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Abstract—This paper presents a technique to estimate the time 
skew in time-interleaved ADCs. The proposed method estimates 
all of the time skew parameters jointly based on observations from 
a bank of correlators. The proposed method works for an 
arbitrary number of sub-ADCs. For implementation of the 
correlator bank, we propose the use of Mitchell’s logarithmic 
multiplier and a hardware reuse mechanism, thereby reducing the 
complexity and power consumption. Also, we explain why blind 
estimation techniques alone (including the proposed one) are not 
always sufficient for time skew estimation for certain classes of 
input signal; for the proposed approach, however, a simple 
modification to the analogue circuit (suitable for SAR ADCs) is 
shown to successfully deal with such problems, with only a minor 
penalty in power and area. The technique is verified by extensive 
simulations including a spectrally rich input signal in which an 
MTPR (multi-tone power ratio) improvement from 29dB to 62dB 
was achieved for a TIADC system having 16 sub-ADCs. 

Index terms—TIADC, time skew, estimation, blind calibration. 

I. INTRODUCTION 

The TIADC architecture offers high conversion rates; 
however, it is sensitive to the various mismatches among the 𝑀 
sub-ADCs, including offset, gain, time skew and bandwidth 
mismatches, which occur due to process, voltage and 
temperature variations. 

In this paper, we focus on time skew mismatches. These 
cause spurious components (spurs) to occur in the output digital 
signal, limiting the TIADC’s performance; thus it is necessary 
to use a calibration algorithm to compensate their effects. In 
general, a calibration technique is composed of two processes, 
estimation and correction. The focus of this paper is the problem 
of accurate time skew estimation under the assumption that the 
correction can be done either by analog delay lines, e.g., [2-4] or 
by digital interpolation filters, e.g., [5] and [6]. 

In blind time skew estimation, the output samples from the 
TIADC are processed to estimate the time skew mismatches, 
without the need to make any changes to the analogue circuit. 
Blind time skew estimation algorithms often compute the 
correlation between the sub-ADCs’ outputs in order to estimate 
the mismatches. This idea was introduced in [6], targeting 𝑀 =
2, while [2-5] exploit a similar idea for larger 𝑀. In [2], only the 
sign of an error term was used to update a specific sub-ADC’s 
delay line by a specific fixed amount causing the algorithm to 
have slow convergence. In [3] and [4], in which 𝑀 is required to 
be a power of 2, the correlation is measured between the outputs 
of two non-consecutive sub-ADCs having nominal time 
difference 𝛽𝑇𝑠, where 𝛽 is a power of 2 less than 𝑀. However, 
both [3] and [4] rely on the assumption that the derivative of the 

input signal’s autocorrelation function is negative at all such 
time lags 𝛽𝑇𝑠. The algorithm proposed in [5] estimates the time 
skew using a single block of samples; however, extensive 
computations, including a non-constant matrix inversion, are 
needed. 

In this paper, we introduce an algorithm to jointly estimate 
all of the time skew mismatches for a TIADC, based on joint 
processing of the correlation between the outputs of each pair of 
consecutive sub-ADCs. For the time skew correction, 
programmable delay lines are used which are adjusted according 
to the output of this joint correlation processing. Unlike [3] and 
[4], the proposed method is applicable to a TIADC structure 
having any number of sub-ADCs (not only a power of two). The 
proposed method also does not require any assumptions 
regarding the sign of the derivative of the input signal’s 
autocorrelation function. Finally, the method shows an MTPR 
improvement from 29dB to 62dB.  

