacitor mismatch in SAR ADCs: To compensate this
type of impairment, [2] and [3] suggest to use a linear
combination of the comparator decisions with weights
proportional to the capacitance (called ideal weights). In
[3], these weights are obtained by sensing the histogram
of the ADC’s output.

3) Insufficient settling time in SAR ADCs: After each bit
trial, a capacitor is switched and the voltage presented
to the comparator converges to its new value with an RC
time constant τ . If the time interval τs allocated for this
is not sufficient, then errors may occur [3]. Increasing
the sampling rate fs (i.e., reducing τs/τ ) will exacerbate
this issue.

Many algorithms have been proposed to address the nonlin-
earity problem through characterizing the ADC. For example,
[4] targets the calibration of pipeline ADCs using an uncon-
strained sinusoidal input; curve fitting and least-mean-square
(LMS) adaptation techniques are used to identify the weights
used for the linear combination. However, a large memory is
required to store the input samples to be processed by the
curve fitting procedure.

When multiple nonlinear impairments exist simultaneously,
it is inefficient to calibrate each one independently. Based on
this idea, in [5] a look up table (LUT) is used to store the INL
errors to be used in correcting the ADC output. The INL errors
are evaluated by measuring the power spectrum harmonic
amplitudes, which are related to the INL errors. However,
these harmonic components can have small amplitudes and
are sensitive to noise. Also, the implementation in [5] involves
matrix manipulations, which are excessively complex for real-
time operation.

In this paper, we propose a unified calibration algorithm
which can work in the presence of several sources of non-
linearity. The algorithm works by populating a LUT which
stores the most likely input corresponding to each possible raw
output of the ADC. This saves post-processing computational
power and reduces latency, at the cost of additional storage. A
sinusoidal input is used for foreground calibration. To avoid
the complexity of the sinusoidal curve fitting procedure re-
quired in [4], we use a sinusoid with a known frequency, where
both the sampling clock and the input signal are generated
using a single source to guarantee their frequency synchroniza-
tion. It is demonstrated in Section VI that the proposed LUT-
based approach is superior to any linear combination based
technique in the presence of strong nonlinearity.
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Fig. 1: An illustrative example of an ADC’s transfer function.

II. GENERIC CALIBRATION ALGORITHM

This section highlights the proposed calibration technique
for a generic ADC whose raw output consists of N binary
decisions denoted by an N×1 vector d. The nth binary output
in d is dn, for 0 ≤ n < N , where d0 is the least significant
bit.

We can define a mapping function to map any d to a unique
integer via

θ(d) ,
N−1∑
n=0

dn2n. (2)

For any d, the nominal ADC output can be defined as

y ,
N−1∑
n=0

dnwn, (3)

where wn is the nominal weight for the nth binary output (e.g.,
in radix-2 architectures we have wn = 2n). However, in the
presence of circuit imperfections, the value of y as given by
(3) can be an inaccurate representation of the ADC’s input.

A memoryless system can be described by a transfer func-
tion whose output at any time is a function of the input at
that time and no other. In the absence of internal noise, the
transfer function for an ideal ADC looks like a staircase as
depicted in Figure 1; note that due to circuit impairments, this
staircase may not have the same width for all steps. The step
width reflects the voltage range assigned for each output by
the ADC. For a given output d, the ADC input can be modeled
as a sum of

1) the mid-level input that is denoted by mθ(d) as shown
in Figure 1; and

2) uniformly distributed quantization noise with zero mean.
The goal of the proposed calibration algorithm is to estimate

mθ(d) for all possible d. Figure 2 shows a block diagram for
this algorithm. The estimated values for mθ(d) are stored in
the LUT. After calibration, the raw ADC output at the kth time
index, denoted by d(k), is used to access the LUT directly, and
the final calibrated output is ỹ[k], an estimate of mθ(d(k)).

To produce the estimate of mθ(d) for each d, a sinusoidal
input with a known frequency is used. This test signal shall
cover most of the input swing, in order to ensure that almost
all possible raw outputs are exercised.

The calibration is done in two stages. In the first stage, the
input signal is characterized in order to predict the input at
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Fig. 2: Block diagram for the proposed generic calibration algorithm.

any time index k; this stage is outlined in Section III. After
characterizing the input, more samples are processed in the
second stage to evaluate the average input corresponding to
each output level, mθ(d); Section IV describes this stage in
more detail.

