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Validating Backtests of Risk Measures 

 

Abstract  

 

Financial risk model evaluation or backtesting is a key part of the internal model’s 

approach to market risk management as laid out by the Basle Committee on Banking 

Supervision (2004). However there are a number of backtests that may be applied and 

there is little guidance as to the most appropriate method. The goal of this paper is to 

analyze the ability of various evaluation methodologies to gauge the accuracy of risk 

models. We compare evaluation effectiveness using the standard binomial approach, 

together with the interval forecast backtesting, the density forecast backtesting and the 

probability forecast backtesting. Our comparison is completed for three risk measures: 

Value-at-Risk (VaR), Expected Shortfall (ES) and Spectral Risk measure (SRM). We pay 

special attention to applications related to ES and SRM as backtesting of these models 

have not been explored in any detail thus far. Based on the Monte Carlo simulations and 

the empirical study, a number of interesting results emerge. Firstly within hypothesis-

based tests, including the binomial backtesting, the interval forecast backtesting and the 

density forecasts backtesting, the overall dominance of density forecast backtesting is 

confirmed. In particular,  the backtesting for SRM and ES is more effective than for VaR 

in  identifying an incorrect model from alternative models in a small sample setting.  

Secondly, we propose a loss function for SRM where the probability forecast backtesting 

is capable of identifying accurate models from alternative models. Thirdly, in all of the 

backtesting methods examined, the choice of the distribution specification is a more 

important factor in determining the evaluation performance than the choice of the 

volatility specification. 
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1. Introduction 

 

Inspired by the large increase in trading activity and several catastrophic market risk 

events
1
, there has been a surge in the efforts of financial market participants devoted to 

risk management. A key part of the internal model’s approach to market risk management 

is financial risk model evaluation or backtesting, as laid out by the Basle Committee on 

Banking Supervision (2004). A large body of research has emerged in the search for 

better approaches to evaluate risk model adequacy, such as Kupiec (1995), Christoffersen 

(1998), Lopez (1999a, b), and Berkowitz (2001).  These studies have concentrated on 

developing new tests with alternative procedures. 

 

In the literature on risk model evaluation, the standard approach to backtesting is the 

binomial method, and most studies have concentrated on how to achieve the optimal 

Value-at-Risk (VaR) model. Very few papers focus on backtesting procedures, and those 

that do concentrate on examining the adequacy of VaR measures (Campbell, 2005). It is 

not clear, however, whether general results on risk model validation are specific to the 

narrow evaluation method that have been widely applied in the literature (e.g., the 

binomial test), and whether these results hold consistently for a broad range of risk 

measures.   

 

The purpose of this study is to assess the evaluation effectiveness of a range of 

backtesting methods to gauge the accuracy of risk models – that is, to determine whether 

the model chosen is accurate and performing consistently with assumptions on which the 

model is based. This paper extends recent research in this area by evaluating the binomial 

backtesting method that has been proposed by the Basle Accord, and compares and 

contrasts several alternative approaches, namely the interval forecast backtesting, the 

density forecast backtesting, and the probability forecast backtesting, with application to 

two alternative risk measures –ES and SRM – as well as VaR.  

                                                
1
 such as the stock market crash of October 1987, crisis in Asian market of July-October 1997, the September 1998 

LTCM debacle and the bursting of the high technology Dot-Com bubble of 2000-2002 with 30% losses of equity 

values. 
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The key contribution of this paper incorporates two aspects. Firstly, even though ES and 

SRM are coherent (and hence subadditive as well) and so satisfy many of properties we 

would desire a priori from a ‘respectable’ risk measure
2
 , they are not in Basel II due to 

expected difficulties concerning backtesting (see Yamai and Yoshiba, 2002). This paper 

provides alternative evaluation procedures on backtesting ES and SRM. It extends 

evaluation methods that suggested by Crnkovic and Drachman (1996), Diebold et al 

(1998), Berkowitz (2001) and Lopez (1999a), and make modifications to match 

characteristics of ES and SRM. Secondly, this paper examines and compares evaluation 

effectiveness for various backtesting methods. In particular, we have determined the 

probability with which tests reject the specified null hypothesis when in fact it is incorrect 

with a range of sample sizes. The economic importance of not being able to detect an 

inaccurate risk model or an under-reporting institution’s loss potentially become much 

more pronounced as the cumulative probability estimate being verified becomes smaller. 

As noticed by Kupiec (1995), it does not appear possible for a bank or its supervisor to 

verify reliably the accuracy of an institution's internal model loss exposure estimates 

using standard statistical technique. 

 

The literature on backtesting evaluation methods are large and varied, and cover a range 

of situations. The main concerns addressed in the literature are whether VaR models are 

adequate and performing consistently. For example, the binomial backtesting suggested 

by Kupiec (1995) that is the currently standard approach in the Basle Accord, attempts to 

determine whether the observed frequency of violations is consistent with the frequency 

of expected violations according to the VaR model and chosen coverage rates. However, 

as noticed by Kupiec (1995), the power of detecting incorrect models is very low for this 

test. One problem with such test is that it ignores the dependency in violations, and 

exclusively focuses on the unconditional coverage property. Chatfield (1993) and 

Christoffersen (1998) have proposed methods for testing two fundamental hypotheses 

                                                
2
 Loosely speaking, let X and Y represent any two portfolio’s P/Ls (or future values, or the portfolios themselves) over a 

given forecast horizon, and let (.)ρ be a measure of risk. The risk measure (.)ρ is subadditive if it 

satisfies )()()( YXYX ρρρ +≤+ . Subadditive is the most important criterion we would expect a ‘respectable’ risk 

measure to satisfy. It can be demonstrated that VaR is not subadditive unless we impose the empirically implausible 

requirement that returns are elliptically distributed. Given the importance of subadditivity, the VaR’s non-subadditivity 

makes it very difficult to regard the VaR as a ‘respectable’ measure of risk. 
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concerning the process of VaR violations for a given coverage rate: the hypothesis of 

unconditional coverage and the hypothesis of independence
3

. A more recent 

independence test that has been suggested by Christoffersen and Pelletier(2004) uses the 

insight that if VaR violations are completely independent from each other, then the 

amount of time that elapses between VaR violations should be independent of the amount 

of time that has elapsed since the last violation. In this sense, the time between VaR 

violations should not exhibit any kind of ‘duration dependence’. Unfortunately, as 

noticed by Christoffersen (1998) and Berkowitz (2001), these approaches are ill-suited to 

sample sizes typically available, such as 250 observations.   

 

Crnkovic and Drachman (1997), Diebold, Gunther and Tay (1998) as well as Berkowitz 

(2001) have suggested the density forecast backtesting based on multiple VaR levels. The 

basic idea is that the unconditional coverage and independence properties of an accurate 

VaR measure should hold for any level of coverage rates. Berkowitz (2001) find that this 

evaluation method is capable of identifying incorrect risk models in a very small sample 

setting (e.g., such as 100 observations). Lopez (1999a, b) proposes an alternative 

evaluation method – the probability forecast backtesting, based on regulatory loss 

functions. He shows that the loss function for VaR is able of differentiating accurate 

model from alternative models.  

 

There are two general approaches in risk forecasting – either conditional on current 

market conditions or on the unconditional market environment. Both approaches have 

advantages and disadvantages. Thus, the choice of methodology is situation dependent. 

For example, a pension fund manager has an average time horizon that is quite different 

from that of an options trader. Furthermore, financial returns data have at least two 

stylized facts: fat tails and volatility dependence.  It is well known that volatility 

clustering is absent from a monthly return series, however the fat tail property does not 

fade. For longer time horizons, an unconditional model is appropriate for the calculation 

                                                
3
 This approach is sometimes called Event Probability Forecast Approach (Clements and Taylor, 2003). 
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of large loss forecasts
4
. In many situations where the investment horizon is short, 

conditional volatility models may be preferable for risk forecasting. This paper therefore 

carries out two settings in the Monte Carlo simulation – unconditional and conditional 

setting, and supports the findings via an empirical study.  