II. PROPOSED TIME SKEW ESTIMATION SCHEME 

Fig. 1 shows a block diagram of the proposed time skew 
calibration method, which targets a TIADC system with an 
overall aggregated sampling rate 𝑓𝑠. The TIADC system consists 
of 𝑀 slow sub-ADCs; each has sampling rate 𝑓𝑠/𝑀 but with 
different starting phase. However, all sub-ADCs’ outputs are 

synchronized to a single clock with frequency 𝑓𝑠/𝑀. Let 𝑥𝑛
(𝑚)

 

denote the 𝑛𝑡ℎ output of the 𝑚𝑡ℎ sub-ADC (𝑚 = 0,1, … 𝑀 − 1). 
Assuming the TIADC system suffers only from the problem of 

time skew, 𝑥𝑛
(𝑚)

 can be written as 

𝑥𝑛
(𝑚)

≜ 𝑥((𝑛𝑀 + 𝑚)𝑇𝑠 + 𝜏𝑚), (1) 

where 𝑥(𝑡) is the analog input signal, and 𝑇𝑠 = 1/𝑓𝑠. The time 
skew residue (the result of the circuit’s time skew and the delay 

imposed by the programmable delay line) affecting the 𝑚𝑡ℎ sub-
ADC is denoted by 𝜏𝑚, and has nominal value 0. We take the 

0𝑡ℎ sub-ADC as a timing reference, i.e., 𝜏0 = 0. For ease of 

notation we define 𝑥𝑛
(𝑀)

≜ 𝑥𝑛+1
(0)

, and 𝜏𝑀 ≜ 𝜏0 = 0. 

We define the autocorrelation function of 𝑥(𝑡) as 𝑅𝑥𝑥(𝜏) =

lim
𝑇→∞

 
1

𝑇
∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)

𝑇

0
 𝑑𝑡, and we compute 𝑀 estimates of 

𝑅𝑥𝑥(𝜏) in the vicinity of 𝜏 = 𝑇𝑠, each denoted by 𝑐𝑚, as follows 

𝑐𝑚 ≜
1

𝑁
∑ 𝑥𝑛

(𝑚+1)

𝑁−1

𝑛=0

𝑥𝑛
(𝑚)

 

≈ 𝑅𝑥𝑥(𝑇𝑠 + 𝜏𝑚+1 − 𝜏𝑚)     ∀ 𝑚 ∈ {0, . . , 𝑀 − 1}, 

(2) 

(3) 

where 𝑁 is selected to be a large number, and the above 
approximation is due to the discrete and finite nature of the 
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summation in (2). It is assumed for this work that the input 
signal, 𝑥(𝑡), is such that the approximation in (3) holds. This is 
the case for overwhelmingly many input signals; however, as 
outlined in Section IV, there are some exceptions. 

A first-order approximation for (3) is given by 

𝑐𝑚 ≈ 𝑅𝑥𝑥(𝑇𝑠) +
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
(𝜏𝑚+1 − 𝜏𝑚), (4) 

where 
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
 is the autocorrelation function derivative for 𝑥(𝑡)  

at 𝑇𝑠. The differences between adjacent 𝑐𝑚 lead to 

𝑒𝑚 ≜ 𝑐𝑚 − 𝑐𝑚−1          ∀ 𝑚 ∈ {1, . . , 𝑀 − 1} 

≈ −
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
(−𝜏𝑚−1 + 2𝜏𝑚 − 𝜏𝑚+1). 

(5) 

(6) 

Writing these equations in matrix form, we obtain 

𝒆 ≈ −
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
𝑼𝝉, (7) 

where 𝒆 ≜ (𝑒𝑚)𝑚≥1 and 𝝉 ≜ (𝜏𝑚)𝑚≥1 are (𝑀 − 1) × 1 
vectors, and 𝑼 is an (𝑀 − 1) × (𝑀 − 1) symmetric Toeplitz 
matrix having first row filled with zeros except for the first and 
second entries which are equal to 2 and −1, respectively. 
Equation (7) can be used to evaluate 𝝉 as follows 

𝝉 ≈ − (
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
)

−𝟏

𝑼−1𝒆, (8) 

where 𝑼−1 is a constant matrix, 𝒆 is measured in accordance 

with equations (2) and (5), and 
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
 is a scalar which can be 

estimated as will be explained in Subsection III.A below. 

This procedure differs from the previous works in that we 

use all of the values 𝑒𝑚 to aid in the estimation of each 𝜏𝑚. Note 

in particular that it was assumed in [3] and [4] that 
𝑑𝑅𝑥𝑥(𝛽𝑇𝑠)

𝑑𝜏
 is 

negative for 𝛽 equal to any power of 2 less than 𝑀; while this 

assumption is usually valid for 𝛽 = 1, it often does not hold for 

𝛽 > 1. 

