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Abstract—This paper presents an all-digital background blind 
calibration technique for the capacitor mismatch problem in SAR 
ADCs. It utilizes the redundancy offered using a sub-radix-2 DAC 
architecture to blindly estimate the mismatch and the assigned 
weight for each comparator decision. The weights are estimated 
by building partial histogram windows for the comparator 
decision vectors. To remove the dependency on the input signal’s 
probability density function, the histogram windows are 
normalized with respect to their peaks. Matlab simulation results 
show that an ENOB within 0.12bit of the optimal is attained using 
the proposed algorithm. 

Index terms—SAR ADC, capacitor mismatch, calibration. 

I. INTRODUCTION 

Due to variations in the fabrication process, the values of the 
fabricated capacitors in a typical SAR ADC differ from their 
nominal values. Prior to the advent of digital calibration 
techniques, the output of such a SAR ADC had only moderate 
resolution, and it was necessary to choose the capacitor sizes to 
be sufficiently large so as to reduce the effect of mismatch [4]. 
However, by including capacitor mismatch calibration, this is no 
longer the case, and the capacitor sizes are now designed 
according to thermal noise considerations only, leading to faster 
ADCs having lower power and a smaller silicon area [4]. 

There are two main types of calibration techniques: 
foreground and background. In the foreground techniques, an 
offline calibration process is used to compute calibration 
weights that are then applied during normal operation. For 
example, in [3] calibration weights are iteratively updated to 
make uniform the ADC’s output histogram for a uniformly 
distributed input injected prior to normal operation. Foreground 
calibration works well when the overall system is such that a 
calibration startup phase can be allocated, and where the 
adaptation of the weights during normal operation is not 
required. 

In the background techniques, the calibration weights are 
computed during normal operation and updated continuously. 
This is useful in applications where no startup phase is allocated, 
and where the calibration weights need to be adjusted over time. 
For example, in [2], a histogram is measured covering all 
possible comparator decision vectors, and the weights are 
extracted by solving an overdetermined system of linear 
equations to average the effect of the input distribution. 

The techniques presented in [1-3] utilize redundancy 
through a sub-radix-2 architecture to avoid the occurrence of the 
super-radix-2 condition [1]. This condition occurs when one 
capacitor is larger than the sum of all smaller capacitors, and 
causes at least one output vector to appear for a wide input 
voltage range. The use of sub-radix-2 enables obtaining a 
histogram of comparator decision vectors with rich evenly 
distributed equal-level peaks for a uniformly distributed input 
signal, even if mismatch exists. 

 
Fig. 1. Block diagram for a SAR ADC (from [5]). 

In this paper, we further exploit the sub-radix-2 architecture 
properties to enable blind calibration independent of the input 
signal’s probability density function (PDF), meaning that there 
is no requirement to alter the analog frontend circuit. The 
calibration weights are estimated by constructing exactly 𝑁 
equations. These are obtained by building the histogram for the 
comparator vector output at certain ranges. This reduces the 
histogram memory size to only 5.8% compared to other 
approaches that require sensing the full histogram. The proposed 
algorithm attains an effective number of bits (ENOB) within 
0.12bit of the optimal, even in the existence of imperfections. 

II. SAR ADC MODEL 

In SAR ADCs, a complete conversion can be divided into 
three phases; 1) Acquisition: the analog input signal is sampled 
into the capacitor banks. 2) Searching: 𝑁 successive decisions 
are made by a comparator, during which controlled switches are 
configured to minimize the voltage across the comparator’s 
inputs. 3) Post processing: the 𝑁 comparator decisions are 
processed to deliver 𝐵 bits at the ADC’s output. 

Fig. 1 shows the block diagram for a SAR ADC based on the 
monotonic capacitor switching architecture reported in [5]; note 
however that our proposed calibration algorithm and analysis 
are also valid for other architectures. Two banks of capacitors, 
𝒄+ and 𝒄−, are connected to the terminals 𝑉+ and 𝑉− of the 
comparator, respectively. Each bank consists of 𝑁-1 sub-radix-
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During the acquisition phase, the control bits in 𝒅+ and 𝒅− 
are all initialized to 1, and the input voltage 𝑣𝑖𝑛 is applied 
differentially across 𝑣𝑖𝑛

+  and 𝑣𝑖𝑛
−  which in turn are connected to 

𝑉+ and 𝑉− respectively via the bootstrapped switches. 