 

Furthermore, the impact of distributional assumptions and dynamic volatility estimations 

on the validity of the backtest methodologies is studied in the paper. Deciding on which 

distribution and/or volatility specification to use for a particular asset is a common task 

for finance practitioners and risk professionals. For instance, in spite of the massive 

literature on volatility forecasting, a clear consensus on which model to use has not yet 

been reached. As argued in Poon and Granger (2003), most of the volatility forecasting 

studies do not produce very conclusive results because only a subset of alternative 

models are compared, with a potential bias towards the method developed by the authors. 

It is further claimed that lack of a uniform forecast evaluation technique makes volatility 

forecasting a difficult task.  

 

Based on simulation and empirical results, our findings can be summarized as follows. 

Firstly, within hypothesis-based tests - the binomial backtesting and the interval forecast 

backtesting, and the density forecasts backtesting, the overall dominance of the density 

forecast backtesting is confirmed. The binomial backtesting and the interval forecast 

backtesting cannot detect a model failure with a small sample size, such as 250 

observations, as recommended by the Basel II. Therefore, the likelihood of misclassifying 

incorrect risk models as correct is lower for the density forecast backtesting than for 

frequency-based backtests. Furthermore, the backtesting on SRM and ES is more 

effective than that of VaR in  identifying an incorrect model from alternative models in a 

small sample setting.   

 

                                                
4
 However, even if the time horizon is shorter, financial institutions often prefer unconditional risk forecast 

methods to avoid undesirable frequent changes in risk limits for traders and portfolio managers. 

(Danielsson, 2000) 
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Secondly, we propose a loss function for SRM where the probability forecast backtesting 

is capable of identifying accurate models from alternative models - that is, the quadratic 

probability score for the true model is lower than that of alternative models, even with 

sample sizes as small as 125 observations.  

 

Thirdly, in all backtesting methods examined, the choice of distribution specifications is a 

more important factor in determining the evaluation performance than the choice of  

volatility specifications. That is, all four methods are capable of differentiating between 

the true model and alternative models with the same variance dynamics but different 

distributional assumptions. 

 

The remainder of the paper is organized as follows. Section 2 reviews risk measures to be 

examined. Section 3 describes various evaluation methodologies and extensions on ES 

and SRM. Section 4 reports and discusses simulation results within conditional and 

unconditional settings. Section 5 presents empirical results on the three most heavily 

traded futures contracts. Section 6 provides a summary and conclusion. 

 

 

2. Measures of Risk 

 

2.1. Value-at-Risk (VaR) 

Since its introduction in the 1996 amendment to the Basel Accord (see Basel Committee 

on Banking Supervision (1996a) and Basel Committee on Banking Supervision (1996b)), 

VaR has become the standard risk measurement among regulatory and financial 

institutions due to the ease with which it can be computed and implemented (see Jorion, 

1997; Dowd, 1998; Duffie and Pan, 1997). It is an estimator of maximum loss over a 

target horizon for a predefined probability level.  
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Assume a distribution function ( )1Pr)( −≤≡ ttt IyyyF  represents different distributions
5
, 

VaR is the α−= 1p  quantile of P/L distribution F, where α is the coverage rate, such as 

a 95% and a 99%. 

                                   )(1
pFqVaR p

−==α                                                                        (1)                                           

It is worth noting that a VaR places all its weight on a single quantile that corresponds to 

a chosen coverage rate, and it places no weight on any other.  

 

2.2. Coherent Risk Measure 

In recent research papers, VaR has been heavily criticized as a risk measure on the 

grounds that it does not satisfy the properties of coherence and, most particularly, that it 

is not subadditive (Artzner et al., 1997, 1999; Acerbi, 2004 and Tasche, 2002). 

Subadditivity implies that a portfolio risk should reflect diversification benefits. The 

failure of VaR to be subadditive can lead to undesirable outcomes, especially in a 

portfolio context
6
.  

 

A risk measure )(⋅ρ  is coherent if it satisfies the following conditions: (for details see 

Artzner et al., 1997, 1999) 

                         )()( XmmX ρρ =                            (Homogeneity) 

                        ),()( YX ρρ ≥    if YX ≤                (Monotonicity) 

                        )()()( YXYX ρρρ +≤+                (Subadditivity) 

                        aXaX −=+ )()( ρρ                      (Translation invariant) 

 

 

2.2.1. Expected Shortfall (ES)  

ES is the average of worst )1( α− losses. Unlike VaR, ES is coherent and takes account 

of magnitude of losses exceeding VaR. As stated by Szegö (2002), the severity of a loss 

                                                
5
 The distribution F can be estimated either unconditionally or conditionally. 

6
 One of problems with VaR is non-subadditive is that if regulators use non-subadditive risk measures to set 

capital requirements, then a financial firm might be tempted to break itself up to reduce its regulatory 

capital requirements, because the sum of capital requirements of smaller units would be less than the capital 

requirement of the firm as a whole. See Dowd (2004). 
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is critical in risk management because a single catastrophic loss could put a firm into 

bankruptcy.  

 

In the case of a continuous loss function, the ES is given by 

                            )}({ tptt yqyyEES >=α  

                            ∫
−−=

1
1)1(

α
α α dpqES p                                                                          (2) 

Using an ES measure implies taking an average of quantiles in which tail quantiles have 

an equal weight and non-tail quantiles have a zero weight.  

 

2.2.2. Spectral Risk Measure (SRM)  

Recently Acerbi (2002, 2004) proposed SRM as a risk measure that directly relates to the 

user’s risk spectrum or risk-aversion function. ‘Well-behaved’ spectral risk measures are 

a subset of the family of coherent risk measures, and therefore have the attraction of 

coherency. φSRM  is defined as a weighted average of quantiles of a loss distribution. If 

p  is a probability level and pq is the p -quantile of a loss distribution, so pq  is the loss 

such that the probability of a loss, less than or equal to it is p . Then the spectral risk 

measure is  

                                     ∫=
1

0
)( dpqpSRM pφφ                                                              (3)                                                     

Where the weighting function, )( pφ is also known as the risk spectrum or risk-aversion 

function as long as it satisfies the following properties: a) non-negative; b) normalization; 

3) increasingness (for detail, see Cotter and Dowd, 2006)
7
.  

 

 

3. Evaluation Methodologies  

                                                
7
 The reasonable example is an exponential risk-aversion function:   

)1(
)(

/1

/)1(

γ

γ

γ
φ

−

−−

−
=

e

e
p

p

             

where ( )∞∈ ,0γ  (see Acerbi, 2004). This function satisfies the conditions required of a SRM, and is also 

attractive because it is a simple function that depends on a single parameter, the value of which reflects the 

risk aversion of the user. 
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Currently regulators have three available hypothesis-testing methods for evaluating the 

accuracy of VaR risk models
8
: the binomial backtesting, the interval forecast backtesting 

and the density forecast backtesting. A key issue with any hypothesis-based tests is its 

power – that is, its ability to reject the risk model when it is incorrect. The main objective 

of this paper is to evaluate the performance of various backtesting methods to gauge the 

accuracy of risk models. Therefore, we first undertake a brief study of properties of these 

evaluation methods. 

 

3.1. Frequency-Based Tests 

The principle of frequency-based backtests is that the hits sequences (violations) should 

satisfy two properties: the unconditional coverage property and the independence 

property (Christoffersen, 1998). If a risk model is adequate, it will generate ‘correct’ 

frequency of violations, and violations are independent of each other. Evidence of 

violations clustering would suggest that the model is misspecified, even if the model 

correctly predicts the unconditional coverage.  

 

3.1.1. Binomial Backtesting Method  

Currently the standard approach to evaluation is the basic frequency (or binomial) test 

proposed by Kupiec (1995). It examines whether the observed frequency of violations 

(e.g., the frequency of tail losses that exceed VaR) is consistent with the frequency of tail 

losses predicted by the model. In particular, under the null hypothesis that the model is 

‘good’ (or consistent with the data), the number of violations follows a binomial 

distribution. 