III. IMPLEMENTATION 

The target of the blind estimation technique is to adapt the 
delay line of each sub-ADC in order to compensate the time 
skew residue which is measured using (8), forming a closed-
loop feedback system that is adapted iteratively. In each 
calibration iteration, the following procedure is executed: 

1- Using a block of 𝑁 samples from each of the 𝑀 sub-ADCs, 

we calculate 𝒆 and 
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
. 

2- Using (8), the time skew residues for this block are then 
estimated, and the programmable delay lines are adapted 
accordingly prior to repeating Step 1 for the next block. 

The following subsections highlight important elements in the 
implementation of these steps. 

A. Autocorrelation derivative 

For band-limited input signals, [3] and [4] ignores the term 
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
, assuming that this term is always negative. This does 

not affect the direction of adaptation of the subsequent 
 

 
Fig. 1. Block diagram of the proposed time skew calibration. 

programmable delay lines; however, it makes the convergence 

speed dependent on the input signal. To avoid this dependency, 

our proposed algorithm estimates this term, which can be 

written as 

𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
= lim

𝑇 → ∞
∫ 𝑥(𝑡)𝑥′(𝑡 + 𝑇𝑠)𝑑𝑡

𝑇

0

, (9) 

where 𝑥’(∙) is the derivative of the analog input signal. We may 
estimate (9) from the sub-ADCs’ output samples via 

𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
≈

1

𝑁
∑ 𝑥𝑛

(0)
[
𝑥𝑛

(2)
− 𝑥𝑛

(0)

2𝑇𝑠

]

𝑁−1

𝑛=0

, (10) 

where the term in square brackets approximates the first 

derivative of 𝑥(𝑡) at time 𝑡 = (𝑛𝑀 + 1)𝑇𝑠. This requires an 

extra correlator to perform the correlation of 𝑥𝑛
(0)

 and 

[𝑥𝑛
(2)

− 𝑥𝑛
(0)

]; this is shown in Fig. 1 as CorrelatorM. 

B. Low-complexity correlator 

A correlator consists mainly of a multiplier and an adder 
running on a clock with frequency 𝑓𝑠/𝑀. To avoid the multiplier 
complexity and reduce its power, we propose to simplify its 
hardware implementation at the expense of its accuracy, where 
the effect of the introduced inaccuracy is relaxed due to 
averaging. We chose to use Mitchell’s logarithmic multiplier 
architecture [1] where the base-2 logarithms of the two inputs 
are approximated, summed together, and the result taken to the 
power of two. This simplifies the multiplier to mainly an adder, 
two priority encoders and three bit-shifters.  

The application of this low-complexity multiplier is 
particularly useful for our present context, as different 
correlators share the same inputs, and thus hardware resource 
sharing can be employed to further reduce both area and power. 

C. Adaptation 

Using 𝑁𝑀 samples, the 𝑐𝑚 are computed, for 𝑚 ∈
{0,1, … , 𝑀}, using a bank of correlators; the first 𝑀 of these are 

used to compute 𝒆 using (5), and 𝑐𝑀 is used to estimate 
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
 

according to (10). 
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Then, by substituting the estimates of 
𝑑𝑅𝑥𝑥(𝑇𝑠)

𝑑𝜏
 and 𝒆 into (8), 

we compute �̃�, an estimate of the 𝝉. This is then used to adapt 

each 𝑑𝑚
(𝑘)

, the 𝑚𝑡ℎ programmable delay line configuration in the 

𝑘𝑡ℎ calibration iteration, with adaptation step size 𝜇 according 
to 

𝑑𝑚
(𝑘)

= 𝑑𝑚
(𝑘−1)

− 𝜇�̃�𝑚  ∀𝑚 ∈ {1, . . , 𝑀 − 1}. (11) 

The elements in 𝑼−1 can be precomputed; note however that 
each element can be represented up to a scaling factor using 
exactly ⌈log2 𝑀⌉ bits. Also note that, as there is no tight 
constraints on the adaptation timing, the multiplications required 
for 𝑼−1

 𝒆 can be done sequentially, requiring only one multiplier 
and an accumulator. 