The searching phase consists of 𝑁 steps indexed from 𝑛 =
𝑁 − 1 down to 0. In each step 𝑛, a comparator decision is made 
on 𝑑𝑛 according to 

𝑑𝑛 = {
1, when 𝑒𝑛(𝑣𝑖𝑛) > 0
0, otherwise,

 (2) 

where 𝑒𝑛(𝑣𝑖𝑛) ≜ 𝑉𝑛
+ − 𝑉𝑛

− is the residual voltage on the 𝑛𝑡ℎ 
step for a given 𝑣𝑖𝑛. From (1), this can be expressed as 

𝑒𝑛(𝑣𝑖𝑛) = 𝑣𝑖𝑛 −
𝑉𝑟𝑒𝑓
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+ ∑ (𝑑𝑖(𝑐𝑖
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−
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− , ∀𝑖 ∈ {1, . . , 𝑁 − 1}. (4) 

To minimize the residual voltage in the next step, 𝑒𝑛+1(𝑣𝑖𝑛), the 
control bits of the switches are accordingly configured to 𝑑𝑛

+ =
𝑑𝑛
̅̅ ̅ and 𝑑𝑛

− = 𝑑𝑛 on all but the last step. 

To find bounds on 𝑣𝑖𝑛 after resolving each 𝑑𝑛, consider the 

smallest 𝑘 > 𝑛 for which 𝑑𝑘 = 𝑑𝑛
̅̅ ̅ (i.e., 𝑑𝑖 = 𝑑𝑛 ∀𝑖 ∈ {𝑛, 𝑛 +

1, … , 𝑘 − 1}). Consider first the case 𝑑𝑛 = 0. Here we have 
𝑒𝑘(𝑣𝑖𝑛) > 0 and 𝑒𝑛(𝑣𝑖𝑛) < 0; thus we can use (3) to derive 
bounds on 𝑣𝑖𝑛 in terms of the resolved decisions: 
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(5) 

and therefore 𝑣𝑖𝑛 can be written as a fixed quantity and a random 
variable (RV) term, i.e., 

𝑣𝑖𝑛 =
𝑉𝑟𝑒𝑓

∑ 𝑐𝑙
+ (δ𝑛,𝑘 + ∑ (𝑑𝑖(𝑐𝑖
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where δ𝑛,𝑘 is a RV on the range [-(𝑐𝑘
+-∑ �̇�𝑖

−𝑘−1
𝑖=𝑛+1 ),0]. Here 

δ𝑛,𝑘 appears due to the quantization error; i.e., the breadth of its 

range is minimum when 𝑛=0. In this case, it can be shown that 

δ0,𝑘 ∈ [-𝑐1
+, 0]  ∀𝑘 > 0 (this can be obtained by letting 𝑘 = 1). 

Similarly, it can be shown that (6) also holds for the case 𝑑𝑛 =
1, where δ𝑛,𝑘 ∈ [0, �̇�𝑘

−-∑ 𝑐𝑖
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𝑖=𝑛+1 ]. Combining the results in 

both cases when 𝑛 = 0 and 𝑘 = 1 yields 
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-

2
+𝑛𝑞), (7) 

i.e., 𝑣𝑖𝑛 can be expressed as the sum of a linear combination of 
{𝑑𝑖}, a fixed offset, and a quantization noise 𝑛𝑞, where 𝑛𝑞 ∈ 
[-𝑐1

+/2, 𝑐1
+/2] when 𝑑𝑛=0, and 𝑛𝑞 ∈ [-�̇�1

-/2, �̇�1
-/2] otherwise. 

A weighted sum of the decisions can be computed as 

𝑦𝑜𝑢𝑡 = ∑ 𝑤𝑖  𝑑𝑖

𝑁−1

𝑖=0
= 𝒘⊺ 𝒅, (8) 

where 𝒅 = {𝑑𝑖} and 𝒘 = {𝑤𝑖} are 𝑁 × 1 vectors of comparator 
decisions and weights, respectively. Ignoring the offset term in 
(7), and selecting these weights to be 

𝑤𝑖 ∝ (𝑐𝑖
+ + �̇�𝑖

−), ∀𝑖 ∈ {1, . . 𝑁 − 1}, (9) 

𝑤0 = 𝑤1/2, (10) 

maximizes the ENOB; such weights are optimal in this sense. 

Knowledge of the values of the fabricated capacitances 
permits the computation of 𝒘, and hence of the value of 𝑦𝑜𝑢𝑡. 