III. INPUT SIGNAL SYNCHRONIZATION

To build the transfer function, we need to know both the
output and an estimate for its corresponding input. Since a
sinusoidal signal with known frequency is used, we can predict
the input at any time after determining the input parameters,
i.e., the amplitude and the initial phase.

The sinusoidal input frequency is selected to be a
K fs where

K is a power of 2, fs is the sampling frequency, and a is a
selected positive integer less than K/2 such that a and K are
relatively prime. We can write the input as follows:

vin[k] = A cos
(2πa

K
k + φ0

)
(4)

=
A

2

(
ej
(

2πa
K k+φ0

)
+ e−j

(
2πa
K k+φ0

))
, (5)

where A is the input amplitude and φ0 is the initial phase.
Let ψ denote the average of the product of vin[k] with

e−j
2πa
K k over K samples, i.e.,

ψ =
1

K

K−1∑
k=0

e−j
2πa
K kvin[k] (6)

=
A

2
ejφ0 , (7)

where (7) holds due to the fact that averaging takes place
over an integer number of cycles of the input. The value of ψ
contains information about both A and φ0; this is sufficient to
predict the input at any time instant. Note that (6) resembles
the calculations needed for the ath component of the Discrete
Fourier Transform of size K.

However, (6) may not be used directly to find ψ, since we do
not know vin[k]. Therefore, we substitute vin[k] with the value
y calculated in (3); the corresponding estimate of ψ may then
be written as

ψ̃ ,
1

K

K−1∑
k=0

(
e−j

2πa
K k

N−1∑
n=0

wnd
(k)
n

)
. (8)

The averaging operation in (8) ensures that this serves as an
accurate approximation to ψ which is robust to the effects of
noise and nonlinear impairments.



Fig. 3: Obtained plot for the transfer function in the presence of noise.

IV. BUILDING THE LUT

From (4) and (7), it follows that

ṽin[k] = 2<
(
ψ̃ej

2πa
K k
)
. (9)

Note that the input is periodic with period K samples, i.e.,
ṽin[k] = ṽin[k (mod K)]. Hence we are able to predict the
input at any time index k after obtaining ψ̃ in the first
calibration stage.

To obtain m̄θ(d), an estimate of mθ(d) for each output level
d, we observe another F outputs indexed by k where 0 ≤
k < F . For each output d(k), we predict ṽin[k] using (9). Let
S(d) be a set that contains the time indices when the observed
ADC output is d; S(d) = {k | d(k) = d, 0 ≤ k < F}. The
estimate m̄θ(d) can be defined according to:

m̄θ(d) ,

∑
s∈S(d) ṽin[s]

|S(d)|
. (10)

For demonstration purposes, we can collect many ADC
outputs with their corresponding predicted input from (9), and
we can plot the ADC output against its estimated input, where
each pair is plotted as a point. If we collect enough samples,
the obtained diagram closely resembles the ADC’s transfer
function. Figure 3 shows an example for the obtained plot
with N = 4 for a radix-2 SAR ADC suffering from thermal
noise. It can be seen that there is an overlap between the
ADC’s output levels on the ṽin axis. This overlap is a result
of the noise inside the ADC; the ADC can produce different
possible outputs for exactly the same input. Of course, the
overlap depth is a direct indication of this noise level.

V. IMPLEMENTATION

The implementation for the key computations of the pro-
posed algorithm is shown in Figure 4, which realizes both
the input synchronization block (8) and prediction block
(9) to support real-time calculations. Both equations require
the calculation of β[k] = ej

2πa
K k, which can be performed

using a simple coordinate rotation digital computer (CORDIC)
algorithm as shown in the figure. For each of the two nontrivial
multipliers in the figure, only half of a full complex multiplier
is required.

After processing the first K samples and obtaining ψ̃, both
stages (described in Sections III and IV) can be run in parallel,
so that ψ̃ is updated periodically to track small errors in the
input frequency.
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Fig. 4: Implementation for the input synchronization and prediction blocks.
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Fig. 5: One-pole low-pass filter used for the averaging process.

The LUT shown in Figure 2 is used to store m̃θ(d), which is
an approximation for m̄θ(d) in (10). This table has 2N entries
that are initialized to ∅, an invalid value that is used to detect
any non-updated entries during the calibration process. The
table width equals N + b, where b is a selected integer that
is allocated for the fractional part of m̃θ(d). This width can
be further reduced if the table is used to store the difference
between m̃θ(d) and the output obtained by (3) with nominal
weights.