 

The hit sequence of )( pVaRt violations is defined as 

                              {=tI
else

pVaRyif tt

,0

)(,1 >
                                                            

                                                
8
 The choice of risk measurement method by regulators is based on the tools available to verify model 

quality (Kupiec binomial backtesting currently standard approach embodies in Market Risk Amendment, 

1996). This is the main reason that the VaR approach is often preferred to coherent risk measures (Kerkhof 

and Melenberg, 2002). 
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Given m P/L observations and a predicted frequency of violations equal to p , the 

probability of n violations follows: 

                               nmn
pp

n

m
pmn

−−







= )1(),Pr(                                                             (4)                                                        

This test has a simple intuition, is easy to apply and only requires knowledge of m, n and 

p. However, it lacks power (e.g., the ability to identify incorrect risk models) except with 

a large sample sizes. Kupiec (1995) shows that with sample size of 250 observations and 

99% coverage rate, the odds of detecting financial institutions that systematically under 

reporting their VaR are about 65% - only slightly better than a coin flip.  

 

This is because the binomial backtesting loses potentially valuable information. Firstly 

since it focuses exclusively on the frequency of violations over the sample period, this 

test throws away information about the temporal pattern of violations, thus it ignores the 

independent property in violations. Secondly the binomial backtesting discards 

information on the sizes of violations predicted by risk forecasting models. This has the 

unfortunate implication that an ‘incorrect’ risk model will pass a frequency test if it 

generates an acceptably accurate frequency of violations, even if its forecasts losses, 

larger than VaR, are very poor.  

 

3.1.2. Interval Forecast Backtesting Method 

One way to test that predicted violations are iid is the interval forecast backtesting 

suggested by Christoffersen (1998). His idea is to test the prediction of correct 

unconditional coverage (e.g., the model generates the ‘correct’ frequency of violations) 

and independence (e.g., the predicted violations are independent of each other) separately. 

In the presence of the time-dependent heteroskedasticity often found in financial time 

series, the issue of independence of violations is of particular important. Berkowitz and 

O’Brien (2002) have reported on the performance of actual VaR forecasts from six large 

U.S. commercial banks. Even though banks tend to be conservative – they have fewer 

than expected violations – violations are large and appear to be clustered in time and 



 12 

across banks.
9
 From the perspective of a regulator worried about systemic default, 

rejecting a particular bank’s risk model due to the clustering of violations is particularly 

important, if violations also happen to be correlated across banks.  

 

If n is the number of violations in the sample and m is the number of observations, then 

the observed frequency of violations is mn / . Given that the predicted probability of 

violations is p, the unconditional coverage test can be expressed in terms of a likelihood 

ratio (LR) test. The test statistic  

                             ( )[ ] ( ) ( )[ ]nnmnnm

uc mnmnppLR //1ln21ln2
−−

−+−−=                          (5) 

is distributed as a ( )12χ , a chi-squared with one degree of freedom. 

 

Turning to the independence prediction, Christoffersen (1998) considers a two-state (e.g., 

correct forecast/wrong forecast) Markov chain, as a likelihood ratio test of the null 

hypothesis that successive observations are statistically independent, against the 

alternative hypothesis that observations are from a first-order Markov chain.  

 

Assume a binary first-order Markov chain,{ }tI  with transition probability matrix  

                                           








−

−
=Π

1111

0101

1

1

ππ

ππ
 

where ( )iIjI ttij === −1Prπ 10
 , i and j refer to states of violations / non-violations.  

 

Under the hypothesis of independence, the test statistic 

       ( )[ ] ( ) ( )[ ]1110010011011000

1111010122
ˆˆ1ˆˆ1ln2ˆˆ1ln2

nnnnnnnn

indLR ππππππ −−+−−= ++
                  (6) 

is distributed as a ( )12χ , where ijn  is the number of observations with state i followed by j. 

 

                                                
9
 The majority of violations appear to take place during the August 1998 Russia default and ensuing Long-

Term Capital Management (LTCM) debacle. 
10

 The Maximum likelihood estimate probability is ijπ : 
,ˆ

0100

01
01

nn

n

+
=π  

,ˆ
1110

11
11

nn

n

+
=π

 
11011000

1101
2

ˆ
nnnn

nn

+++

+
=π
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It follows that under the combined hypothesis of correct coverage and independence – the 

hypothesis of correct conditional coverage, the test statistic 

                                    induccc LRLRLR +=                                                                        (7) 

is distributed as a ( )22χ , a chi-squared with two degrees of freedom. If a risk model is 

adequate, then violations should be Bernoulli variables.  

 

The advantage of this approach is to identify the source of model failures, while at the 

same time it enables us to test both coverage and independence properties. However, this 

approach is not without its faults. The interval forecast backtesting remains quite data-

intensive, since it only takes two values (0 and 1) to establish of whether or not a 

violation occurs. Berkowitz (2001) reports that with a 95% VaR, the test shows some 

rejections as a sample size increases to 500 observations. A part of reason for this low 

rejection power is that the interval forecast backtesting also discards the useful 

information of magnitude of losses.  

 

3.2. Density Forecast Backtesting Method 

In general, there is no need to restrict attention to a single VaR level. The unconditional 

coverage and independence properties of an accurate VaR measure should hold for any 

level of α . As suggested by Crnkovic and Drachman (1996) and Diebold, Gunther and 

Tay (1998), realized values of variables whose density is being forecast should be 

mapped to their probability integral transform or forecast cumulative density values (or 

Rosenblatt transformation). If ty is the day-t P/L value, and this observation is associated 

with a forecasted cumulative density function )(ˆ ⋅tF , which in principle might change from 

one day to the next, then the transformed observations is the value of )(ˆ ⋅tF evaluated at ty : 

                                      )(ˆ)(ˆˆ
tt

y

tt yFduufU
t

== ∫
∞−

                                                              (8) 

where )(ˆ ⋅tf is the probability density function. tÛ  is the forecast probability of observing 

an outcome no greater than that actually realized.  If )(ˆ ⋅tF  is correct, then Û has a 

uniform U[0,1] distribution. If a sequence of density forecasts is correctly conditionally 
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calibrated then, analogously to the no-autocorrelation requirement (or independency 

property) discussed above, the corresponding U-sequences is i.i.d. U[0,1].  Diebold, 

Gunther and Tay (1998) present histograms of U for visual assessment of unconditional 

uniformity, and various autocorrelation tests. Diebold, Tay and Wallis (1999) use the chi-

squared goodness-of-fit test, also the Kolmogorov-Smirnov test on the sample 

distribution function of U . The series of density forecasts they evaluate - the U.S. Survey 

of Professional Forecasters’ (SPF) inflation forecasts.  

 

The application of the Rosenblatt transformation paves the way to apply distribution 

equality tests to assess model adequacy. In particular, under the null hypothesis that the 

model is adequate, we would expect the lowest 5% of transformed observations to fall in 

the region between 0 and 0.05, the next lowest 5% of observations to fall between 0.05 

and 0.1, and so on. So under the null hypothesis that a risk model is adequate, the 

Rosenblatt transformed data are predicted to be distributed as standard uniform (e.g., iid 

Uniform (0,1)). 

 

Unfortunately, testing the iid uniform distribution hypothesis is cumbersome because 

bounded support may cause technical difficulties. Berkowitz (2001) suggests 

transforming an iid uniform tÛ to an iid standard normal variable, tẐ using the inverse 

cumulative distribution function, 1−Φ  

                              ( ) ( ))(ˆ)(ˆˆˆ 111

tt

y

ttt yFduufUZ
t

−

∞−

−− Φ=













Φ=Φ= ∫                                    (9) 

The Berkowitz transformation converts a uniform series into a standard normal series, 

and therefore a risk model adequacy can be examined by means of tests for standard 

normality. Assume for the time being that there is an iid prediction, in which case the full 

null prediction is that tẐ is iid N(0,1). Berkowitz suggests that we can test this by nesting 

the null hypothesis within a first-order autoregressive process with a possible different 

mean and variance. If we write this process as 

                                 ( ) ttt ZZ εµρµ +−=− −1                                                                  (10)  
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then the null hypothesis predicts that 0,0 == ρµ and 2σ , the variance of tε should equal 

1
11

.  