However, in real applications the exact values of the fabricated 
capacitances are not known, leading to ADC performance 
degradation, and thus raising the need for calibration. 

III. COMPARATOR NOISE AND SETTLING TIME 

For a realistic SAR ADC model, the following sources of 
imperfection, which directly affect the capacitor mismatch 
estimation, are considered in verifying the proposed technique. 

In practice, a finite time period 𝜏𝑠 is allocated after each 
switch change for the settling of the DAC’s voltage, which is 
needed to settle within ½ LSB for radix-2 DACs. However, in 
sub-radix-2 DACs, 𝜏𝑠 can be shortened, permitting settling 
errors that can be corrected in later steps [6]. To model the 
settling error, the DAC is considered as a first-order system with 
time constant 𝜏, and (3) can be modified to 

𝑒𝑛(𝑣𝑖𝑛)=𝑣𝑖𝑛-
𝑉𝑟𝑒𝑓

∑ 𝑐𝑙
+ ∑ (𝑑𝑖(𝑐𝑖

++�̇�𝑖
-)-�̇�𝑖

-)(1-𝑒
-(𝑖-𝑛)𝜏𝑠

𝜏 )

𝑁-1

𝑖=𝑛+1

. (11) 

Also, SAR ADCs suffer from different noise sources where 
the comparator noise power dominates by a factor of 100 over 
the others [6]. To model the comparator noise, (2) is modified to 

𝑑𝑛 = {
1, for 𝑒𝑛(𝑣𝑖𝑛) + 𝜂𝑛 > 0
0, otherwise,

 (12) 

where 𝜂𝑛 is a Gaussian-distributed RV with input-referred 
standard deviation 𝜎𝑐. 

IV. CALIBRATION SCHEME 

The goal of the proposed calibration algorithm is to estimate 
𝒘; this can be achieved by creating exactly 𝑁 equations relating 
the unknown 𝒘 to the probability mass function (PMF) of 𝒅. 

First, we need to define two mappings. The mapping ∅(𝒅) 
maps 𝒅 to the lowest input voltage generating 𝒅, which, with 
reference to (7), can be expressed as 

∅(𝒅) ≜  𝛼 ∑ 𝑤𝑖𝑑𝑖

𝑁−1

𝑖=0
+ 𝛽      , (13) 

where 𝛼 and 𝛽 are constants dictated by (7). Also, 𝜃(𝒅) maps 𝒅 
to a unique integer value via 

𝜃(𝒅) ≜ ∑ 2𝑖𝑑𝑖

𝑁−1

𝑖=0
. (14) 

A. Probability mass function characteristic of the SAR ADC 

Let 𝒉 = {ℎ𝑖} denote the PMF over all 2𝑁 possible values of 
the decision vector 𝒅; this depends on the PDF of 𝑣𝑖𝑛, which we 
denote by 𝑓(𝑣𝑖𝑛). Fig. 2 shows an example of a measured 𝒉 for 
the case of 𝔯=1.8, 𝑁=8 and a uniformly distributed input signal. 

Note that there exist some vectors 𝒅 which cannot be 
observed at the ADC output; we call such vectors inactive (all 
other vectors are active). This behavior can be seen from Fig. 2. 
To illustrate why this occurs, consider a vector 𝒅 with 𝑑𝑛 = 0 

for some 𝑛, and consider the smallest 𝑘 > 𝑛 for which 𝑑𝑘 = 𝑑𝑛
̅̅ ̅. 

Whenever it happens that 𝑐𝑘
+ < ∑ �̇�𝑖

−𝑘−1
𝑖=𝑛+1 , then the lower bound 

in (5) exceeds the upper bound, and it follows that any such 
vector 𝒅 is inactive (as there is no valid solution for 𝑣𝑖𝑛). A 
similar reasoning applies for the case 𝑑𝑛 = 1. Extending this 
argument, it can be shown that for nominal capacitance values 
and ignoring settling errors, the vector 𝒅 is inactive whenever  

𝑘 − 𝑛 >
log(2𝔯−1 − 1)

log(𝔯−1)
≜ 𝜖, (15) 



i.e., active vectors are not expected to have ⌈𝜖⌉ successive equal 
comparator decisions. This result gives rise to many inactive 
vectors forming contiguous gaps as can be observed in Fig. 2. 