Note that for implementation, all constant scaling factors can 
be rounded to the nearest power of 2 numbers to reduce the 
complexity, since a closed loop adaptation mechanism is used. 

IV. LIMITATIONS OF BLIND ESTIMATION  

The proposed method depends on the validity of the 
approximation in (3) (note that the same assumption is also 
required in the works [2-6]). This approximation, while valid for 
a wide range of input signals, can be inaccurate in the case of at 
least two ‘pathological’ input signal types, leading to incorrect 
time skew estimation: 

1- An input signal containing components at frequencies 𝑘
𝑓𝑠

2𝑀
, 

for 𝑘 ∈ {0, . . , 𝑀 − 1}. A solution to this, as suggested in [2] 
and [6], is to use a notch filter to remove these components. 

2-  An input signal containing multiple frequency components, 
some of which appear like the spurs of others. The blind 
estimator cannot distinguish between the spurs generated by 
the time skew and the input signal itself. Note that simple 
filtering will not be able to resolve this issue. 

The co-existence of the second pathological type with other 
non-problematic frequency components has a dramatic impact 
on blind estimation convergence. To assess this, we measured 
the SFDR after calibration for an 11-bit 𝑀 = 2 TIADC using an 
input signal consisting of 10 sinusoids with randomly selected 
frequencies. The output spectrum is shown in Fig. 2a; the 
measured SFDR is 68dB. However, the SFDR becomes limited 
to 21dB when two sinusoids with frequencies (111/1024)𝑓𝑠 
and (1/2 − 111/1024)𝑓𝑠 are added as shown in Fig. 2b. This 
demonstrates that the existence of such problematic frequency 
components leads to incorrect blind estimation convergence 
even in the presence of other non-problematic components. 

V. SAMPLING SEQUENCE INTERVENTION 

The existence of the limitations reported in Section IV 
decreases the blind estimation robustness, and thus a method is 
required to overcome these limitations with only a minor penalty 
in area and power. Thus, we introduce a small change to the 
analogue circuitry, consisting of a minor intervention in the 
TIADC’s sampling sequence, whereby the analog de-
multiplexer and the ‘start sampling controller’ blocks shown in 
Fig. 1 both skip a sub-ADC every 𝑁 samples. Note that in 
general, the application of this modification requires that a 
complete conversion shall be finished within (𝑀 − 1)𝑇𝑠, thus 
  

 

Fig. 2. Spectrum of the ADC output after blind calibration using an input 

consisting of 10 randomly selected sinusoids: (a) without problematic 

components, (b) with problematic components. 

 
Fig. 3. The timing diagram is illustrated for a TIADC with 𝑀 = 4, and 𝑁 =

11, where a conversion is finished within: (a) (𝑀 − 1)𝑇𝑠, (b) 𝑀𝑇𝑠. 

 
Fig. 4. Measured SNDR (a) without calibration, (b) with calibration and 

normal sampling sequence, (c) with calibration and sequence intervention. 

tightening the constraints on the analogue circuit. Fig. 3a shows 
the corresponding timing diagram for 𝑀 = 4 and 𝑁 = 11. 

However, in this work we target a successive approximation 
register (SAR) sub-ADC architecture, where a complete 
conversion cycle is divided into smaller parts to resolve each 
output bit; this permits forcing an early termination for the 
conversion cycle without losing all of the sampled bits. Hence, 
we can design the sub-ADC to perform a complete conversion 
within 𝑀𝑇𝑠, and an early termination for 𝑇𝑠 is forced only when 
a sequence intervention occurs. Fig. 3b shows the proposed  
timing diagram for 𝑀 = 4 and 𝑁 = 11; in contrast to Fig. 3a, a 
complete conversion is usually allowed to take 𝑀𝑇𝑠. The forced 
early terminated periods are partially shaded. For large 𝑀, if 𝑇𝑠 
is less than the time taken to resolve the least significant bit 
(LSB), then only 𝑀 − 1 samples out of every 𝑁 will each lose 
one LSB. 
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Fig. 5. PSD for the ADC’s output (a) without calibration, (b) with calibration. 