 

The exact log-likelihood function associated with Equation (10) is known to be: 

( )
( )[ ]

( )
( )

∑
=

−













 −−
−

−
−

−
−

−

−−
−








−
−−

m

t

tt ZZmmZ

2
2

2

12

22

2

1

2

2

2
)log(

2

1
)2log(

2

1

1/2

1/

1
log

2

1
)2log(

2

1

σ

ρµ
σπ

ρσ

ρµ

ρ

σ
π

 

The likelihood ratio test for the null hypothesis is then: 

                              ( ) ( )( )ρσµ ˆ,ˆ,ˆ0,1,02 2
LLLR full −−=                                                       (11) 

where 2ˆ,ˆ σµ and ρ̂ are maximum likelihood estimates of parameters concerned. The LR 

statistic is distributed under the null hypothesis as a ( )32χ , a chi-squared with three 

degrees of freedom. Since the LR test explicitly accounts for mean, variance, and 

autocorrelation of the transformed data, it should have power against very general 

alternatives. 

  

However, this testing procedure has a weakness: as noticed by Dowd (2004), it focuses 

on whether the first two moments of distribution are compatible with standard normality, 

but it has little power in the face of departures from the standard normality that manifest 

themselves in the higher moments of distribution. We therefore include the Jarque-Bera 

(JB) statistic as a supplement to the LR test in the paper.  

 

The JB test was proposed by Jarque and Bera (1980). This test is based on the difference 

between skewness and kurtosis of the data set { }nzzz ,...,, 21 and those of the assumed 

normal distribution. 

 

The null hypothesis and the alternative for the JB test are: 

( )
0

2'

0

:

;,~:

HnotH

iidNszH

A

i σµ
 

The JB test statistic is: 

                                                
11

 In this paper, we only consider the one-step-ahead forecast and  )1,0(~ Niidε   
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nJB full                                         (12)                  
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Here, z is the sample mean, and 3

2 ,αs and 4α are the second, third and fourth sample 

moments about the mean, respectively. The JB statistic has an asymptotic distribution, 

which is ( )22χ under the null hypothesis. This test is known to have very good power 

properties in testing for normality.  

 

3.2.1. Evaluation methods of ES  

A type of model failure of particular interest to financial institutions and regulators is the 

inaccuracy of forecasted magnitude of large losses. Basak and Shapiro (2001) and 

Artzner et al.,(1999), for example, emphasize ES given that a violation 

occurs ( ))(ˆ pVaRyyE ttt > . In order to formally test for misspecifications in the tail of the 

density forecast, Berkowitz (2001) suggested the LR test based on a censored likelihood 

that allow the user to intentionally ignore model failures that are limited to the interior of 

the distribution. Let the desired cutoff point, ( )pVaR 1−Φ= , we define the new variable 

of interest as 

                                           




<

≥
=

VaRzifz

VaRzifVaR
z

tt

t

t

*                                            (13) 

The log likelihood function for joint estimation of µ and σ is  
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The likelihood ratio test for the null hypothesis is then: 

                                         ( ) ( )( )2ˆ,ˆ1,02 σµLLLRtail −−=                                                    (15) 

Under the null hypothesis, the test statistic is distributed )2(2χ . This test has power to 

detect any mismatch in the first two moments of the tail. In particular, the tailLR  statistic 

will asymptotically reject if the tails has excessively small / large losses relative to the 

forecast. We compare the shape of the forecasted tail of the density to the observed tail. A 

rejection based on the tail density taken as a proxy for rejection of the mean of the tail, or 

ES.  

 

3.2.2. Evaluation methods of SRM 

This paper further adds to the literature on evaluation methods by backtesting on SRM. 

Consider the left tail of the forecasted distribution, a SRM is calculated as a weighted 

average of quantiles of a loss distribution. A key issue to evaluation risk models is the 

accuracy of forecasting loss distributions, since a weighting function (or risk spectral) in 

SRM calculation reflects a user’s attitude toward the risk, it should not affect the forecast 

ability of a risk model. Christoffersen and Pelletier (2004) suggested that if we want to 

test that tU
~

 observations over the interval [ ]p,0  (in our case, %50=p ) largest losses are 

themselves uniform, we can construct a rescaled tU
~

variable as  
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U tt

t                                                       (16)                                             

Then we can test the null hypothesis that the risk model provides the correct tail 

distribution as *~
tU is iid U(0,1) or equivalently, ( )*1* ~~

tt UZ
−Φ=  is iid N(0,1). The previous 

fullLR  and fullJB  test framework (Eq. 11 and 12) can be applied. The shape of the 

forecasted tail of the density is compared to the observed tail. A rejection based on the 

tail density taken as a proxy for rejection of SRM
12

.  

 

                                                
12

 This framework can be applied on the ES. However, in this paper, we do not pursue this approach 

because parameters estimation based on a small sample size are unrealizable. Furthermore, as indicated by 

Lawford (2005), the JB statistic is broke-down for the sample size less then 4.      
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While the large-sample distribution of the LR test and the JB statistic we have discussed 

above are well known, they may not lead to reliable inference in realistic risk 

management settings
13

. The nominal sample sizes can be reasonably large, say two to 

four years of daily data, but the scarcity of violations of, for example, the 1% VaR 

renders the effective sample size small. In order to make rejection power comparable 

across statistics with different sample sizes, we estimate the Monte Carlo critical value 

that gives rise to 0.05 under the null. The finite sample critical value is given in Table 1. 

 

[Insert Table 1 here] 

 

The other problem with such a method is parameter uncertainty. If the parameter is 

estimated, it is possible that transformed observations departs from iid N(0,1), even when 

the density forecast model coincides with the true density. As stressed by Bawa et al., 

(1979), the predictive distribution of an asset return that is obtained by integrating the 

conditional distribution over the parameter space is different from the predictive 

distribution that is obtained when the parameters are treated as known. West (1996) 

indicates that forecasts are produced by model estimates with small samples size are 

subject to parameters uncertainty problem. However, in the risk management practice, 

financial institutions are very much after the total risk measure due to the forecast errors, 

a distinction between “model risk” and “estimation risk” is not a practical concern. 

Moreover, existing work suggests that parameter uncertainty is of second-order 

importance when compared to other source of inaccurate forecasts such as model 

misspecification (for detail, see Chatfield, 1993). Diebold, Gunther and Tay (1998) find 

that the effects of parameter estimation uncertainty are inconsequential in simulation 

studies geared towards sample sizes relevant in finance
14

.  

 

                                                
13

 It is well known that the likelihood ratio tests rely on asymptotic theory and it is only valid if the sample 

sizes are reasonably large and well balanced across populations. For small, sparse, skewed, or heavily tied 

data, the asymptotic theory may not be valid. See Agresti and Yang (1987) for some empirical results, and 

Read and Cressie (1988) for a more theoretical discussion. For general discussion and references to earlier 

literature see Stuart, Ord and Arnold (1999, Ch. 25). 

 
14

 More detail on how to deal with parameter uncertainty problem, see Bao et al. (2004), Duan (2003), and 

West (1996). 
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3.3. Probability Forecast Backtesting Method  

It is often the case that financial institutions or regulators are not only interested in how 

individual models perform, but also in how different models compare to each other. In 

practice, it is rarely the case that we can find an optimal model. All the models proposed 

by different researchers can be possibly misspecified and the true distribution is in fact 

too complicated to be represented by a simple mathematical function (Sawa, 1978). Our 

task is then to investigate which model can approximate the true data generate process 

most closely. This can be done using the probability forecast backtesting method that 

give each model a score in terms of some loss function. The loss scores can then be used 

to rank models – the lower score, the better model. 