B. Input-output statistical relationship of the SAR ADC 

Due to the searching mechanism used in sub-radix-2 SAR 
ADCs, the relationship between ∅(. ) and 𝜃(. ) is monotonic; for 
any pair of active vectors 𝓵 and 𝓻, 𝜃(𝓵) <  𝜃(𝓻) is guaranteed 
when ∅(𝓵) <  ∅(𝓻). Using this property, we can conclude that 
𝑃(𝜃(𝓵) ≤ 𝜃(𝒅) < 𝜃(𝓻)) = 𝑃(∅(𝓵) ≤ 𝑣𝑖𝑛 < ∅(𝓻)), where 
𝑃(𝑥) denotes the probability of an event 𝑥. Hence, we can 
express the relationship between 𝒉 and 𝑓(𝑣𝑖𝑛) by 

∑ ℎ𝑖

𝜃(𝓻)−1

𝑖=𝜃(𝓵)
= 𝑃(∅(𝓵) ≤ 𝑣𝑖𝑛 < ∅(𝓻)) 

= ∫ 𝑓(𝑣𝑖𝑛) 𝑑𝑣𝑖𝑛

∅(𝓻)

∅(𝓵)

 

= 𝜌(𝓵, 𝓻)(∅(𝓻) − ∅(𝓵)) 

= 𝛼𝜌(𝓵, 𝓻) ∑ 𝑤𝑖  (𝓇𝑖 − ℓ𝑖)
𝑁−1

𝑖=0
, 

(16) 

where 𝜌(𝓵, 𝓻) is the average of 𝑓(𝑣𝑖𝑛) over the range 
[∅(𝓵), ∅(𝓻)]. 

C. Constructing a system of equations 

Using (16), 𝑁 equations (indexed by 𝑘 ∈ {0, . . 𝑁 − 1}) are 

constructed to find 𝒘. For the 𝑘𝑡ℎ equation, two nearly 

consecutive active vectors, 𝓵(𝑘) and 𝓻(𝑘), are selected such that 

ℓ𝑘
(𝑘)

= 0, 𝓇𝑘
(𝑘)

= 1 and ℓ𝑖
(𝑘)

= 𝓇𝑖
(𝑘)

 ∀𝑖 > 𝑘. Then (16) can be 

written as 

∑ ℎ𝑖

𝜃(𝓻(𝑘))−1

𝑖=𝜃(𝓵(𝑘))
= 𝛼𝜌𝑘 ∑ 𝑤𝑖 (𝓇𝒊

(𝑘)
− ℓ𝒊

(𝑘)
)

𝑘

𝑖=0
, (17) 

where 𝜌𝑘 ≜ 𝜌(𝓵(𝑘), 𝓻(𝑘)). In matrix form, we may write 

𝑤0 𝒑⊺ = 𝒘⊺ (𝓡 − 𝓛) = 𝒘⊺ 𝑼, (18) 

where 𝓛 (resp. 𝓡) is an 𝑁 × 𝑁 matrix whose kth column is 𝓵(𝑘) 

(resp. 𝓻(𝑘)), 𝑼 ≜ 𝓡 − 𝓛 is an upper triangular matrix with all 

entries on the main diagonal equal to 1, and the 𝑘𝑡ℎ element in 
the 𝑁 × 1 vector 𝒑 can be written as 

𝑝𝑘 = ∑
ℎ𝑖

𝛼𝜌𝑘𝑤0

𝜃(𝓻(𝑘))−1

𝑖=𝜃(𝓵(𝑘))
. (19) 

Ignoring the ADC’s gain, we can map the maximum 𝑦𝑜𝑢𝑡 
computed in (8) to match the maximum quantized 𝐵-bit output: 

∑ 𝑤𝑖

𝑁−1

𝑖=0
= 2𝐵 − 1. (20) 

Using (18) and (20), 𝒘 can be evaluated according to 

𝒘⊺ =
2𝐵 − 1

‖𝒑⊺𝑼−1‖1
𝒑⊺𝑼−1. (21) 

In the example shown in Fig. 2, a gap generated by a change 
in 𝑑7 is depicted. The vectors lying on the left of this gap have 
𝑑7 = 0, and the vectors on the right have 𝑑7 = 1. To construct 

the 7𝑡ℎ equation, we need to select an active vector 𝓵(7) from the 

left of this gap, and similarly a vector 𝓻(7) from its right. 