To implement the averaging process in (10), we use the one-
pole filter shown in Figure 5, where 0 < α < 1; for each d(k)

we update the content of the LUT according to

m̃θ(d(k)) ← [

{
ṽin[k], when m̃θ(d(k)) = ∅
(1− α)m̃θ(d(k))+αṽin[k], otherwise.

(11)

Since we observe a limited number of samples, there may
exist entries in the LUT which are not updated during the
calibration process, i.e., these LUT entries remain equal to ∅.
For such entries, we use the nearest updated entries to find
an estimate for the non-updated entries using straightforward
interpolation techniques.

Upon the completion of the foreground calibration, we can
switch to normal mode where m̃θ(d) stored in the LUT are
used to map the raw values to the calibrated ADC outputs.

VI. RESULTS

Although this algorithm is generic and can be applied to
different ADC architectures, the results reported here use as
example a differential radix-2 SAR ADC architecture which
suffers from a variety of nonlinearity sources, specifically
capacitor mismatch, S/H imperfection and settling time error.

Matlab simulations are used to verify the proposed cal-
ibration algorithm. We target a 10-bit radix-2 SAR ADC,



Fig. 6: ENOB distribution for SAR ADC with (a) linear combination using
ideal weights, (b) without calibration, and (c) proposed calibration algorithm.

where the unit capacitance, cu, suffers from mismatch having
a Gaussian distribution with standard deviation σu = 0.1cu.
To model a realistic ADC, comparator noise is added to limit
the ENOB to 9 bits. For the calibration algorithm we used
α = 2−3, a = 409, K = 212 and F = 61440, so that the total
number of samples used in calibration is K + F = 216. The
final ADC output is truncated to N = 10 bits, while the LUT
values are stored as N + b = 15 bits.

In the following tests, we measured the ENOB after fore-
ground calibration using a sinusoidal signal with different
frequencies to guarantee that the obtained LUT does not
correlate with a specific input frequency.

A Monte Carlo simulation is used to verify the proposed
algorithm’s performance in compensating the capacitor mis-
match problem, where 5000 different capacitor sets are used.
Figure 6 shows the ENOB distributions when 1) a linear
combination with ideal weights is used to obtain the output, 2)
no calibration is used, 3) the proposed calibration algorithm is
used. The average ENOB values are 8.97, 7.96 and 9.00 bits
for these cases respectively. The proposed algorithm gives a
slightly better performance compared to the linear combination
with ideal weights (note that the latter has limited ability to
deal with nonlinear circuit impairments).

For simulation of the settling time, we used the CDAC
settling model available in [3]. Since the foreground calibration
is done using the same sampling frequency as in normal
operation, the LUT values m̃θ(d) are specifically tailored to
the appropriate value of τs/τ , which aids in providing a
better performance compared to the linear combination based
approach. However, the proposed algorithm is not able to avoid
the problem of missing codes which will occur for sufficiently
small values of τs/τ .

Figure 7 compares the measured ENOB obtained using
the proposed algorithm with that obtained using the linear
combination with ideal weights. It can be observed that the
degradation of the ENOB due to reducing τs/τ is smaller when
the proposed algorithm is used. This can allow an increase in
the sampling frequency with a very minor loss in performance.

The proposed algorithm was also tested in the presence
of S/H nonlinearity. Figure 8 shows the obtained results on
changing the nonlinearity coefficients c2 and c3 in (1). It can be
observed that the performance after calibration has far greater

Fig. 7: Measured ENOB with varying τs/τ .

Fig. 8: Measured ENOB with varying S/H nonlinearity coefficients.

immunity to the nonlinearity of the S/H.

VII. CONCLUSION

In this paper, a generic foreground calibration technique has
been presented to compensate the effect of various nonlinearity
sources in SAR, pipeline and hybrid architecture ADCs. A
sinusoidal input with known frequency is used to estimate
the mid-level input for each raw ADC output, these values
being stored in a LUT. The proposed technique avoids the
complexity of post-processing often needed for calibration,
replacing it with a simple memory access. We also proposed
various simplifications to facilitate a real-time hardware imple-
mentation which reduces the calibration time. The proposed al-
gorithm was verified using a SAR ADC model suffering from
various nonlinear impairments. When compared to a genie-
based linear combination approach, the algorithm showed
superior capacitor mismatch calibration, increased tolerance
to settling time reduction and significant improvements in the
presence of second and third order nonlinear terms.
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