 

This “loss function” approach can be a useful supplement to these more formal statistical 

methods and provides a way to define the institution’s criteria of an “accurate” model. 

For example, we can design a loss function in which the modeler can weight the penalties 

to assign to violations given their frequency, magnitude, or time dependencies, and 

compare them with expected tail loss numbers. The main benefit of this type of analysis 

is that it provides a measure of relative performance that can be used for "backtesting" 

different models (see Dowd, 2002). This method is not a hypothesis-based test; instead, 

the forecasted distribution transforms what might happen in the future into probability 

forecasts (Lopez, 1999a). That is, the accuracy of a risk model is gauged by how well the 

probability forecasts from the model minimize a loss function that represents the user’s 

interests.  

 

This evaluation approach has a number of attractions: because they are not statistical tests, 

forecast evaluation approaches do not suffer from the low power of standard tests, such 

as frequency-based tests. This makes them useful for backtesting with small data sets. 

Furthermore, this approach allows us to tailor a loss function to take account of particular 

concerns. For example, a risk manager might be more concerned about higher losses than 

lower losses, and therefore wish to given higher losses a greater weight in his/her loss 

function. However, this evaluation method cannot be use directly to identify a risk model 

as “acceptably accurate” or “inaccurate” in an absolute sense.  
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The ranking process has three key components: loss function, benchmark, and proper 

score function. The crucial component in evaluating forecast accuracy is a loss function
15

, 

which represents the ‘cost’ associated with various pairs of forecasts and realizations. A 

benchmark gives us an idea of the score we could expect from a ‘good’ model. A score 

function
16

 provides summary measures for the evaluation of probability forecasts, by 

assigning a numerical score based on the forecast and on the event or value that 

materializes. In terms of evaluation, scoring rules measure the quality of the probability 

forecasts and rank competing forecast procedures.  

 

The most common score is Brier’s quadratic probability score (QPS)
17

 , which is defined 

as 

                                      ( )
2

1

2
∑
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−=
n

t
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n

QPS                                                                         

where tL  is the loss function, B is the benchmark and n is the sample size.  It is an 

analogous score to the mean squared error (MSQ) for probability forecasts and thus is a 

quadratic loss function. Because it is quadratic, QPS penalizes deviations of actual losses 

from their expected value. It gives greater weight to very high losses than to smaller 

losses, which makes intuitive sense. 

 

3.3.1. A Loss Function for VaR 

The most straightforward is a binary loss function proposed by Lopez (1999a): 
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This loss function is exclusively concerned with the frequency of tail losses, thus it 

ignores the magnitude of tail losses. The benchmark is p - the expected value of )( tLE . 

 

3.3.2. A Loss Function for ES 

                                                
15

 See Carmona (2005) for a comprehensive review in this area.  
16

 Gneiting and Raftery (2005) have given a comprehensive review and developed a theory of proper 

scoring rules.    
17

 Selten (1998) gave an axiomatic characterization. Quadratic probability score (QPS) has a negative 

orientation – that is, smaller values indicate a more accurate forecast. 
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In the literature, there are a number of loss functions closely relating to ES. We consider 

one loss function in particular, suggested by Dowd (2004). This loss function takes the 

form of tail loss itself, if violation occurs, and 0 otherwise.  
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The expected value of the tail loss is ES, so we can choose ES as benchmark.  

 

3.3.3. A Loss Function for SRM  

We state the loss function for SRM, in an analogous way to Bao et al. (2004). In their 

paper, authors define the loss function as the distance between the candidate density 

forecast model and the true model. The forecasted density is transformed using 

Berkowitz normal transformation as we discussed in section 3.2. If a risk forecasting 

model is adequate, the transformed variables should distributed as iid N(0,1). Thus, the 

benchmark is the standard normal density. The score function used in their paper is 

Kullback-Leibler Information Criterion, or logarithm score function. 

 

We specify the loss function as the distance between the transformed candidate’s 

forecasted density and the standard normal density. The QPS is calculated as the different 

between each quantile of two densities. As indicated by Gneiting and Raftery (2005), 

specifying a predictive cumulative distribution function is equivalent to specifying all 

predictive quantiles. If a one-step-ahead density forecast is correctly specified and hence 

optimal, the transformed observations should be distributed as standard normal, as it 

dominates all other density forecasts for any loss function (Granger and Pesaran, 2000a, b; 

Diebold et al., 1998). The transformation of SRM is produced in section 3.2.1. Thus, the 

loss function is defined as ( )*1* ~~
ttt UZL

−Φ== , quantiles of the transformed candidate’s 

forecasted distribution. 
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The benchmark is corresponding quantiles of the standard normal distribution, or tz . 

Thus the QPS is 
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We penalize departures from the standard normal distribution for overestimate or 

underestimate risk measures. Still, we do not consider a weighting scheme of SRM in this 

loss function. Indeed, if we attach weights to quantile differences, it would not make a 

difference to the model’s ranking.  

 

 

4. Simulation Experiments 

The goal of experiments is to analyze the performance of various evaluation 

methodologies when they are applied to three risk measures. Using this information, we 

hope to reduce chances of model misclassification. For three hypothesis-based backtests, 

we focus on the power of statistic tests (e.g., the ability to identify the incorrect model). 

We consider two coverage probabilities (e.g., =α 99% and 95%) and based on these 

coverage rates to calculate a VaR and an ES, and illustrate evaluation results of the 

unconditional coverage test (or “UC”) for the binomial backtesting, and the independent 

test (or “IND”) and the conditional coverage test (or “CC”) for the interval forecast 

backtesting.  We specify the null hypothesis (e.g., 0;1;0 === ρσµ  on SRM and 

1;0 == σµ on ES) for the LR test and the null hypothesis ( 3;0 == kurtosisskewness ) 

for the JB statistic for the density forecasts backtesting.   

 

With respect to the probability forecast backtesting, its ability to classify risk models (e.g., 

accurate versus inaccurate) is gauged by how frequently QPS values for the true data 

generating process (or “DGP”) are lower than that of alternative models. Three types of 

loss function are therefore examined in this paper.  The risk measures will be modeled 

with techniques that are commonly used by researchers for constructing risk measures 

(Duffie and Pan, 1997; Dowd, 1998). At the same time, the data generating process is 

necessarily kept simple to allow for a computationally tractable simulation study.  

 

For a typology of various models of{ }T

tty
1=
, let it follows the stochastic process  
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                                          ttty ησ=                                                                             (21)                                                             

where tσ can be estimated either conditional or unconditional, ttt σεη ≡ and tη has 

distribution tf . As can be seen, a density forecast model based on (21) can be 

decomposed into two parts: specification of 2

tσ and specification of the distribution 

of{ }T

tt 1=
η . 

 

The simulation exercise is conducted in two distinct settings – the unconditional and the 

conditional setting. In the first setting, the emphasis is on the shape of the ( )⋅f distribution 

alone. To examine how well various backtesting methods perform under different 

distributional assumptions, experiments are carried out by setting ( )⋅f to a standard 

normal distribution, a t-distribution with 4 and 6 degrees of freedom, a skew-t 

distribution, and a Generalized Pareto distribution (or “GPD”). We use the t(6) 

distribution to generate the dataset as the true DGP. The selection of alternative 

distributions reflects the shape variations to the true distribution. One special case is the 

GPD, which pays special attention in the tail area, and it provides superior tail estimation 

than for alternatives such as a normal distribution.  

 

The second setting examines the performance of backtesting methods in the presence of 

variance dynamics in tε . Specifically, we assume that volatility dynamics are introduced 

by using the conditional heteroskedasticity of a GARCH model with t(6) innovations. 

Alternative models are a GARCH model with normal innovations, an exponential 

weighted moving average (or EWMA) process, and a homoskedastic model with t(6) 

innovations. Therefore, we analyze the evaluation performance affected by dynamic 

volatility estimations (e.g., GARCH vs. EWMA vs. homoskedastic volatility) as well as 

distribution assumptions (e.g., student’s t vs. normal distribution).   