 
Fig. 6. The convergence of (a) the normalized sum of the absolute values of 

the time skew residues, (b) the SNDR. 

 
Fig. 7. Measured SNDR histogram using band-limited input signal. 

In practice, 𝑁 is selected to be a large number in order to 
minimize the sequence intervention rate. Since sequence 
intervention occurs rarely, and indeed only during the time skew 
estimation process, the performance loss associated with the 
early termination events is negligible. We also note that to avoid 
the impact of the sequence intervention on the calculation of 𝑐𝑚 
in (2), the output samples around the intervention event are not 
considered in the outputs of all the correlators. 

VI. SIMULATION RESULTS 

The presented estimation technique is verified using three 
tests targeting a 12-bit TIADC with 𝑀 = 16. Early-terminated 
samples have a resolution of 11-bit. The sub-ADCs suffer from 
time skew with standard deviation 0.01𝑇𝑠, and ideal 
programmable delay lines are used to apply the correction. Here 
we have chosen 𝑁 = 8191. 

In the first test, a sinusoidal input was used, with frequency 
sweeping from 0 to 𝑓𝑠/2 with step size 𝑓𝑠/1024. The reported 
results are obtained after 75 calibration iterations. Fig. 4 shows 
the measured SNDR with and without calibration. Since the 
sequence intervention is not used in Fig. 4b, the measured 
SNDR suffers from dramatic degradation at the frequencies 
reported in Section IV. However, as can be seen in Fig. 4c, the 
SNDR is almost immune to these problems when the sequence 
intervention technique is used. Both approaches exhibit a 
sudden breakdown with input frequency greater than 504𝑓𝑠/
1024. However, for wideband signals, these high-frequency 
components do not affect the estimation mechanism as verified 
in the next test. 

The second test verifies the time skew estimation 
performance with an OFDM-like input consisting of sinusoids 

with frequencies 𝑖𝑓𝑠/512, ∀𝑖 ∈ {1, . . ,255}, random phases, and 
equal amplitudes except for 16 randomly selected frequency 
components which have zero amplitude. Since 𝑀 is even, the 
blind detector can converge to incorrect values without the use 
of sequence intervention, because almost every frequency 
component appears like the spur of another. Using the proposed 
estimation technique, the power spectral density of the ADC’s 
output without and with calibration is shown in Fig. 5; after 75 
calibration iterations the SNDR is improved from 34dB to 
67dB, and the MTPR is improved from 29dB to 62dB. Also, 
Fig. 6 shows the convergence of the normalized sum of the 
absolute values of the time skew residues, as well as the 
evolution of the SNDR during the calibration process. 

The third test uses a signal consisting of independent and 
identically distributed (i.i.d.) uniform time domain samples, 
which is then low-pass filtered with bandwidth 0.85𝑓𝑠/2; the 
resulting band-limited signal is typical of many real-world 
applications. This test was repeated 510 times. For each test, the 
SNDR was measured after 600 calibration iterations. Fig. 7 
shows the histogram for the measured SNDR; on average, the 
SNDR is improved from 36.8dB to 59.6dB. 

VII. CONCLUSION 

In this paper, a time skew estimation technique is presented 
that can be used for a TIADC system with any number of sub-
ADCs. A low-complexity correlators based on Mitchell’s 
multiplier are used to minimize power consumption and area. 
Although the presented technique itself can be considered as a 
blind method, we explained why this technique is not alone 
sufficient for accurate blind time skew estimation in all cases of 
input signal type, and we showed how to introduce a minor 
sampling sequence intervention mechanism, particularly 
suitable for SAR ADC architecture, in order to overcome this 
limitation. The resulting increased robustness of the estimator 
comes at the cost of a minor reduction in the TIADC’s output 
precision during the (rarely occurring) sequence intervention 
events. A tradeoff may be made by choosing appropriately the 
value of 𝑁. Finally, we verified the proposed estimation 
technique using three tests with different input signal 
characteristics. 
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