D. Determining the peak level 

From Fig. 2, we can notice that 𝒉 richly contains peaks that 
are almost evenly distributed, and have equal level for uniform 
𝑓(𝑣𝑖𝑛) (this is due to the assumption that the super-radix-2 
condition does not occur).       We are interested in finding their 

 
Fig. 2. A measurement of 𝒉 with 𝔯=1.8 and 𝑁=8, for a uniformly distributed 

input signal. 

level, 𝜆𝑘, around the selected vectors for the 𝑘𝑡ℎ equation. 
Which depends directly on two factors: 

1) The input signal’s PDF, 𝑓(𝑣𝑖𝑛), that is assumed to be 
locally uniform in this region and equals 𝜌𝑘. We can notice its 
effect in Fig. 3 where 𝒉 is modulated by 𝑓(𝑣𝑖𝑛). 

2) The maximum voltage breadth at which a certain vector 
𝒅 appears, it is directly proportional to the maximum breadth for 
δ0,𝑘, which in turn is proportional to 𝑤0. 

Hence, we can write 𝜆𝑘 in the form (22), where 𝛾 is a 
constant of proportionality. This can be used to replace 𝜌𝑘𝑤0 in 
(19). Note however that in practice, both constants 𝛼 and 𝛾 can 
be ignored due to the normalization in (21). 

𝜆𝑘 = 𝛾𝜌𝑘𝑤0. (22) 

V. CALIBRATION IMPLEMENTATION 

The previous section described the mathematical framework 
for the proposed algorithm. In this section we illustrate the 
methods used to construct these equations. 

In the following discussion, a tilde above any mathematical 
symbol denotes an estimate of the corresponding variable. An 

exception to this rule is �̃�, which denotes the comparator 
decision vector histogram - this is measured by monitoring 𝑀 

decision vectors, and its 𝑖𝑡ℎ element ℎ̃𝑖 contains the number of 
observed events where 𝜃(𝒅) = 𝑖. 

Although we have 𝑁 unknowns in 𝒘, there are only 𝑁 − 2 
degrees of freedom due to the constraints imposed by (10) and 
(20); therefore we set 𝑝0=1, and the equation indexed by 𝑘=1 is 

selected to satisfy (10) via setting 𝓇0
(1)

=0, ℓ0
(1)

=1 and 𝑝1=1. 

In the proposed calibration technique, a calibration cycle is 
divided into three phases. Each phase requires observing a 
chunk of 𝑀 comparator decision vectors. Let 𝒅(𝑚) denote the 
mth decision vector in the considered chunk. 

Due to the existence of imperfections, many inactive vectors 
can appear with low probability, making direct identification of 

�̃� and �̃� impractical. Instead, we first identify �̈� and �̈�, which 

are coarse estimates of �̃� and �̃�. In the following discussion, �̈� 

is identified in the first phase, and �̈� in the second; however, 
this ordering can freely be swapped. Subsequently, in the third 
phase, partial histogram windows are built around the vectors in 

�̈� and �̈�, and these are used to accurately identify �̃�, �̃� and �̃�. 

In the first phase, the kth column in �̈�, �̈�(𝑘), is identified ∀𝑘 ∈
{2, . . , 𝑁 − 1}. We select �̈�(𝑘) to be the first decision vector 
located on the histogram just on the left of a gap created by a 
change in the decision 𝑑𝑘, which can be found using a running 
maximum over 𝑀 outputs 

�̈�(𝑘) = argmax
𝒅(𝑚)

∑ 2𝑖𝑑𝑖(𝑚)
𝑘

𝑖=0
, subject to 𝑑𝑘(𝑚) = 0. (23) 
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Fig. 3. (a) Input signal PDF, 𝑓(𝑣𝑖𝑛); (b) 𝒉. 

 
Fig. 4. ENOB distribution (a) without calibration; (b) with calibration. Here 

𝜏𝑠 = 3𝜏 and 𝜎𝑐 = 0µV. 

To make sure that the chosen �̈�(𝑘) is on a gap created by a change 
in the decision 𝑑𝑘, we make use of the result obtained in (15): 
vectors 𝒅(𝑚) with ⌊𝜖 − 0.5⌋ or more consecutive equal 
decisions within indices ≥ 𝑘 are not considered in (23). 