 

A simple, symmetric GARCH (1, 1) model, where the daily variance evolves as  

                                    2

1

2

1

2

−− ++= ttt y βσαωσ                                                                  (22) 
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We have chosen the parameter value [ ] [ ]4310.0551,0.90.0000004,,, =βαω  to mimic 

values typically obtained when pre-fitting the GARCH model to the S&P 500 index 

futures data.  

 

An alternative model is a EWMA or RiskMetrics volatility model, where the daily 

variance evolves as 

                                     ( ) 2

1

2

1

2 1 −− −+= ttt ελλσσ                                                                 (23) 

Following JP Morgan RiskMetrics, we fix 94.0=λ .  

 

In all settings, simulation runs are structured similarly. For each run, the simulated ty  

series is generated using the chosen data generating process (e.g., a t(6) model in the 

unconditional setting and a GARCH (1,1) model with t(6) innovations in the conditional 

setting). The chosen length of the in-sample series (after 1000 start-up observations) is 

2000 observations, which roughly corresponds to eight years of daily observations.  

Alternative risk models are then used to generate one-step-ahead risk forecasts for the 

next 125, 250, 500, and 1000 observations
18

 of ty . The forecasts from various risk models 

are then evaluated using appropriate evaluation methodologies. The rejection rate is 

calculated based on the finite-sample critical value in Table 1 on 2000 simulations. 

 

The simulation results are organized below with respect to the unconditional and the 

conditional settings - that is, results of four backtesting methods are presented for each 

DGP and alternative risk measures
19

. Three general points can be made regarding the 

results. Firstly, with respect to three hypothesis-based backtests, the power of frequency-

based backtests (e.g., the binomial backtesting and the interval forecast backtesting) in 

rejecting incorrect null hypotheses is lower than that of the density forecast backtesting. 

Therefore, the chance of misclassifying inadequate risk model as adequate is high for the 

frequency-based backtests. In addition, the backtesting for ES and SRM is more effective 

                                                
18

 Size of 125, 250, 500 and 1000 approximately corresponds to half year, one year, two years and four 

years data. 
19

 We present simulation results on the left tail only. The simulation results on the right tail are available on 

request.  
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than for VaR in  identifying an incorrect model from alternative models in a small sample 

setting.   

 

Secondly, we propose the loss function for SRM where the probability forecast 

backtesting is persistently able to distinguish the correct risk model from alternative 

models in all of cases examined. That is, the QPS for the true model is lower than that of 

alternative models.  

 

Thirdly, four evaluation methods are more sensitive to the chosen misspecifications of 

the distributional shape of tf  than to the chosen misspecifications of variance dynamics 

for all cases examined. That is, all four methods are capable of differentiating between 

the true model and alternative models with the same variance dynamics but different 

distributional assumptions. 

 

4.1. Unconditional Simulation Experiment Results 

As previously mentioned, an important issue in examining the performance of statistical 

evaluation methods is a finite-sample size of underlying test statistics.  Table 2A reports 

the finite-sample rejection rates of risk measures for three hypothesis-based backtests 

examined in this paper. Table 2B presents the finite-sample QPS of risk measures using 

the probability forecast backtesting method. These finite-sample rejection rates are based 

on 2,000 simulations of sample sizes 125, 250, 500 and 1,000 and corresponding 

coverage rates – 99% and 95%. The desired confidence level of tests is 0.05.  

 

[Insert Table 2A here] 

 

Table 2A presents evaluation results of three hypothesis-based backtests on three risk 

measures. We compare the evaluation performance of the binomial backtesting, the 

interval forecast backtesting and the density forecast backtesting. The top panel of the 

table, labeled ‘size’, reports Monte Carlo rejection rates when the model coincides with 

the true model (e.g., the ‘t(6)’ model). The first two columns report rejection rates of a 

99% VaR and a 95% VaR using the binomial test. ‘UC’ indicates the unconditional 
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coverage test. Rejection rates in the first two columns are uniformly smaller than a 7%, 

which is approximately correct sized. This is perhaps not surprising – since the 

underlying process coincides with the true model. Columns 3 to 6 reports the  rejection 

rates of a 99% VaR and a 95% VaR using the interval forecast backtesting. 'IND' 

indicates the independent test, and 'CC' indicates the conditional coverage test. The size 

properties of these tests are quite similar to those of the binomial test. However, as 

noticed by Berkowitz(2001), the rejection power of the interval forecast backtesting is a 

slightly lower than the binomial backtesting, due to the interval forecast backtesting  

requires information on the dynamics of violations not just the number of violations. Our 

results show that the rejection power of the interval forecast backtesting is not always 

lower than that of the binomial test. The last four columns present the rejection rates of a 

99% ES, a 95% ES and a SRM in the density forecast backtesting. 'LR' indicates the 

likelihood ratio test and 'JB' indicates the Jarque and Bera test. These test statistics 

display approximately correct size, rejection rates for all three risk measures are around a 

5%. 

 

The lower panels show rejection rates when models are wrong, and are therefore labeled 

‘power’ (e.g., the ability to identify wrong models). The panel labeled “Normal” reports 

the results when the model is estimated using a normal distribution. With a 95% VaR and 

a 99% VaR, the rejection rate of the binomial test and the interval forecast backtesting is 

below a 30%, even with 1000 observations. This should be expected -- with so few 

violations, very large samples are required to generate rejections. In addition, there is not 

even a 10% probability of rejecting a false model with a sample size of 250 observations 

as recommended by the Basel II. On the other hand, the density forecast backtesting 

would detect the model failure of a 70% times on a 99% ES and a 95% ES with 250 

observation. The LR test shows that the rejection rate of a SRM with 250 observations is 

only a 21.8%. However, the rejection rate of the JB test reaches almost a 70%. Since the 

LR test can only detect a model failure on the first two moments of a distribution. We 

expect that the JB test have power to reject the incorrect model. 
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The panel labeled “Skew-t” reports the results when the model is estimated using a skew-

t distribution. The rejection power of the binomial test and the interval forecast 

backtesting increase dramatically. With 250 observations, rejection rates reach a 40%, 

compare to the ‘Normal’ model of a 10%. These statistic results indicate that the 

frequency-based backtests is more sensitive to large variations on shape of the 

distribution. Still a 40% probability of rejecting a false model is low. However, with the 

density forecast backtesting and 250 observations, rejection rates of an ES (either a 99% 

or a 95%), and a SRM are over a 70%.  Therefore, the probability of misclassifying 

inadequate risk model as adequate is lower for the density forecasts backtesting than for 

the frequency-based backtests. 

 

We are also interested the impact of a small variation on the kurtosis of a distribution on 

the validity of the backtest methodologies, and report results on the panel labeled “t(4)”.  

Overall rejection rates are low – with the frequency-based test, a false model can be 

rejected with probability less than a 20%, and a 50% with the density forecast backtesting. 

We expect that the JB statistic would have power to capture the departure on the kurtosis. 

However, with rejection rates are less than 16% in all cases examined, the JB statistic is 

fail to detect this kind of a model failure.  

 

The last panel labeled “GPD” reports the results when the model is estimated using a 

Generalized Pareto distribution. The size properties of all tests are very similar to that of 

the first panel (e.g., labeled “size”). This is because the GPD pays special attention to the 

tail and it allows for some extrapolation beyond the range of the data (Brooks et al., 

2005). Therefore, these statistic results are consistent with prior empirical findings in 

Extreme Value Theory literature. 

 

 [Insert Table 2B here] 

 

Table 2B presents sets of comparative accuracy results of the probability forecast 

backtesting. We compare numerical scores on different DGPs with four different sample 

sizes, and each panel of the table represents one sample size. The first and second 
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columns report the QPS of a 99% VaR and a 95% VaR. The QPS calculation is based on 

the loss function that suggested by Lopez (1999a), and labeled “Lopez”. Columns 3 and 4 

present the QPS of a 99% ES and a 95% ES.  The QPS calculation is based on the loss 

function that suggested by Dowd (2004), and labeled “Dowd”. The last column reports 

the QPS of a SRM. The QPS calculation is based on the loss function that we suggest in 

this paper, and labeled “SRMP”.  

 

For all cases examined, the true model’s QPS (e.g., the ‘t(6)’ model) is lower than  

alternative risk models for each defined loss functions, except with a sample size less 

than 500 observation, the ‘Lopez” loss function cannot differentiate the correct model 

from alternative models – the QPS is lower for the “t(4)” model than for the true model. 

Furthermore, the ‘GPD’ model performs as well as the true model in majority cases 

examined. In particular, the ‘Skew-t’ model is clearly found to be inaccurate with respect 

to the true model – that is, the QPS is higher than that of rest models. Therefore, we 

propose the loss function for SRM where the probability forecast backtesting is 

persistently able to distinguish the correct risk model from alternative models, even with 

a sample size as small as 125 observations. 

 

4.2. Conditional Simulation Experiment Results 

Table 3A reports evaluation performance results of three hypothesis-based backtests 

when we take into account variance dynamics in the DGP. We illustrate four alternative 

volatility processes – the “GARCH-t(6)” model, the “Homoskedastic-t(6)” model, the 

“GARCH-normal” model, and the “EWMA-normal” (or “EWMA”) model. 

     

[Insert Table 3A] 

 

The top panel of the table, labeled ‘size’, reports Monte Carlo rejection rates when the 

model coincides with the true model (e.g., the ‘GARCH-t(6)’ model). In all cases 

examined, the overall rejection rates on risk measures – VaR, ES and SRM, are lower – 

less than a 10%, and approximately correct sized as we expected.   
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The lower panels show rejection rates when models are wrong, and are therefore labeled 

‘power’ (e.g., the ability to identify wrong models). The panel labeled “Homoskedastic-

t(6)” reports the results when the model is estimated using a long-run volatility with t(6) 

innovations. With a 99% VaR and a 95% VaR, rejection rates of the binomial test and the 

interval forecast backtesting are low – less than a 50% with 250 observations. Thus, the 

likelihood of misclassifying an inadequate model as adequate is high. In addition, 

rejection rates of the density forecast backtesting with a 99% ES and a 95% ES are also 

low – less than a 60% with 250 observations. However, the rejection rate is much high 

with SRM - over an 80% with 250 observations. 

 

The panel labeled “GARCH-normal” reports the rejection rate when the model is 

estimated using a GARCH(1,1) model “GARCH-normal” with a normal distribution. Still, 

with 250 observations, rejection rates of the binomial test and the interval forecast 

backtesting are quite low - less than a 60%, though they are a slightly higher compare to 

the previous panel (e.g., less than a 50%). However, the rejection rate of the density 

forecast backtesting increases considerably. For instance, with 250 observations, rejection 

rates of a 99% ES and a 95% ES are over 70%, compare to the previous panel of under 

60%. The rejection rate of SRM also increases from an 82.3% from the previous panel to 

a 97.5%.  

 

The last panel labeled “EWMA” reports the rejection rate when the model is estimated 

using an exponential weighted moving average model with normal innovations. In all 

cases examined, rejection rates of the “EWMA” model are very similar to the “GARCH-

normal” model. For instance, with 250 observation, rejection rates of the binomial test 

and the interval forecast backtesting are also around a 60% on VaR (either a 99% and a 

95%), an 80% for ES (either a 99% and 95%), and over a 95% for SRM. These results 

suggest that backtests methods are more sensitive to the chosen misspecifications of 

distributional shapes than to the chosen misspecifications of variance dynamics. In 

addition, the evaluation performance on SRM is as good as on ES. Thus, the backtesting 

for SRM and ES is more effective than for VaR in  identifying an incorrect model from 

alternative models.   
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[Insert Table 3B here] 

 

Table 3B reports sets of QPS using the probability forecast backtesting when dynamic 

volatility is presented in the DGP. Evidently, the ‘Lopez’ loss function for VaR is unable 

to distinguish the correct model from alternative models - the QPS is lower for the 

‘Homoskedastic-t(6)’ model than for the true model (e.g., the ‘GARCH-t(6)’ model) in a 

97% of cases. As a sample size reaches 500 observations, the ‘Dowd’ loss function is 

capable of differentiating the correct model from alternative models. In contrast, the 

‘SRMP’ loss function that we suggested in this paper is consistently able to identify the 

correct model from alternative risk models with a sample size as small as 125 

observations. The ‘GARCH – normal’ model and the ‘EWMA’ model are clearly found 

to be inaccurate with respect to the true model.  

 

These results also reveal that the probability forecast backtesting has more rejection 

power against alternative models with incorrect distribution assumptions, but has less 

power with respect to the true variance dynamics. For instance, with the ‘Lopez’ loss 

function, the QPS of the ‘Homoskedastic - t(6)’ model is lower than the true model (e.g., 

the ‘GARCH-t(6)’ model). Furthermore, the difference in QPS between the 

‘Homoskedastic - t(6)’ model and the true model is very small with the ‘Dowd’ and the 

‘SRMP’ loss functions.  

 

These results shed interesting light on tradeoffs between modeling the distribution and 

modeling the time-varying volatility. The rejection rates in Tables 3A and 3B suggest that 

these tests have little power against alternative models characterized by a close 

approximation of the true variance dynamics, but have better power against incorrect 

distributional assumptions. This is consistent with the prior empirical findings by Lopez 

(1999a, b), Berkowitz (2001) and Bao et al., (2004). 

 

 

5. Empirical Application 
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In this section, we illustrate previous evaluation methods by fitting three conditional 

volatility models – a GARCH(1,1) model with normal innovations, labeled a “GARCH-

normal” model,  a GARCH(1,1) model with t innovations, labeled a “GARCH-t” model, 

and an EWMA model with normal innovations, labeled “EWMA” model, to three most 

heavily traded index futures –the S&P500; the FTSE 100 and the Nikkei 225 for the 

period of 01/11/1998 to 31/10/2006. The data is obtained from DataStream and consists 

of 2087 daily close prices. Initially we estimate parameters over the period 01/11/1998 to 

31/10/2004. The sample spans 6 years period and contains 1586 observations. This leaves 

an evaluation period of 500 observations covering two years of data. Having calculated 

the volatility forecasts based on parameters of this initial sample, the subsequent samples 

are produced by rolling forward one trading day, keeping the sample size constant at 

1586 observations.  Based on forecasted volatility estimates, we calculate a range of risk 

measures.  

 

Figure 1 is a graphical representation of time series properties of daily logarithmic price 

changes in three index futures and squared daily logarithmic price changes from the 

period 01/11/1998 through 31/10/2006. The series of daily log changes is a mean zero 

process exhibiting periods of relative calm punctuated by periods of disturbed volatility. 

The squared daily logarithmic changes exhibit volatility clustering, i.e., partial 

predictability of the conditional variance of this series. This implied that risk exposure is 

not identical at each point in time. For risk management purposes, a conditional 

heteroscedastic model is appropriate when evaluating the risk exposure conditional on the 

current volatility regime. 

         

[Insert Figure 1 here] 

[Insert Table 4 here] 

 

Table 4 contains descriptive statistics of daily logarithmic return series of three index 

futures. The full set of returns follow usual stylized facts about futures data, namely, 

price movements do not belong to a normal distribution using a Kolmogorov – Smirnov 

test, there is negative skewness (the S&P 500 contract excepted), and also leptokurtosis 
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present. Therefore, statistic determination of risk measures based on the normal 

distribution is inappropriate, and would lead to inadequate risk measures estimation. 

Leptokurtosis is demonstrated by a fat-tail characteristic, and this is most evident for 

three contracts. This finding may be due to the influence of extreme outliers for contracts 

analyzed.  