The second phase starts after identifying �̈�, and another 𝑀 

vectors are used to identify �̈�. The kth column in �̈�, �̈�(𝑘), is the 

first decision vector located on the histogram just on the right of 
a gap created by a change in the decision 𝑑𝑘, which can be found 
using a running minimum over 𝑀 outputs 

�̈�(𝑘) = argmin
𝒅(𝑚)

∑ 2𝑖𝑑𝑖(𝑚)
𝑘

𝑖=0

, subject to 𝑑𝑘(𝑚) = 1 

                                                  𝑎𝑛𝑑 𝑑𝑖(𝑚) = ℓ̈𝑖
(𝑘)

 ∀𝑖 > 𝑘.   

(24) 

In the third phase, partial histogram windows are built on the 

two sides of each �̈�(𝑘) and �̈�(𝑘) pair, i.e., in the ranges 𝜃(𝒅) ∈

[𝜃(�̈�(𝑘)) − 𝛾𝑘, 𝜃(�̈�(𝑘))] and 𝜃(𝒅) ∈ [𝜃(�̈�(𝑘)), 𝜃(�̈�(𝑘)) + 𝛾𝑘], 
where 𝛾𝑘 is a selected positive integer. For each partial 

histogram, the estimate �̃�𝑘 of the peak level is calculated by 
evaluating the median of the peaks in the 𝑘𝑡ℎ window. 

A threshold proportional to �̃�𝑘 is used to exclude inactive 

vectors which appear due to noise. Accordingly, both �̃�(𝑘) and 

�̃�(𝑘) are chosen, and 𝑝𝑘 is evaluated according to (19) and (22). 

After identifying �̃�, �̃� and �̃�, (21) can be used to estimate 
the weights in calibration cycle 𝑡, �̃�𝑡. And accordingly �̂�𝑡 is 
calculated as a weighted sum of the current and previous 
estimate, using a weighting factor 𝜇, via 

�̂�𝑡 = (1 − 𝜇)�̂�𝑡−1 + 𝜇�̃�𝑡 . (25) 

This is then used in (8) to produce the calibrated sample. 

VI. RESULTS 

Matlab simulations are used to verify the proposed algorithm 
targeting a SAR ADC with 𝔯 = 1.86, 𝑁 = 13 and 𝐵 = 11. The 
algorithm is configured to 𝑀 = 218, the total number of memory 
words required to measure the histogram windows is 478, and 
each word is 8 bits. Two Monte Carlo simulations are used to 
verify the proposed technique. In both tests 𝜏𝑠 = 3𝜏, and 1000 
capacitance sets are used where the unit capacitances suffer from 
mismatch having Gaussian distribution with standard deviation 
𝜎𝑢 = 0.08𝑐𝑢. A 4-level pulse amplitude modulation (4-PAM) 
input signal is used; the PDF 𝑓(𝑣𝑖𝑛) and 𝒉 are shown in Fig. 3. 
All reported results here are obtained after 16 calibration cycles. 

In the first test, 𝜎𝑐 = 0µV and hence the performance is 
limited  mainly by  the uncalibrated  capacitor mismatch and the  

 
Fig. 5. ENOB distribution (a) without calibration; (b) with calibration. Here 

𝜏𝑠 = 3𝜏 and 𝜎𝑐 = 300µV. 

 
Fig. 6. Distributions of the INL and DNL bounds after calibration. 

quantization noise. Fig. 4 shows the ENOB distributions 
obtained with and without calibration. Using optimal weights, 
the average ENOB is 11.9 bits. With calibration, the average 
ENOB is improved from 9.5 to 11.7 bits. 

In the second test, Gaussian-distributed comparator noise 
with 𝜎𝑐 = 300µV is applied. Similar to Fig. 4, Fig. 5 shows the 
results obtained for this test. The simulation shows that, using 
optimal weights, the average ENOB is 10.13 bits. With 
calibration, the average ENOB is improved from 9.24 to 10.12 
bits. The maximum observed difference between the optimal 
and improved ENOB is 0.12 bits. The distributions of the INL 
and DNL bounds after calibration are shown in Fig. 6.  

VII. CONCLUSION 

A blind calibration technique has been presented for use with 
SAR ADCs. The technique senses the histogram bins only at the 
ranges we are interested in, to construct only 𝑁 equations that 
are sufficient to estimate the weights, leading to a reduction in 
the required memory and making the proposed technique 
feasible. In the example tested, histogram bins were measured 
for only 478/213=5.8% of all possible vectors. The proposed 
algorithm does not require any statistical constraints on the input 
signal except that this signal covers at least half of the ADC’s 
input dynamic range. The presented results show that the ENOB 
is attained within 0.12bit of the optimal using this algorithm. 
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