  

[Insert Figure 2 here] 

 

We show QQ plots of normal transform variables (e.g., Berkowitz normal transformation 

as we discussed in section 3.2) in Figure 2. QQ plots display empirical quantiles of the 

observed normal transform variables against theoretical quantiles from the normal 

distribution. If the distribution of normal transform is truly normal, then the QQ plot 

should be close to the 45-degree line.  The QQ plots of Figure 2 show that for all 

contracts, three conditional processes fit poorly. There are too many extreme outliers in 

the tail of distributions, which is evidence that both tails of the normal density are too 

thin (except for the FTSE 100 index futures and the NIKKEI 225 index futures with the 

‘GARCH-t’ model, the right tail of the normal density are too thick). 

 

Table 5A reports the rejection power on three risk measures using the hypothesis-based 

backtests. Each panel represents a different index futures contract. The rejection power is 

represented by a p-value. In all cases, the desired confidence level of tests is 0.05 and 

based on the finite-sample critical value in Table 1.  

                                      

[Insert Table 5A here] 

 

There are a number of findings. Firstly, the frequency-based backtests can only reject the 

“EWMA” model. In contrast, the density forecast backtesting reject conditional models 

over 70% of the time. The high rejection power of the density forecast backtesting is 

consistent with the Monte Carlo simulation results in the previous section. Secondly, the 

backtesting method on SRM and ES is more effective than that of VaR in rejecting 

incorrect models. In particular, the density forecast backtesting on SRM reject all three 
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conditional risk models.  Thus, the evlaution performance of SRM is slightly better than 

ES. For instance, in the case of the ‘GARCH-normal’ model with the FTSE 100 index 

futures and the NIKKEI 225 index futures, no rejections are made by using ES. However, 

they are rejected by SRM. Thirdly, there is inconsistency results with our simulation 

study on distribution / or variance dynamics specifications. The rejection power is 

dissimilar between the ‘GARCH-normal’ model and ‘EWMA’ model. For instance, we 

cannot reject the ‘GARCH-normal’ model for the FTSE 100 and the Nikkei 225 index 

futures. However, the “EWMA” model is rejected for both index futures. 

 

[Insert Table 5B here] 

 

Table 5B reports sets of comparative accuracy results of QPS using the probability 

forecast backtesting with application to three index futures. With the ‘Lopez’ loss 

function, there is no consistency in rank among three models. Using the FTSE 100 and 

the Nikkei 225 index futures as examples, the “Lopez” loss function cannot differentiate 

the best model between the “GARCH-normal” model and the “GARCH-t” model. 

However, the ‘Down’ loss function and the ‘SRMP’ loss function are consistently 

ranking the ‘GARCH-t’ model as the best model. These results also confirm the previous 

simulation findings in the conditional setting. Clearly, the ‘Dowd’ loss function and the 

‘SRMP’ loss function are capable of identifying correct model from alternative models.  

 

 

 6. Conclusion  

We have presented evidence on the evaluation performance of four statistical tests on 

three risk measures – VaR, ES and SRM. We focus on two aspects of the risk model 

evaluation: the distribution specification and the volatility specification. While other 

papers have pursued evaluation effectiveness in a manner similar to ours, we believe ours 

to be the first to systematically investigate merits of various backtesting methods for ES 

and SRM. 
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Firstly, within hypothesis-based tests, including the binomial backtesting, the interval 

forecast backtesting and the density forecasts backtesting, the overall dominance of 

density forecast backtesting is confirmed. In particular,  the backtesting for SRM and ES 

is more effective than for VaR in  identifying an incorrect model from alternative models 

in a small sample setting.  However, the binomial backtesting and the interval forecast 

backtesting cannot detect model failure with a small sample size, such as 250 

observations as recommended by the Basel II. Therefore, the likelihood of misclassifying 

incorrect risk models as correct is lower for the density forecast backtesting than for 

frequency-based backtests.  

 

Secondly, we propose a loss function for SRM where the probability forecast backtesting 

is capable of identifying accurate models from alternative models - that is, the quadratic 

probability score for the true model is lower than that of alternative models. In the 

conditional setting, the loss function for ES can only differentiate the accurate risk model 

when a sample size reaches or exceeds 500 observations, and the loss function for VaR 

cannot differentiate the correct risk model even with 1000 observations.  

 

Thirdly, in all of the backtesting methods examined, the choice of the distribution 

specification is a more important factor in determining the evaluation performance than 

the choice of the volatility specification. That is, all four methods are capable of 

differentiating between the true model and alternative models with the same variance 

dynamics but different distributional assumptions. 
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Sample Size 125 250 500 1000

Asymptotic X
2
(1) 

LRuc(99) 2.513 5.025 4.813 4.091

LRuc(95) 4.093 4.040 3.888 3.805

LRind(99) 0.332 0.345 2.163 2.633

LRind(95) 5.665 5.531 5.754 6.178

Asymptotic X
2
(2) 

LRcc(99) 4.199 5.005 4.821 4.738

LRcc(95) 7.058 7.329 7.128 6.122

ES(99) 5.576 5.645 5.961 6.073

ES(95) 6.087 6.368 5.767 5.570

JBSRM 5.122 5.538 5.807 5.815

Asymptotic X
2
(3) 

LRSRM 8.972 8.790 8.276 7.674

Table 1: Finite-Sample Critical Values

Note: The finite-sample critical values estimation is based on a

minimum of 20,000 simulations, and the significant level is 5%.

2. LRuc(99) indicates the critical value of a 99% VaR in the

unconditional coverage test. LRuc(95) indicates the critical value

of a 95% VaR in the unconditional coverage test. LRind(99)

indicates the critical value of a 99% VaR in the independent test.

LRind(95) indicates the critical value of a 95% VaR in the

independent test. LRcc(99) indicates the critical value of a 99%

VaR in the conditional coverage test. LRcc(95) indicates the

critical value of a 95% VaR in the conditional coverage test.

ES(99) indicates the critical value of a 99% ES in the density

forecast backtesting. ES(95) indicates the critical value of a 95%

ES in the density forecast backtesting. JBSRM indicates the critical

value of the Jarque and Bera test on a SRM in the density

forecast backtesting. LRSRM indicates the critical value of the

likelihood ratio test on a SRM in the density forecast backtesting.

1. The sample sizes are 125, 250, 500, and 1000.

3.842

5.992

7.815
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Table 2A: The Hypothesis-based Backtesting Techniques - Left Tail

Size and Power: True DGP - T(6) model

size

VaR(99%) VaR(95%) ES(99%) ES (95%)

Sample size UC UC IND CC IND CC LR LR LR JB

125 0.057 0.030 0.066 0.030 0.049 0.051 0.036 0.051 0.043 0.057

250 0.016 0.041 0.066 0.036 0.054 0.053 0.052 0.040 0.026 0.043

500 0.047 0.050 0.050 0.070 0.053 0.052 0.058 0.054 0.052 0.046

1000 0.048 0.068 0.065 0.074 0.045 0.106 0.053 0.072 0.067 0.050

Power: Normal 

VaR(99%) VaR(95%) ES(99%) ES (95%)

Sample size UC UC IND CC IND CC LR LR LR JB

125 0.035 0.029 0.156 0.082 0.047 0.055 0.575 0.675 0.071 0.518

250 0.074 0.061 0.189 0.107 0.050 0.050 0.695 0.729 0.218 0.696

500 0.128 0.088 0.064 0.162 0.054 0.057 0.880 0.923 0.397 0.726

1000 0.225 0.130 0.056 0.265 0.046 0.136 0.937 0.998 0.860 0.938

Power: Skew-t 

VaR(99%) VaR(95%) ES(99%) ES (95%)

Sample size UC UC IND CC IND CC LR LR LR JB

125 0.338 0.290 0.036 0.231 0.055 0.232 0.582 0.608 0.615 0.048

250 0.352 0.422 0.053 0.391 0.050 0.364 0.704 0.718 0.725 0.049

500 0.603 0.747 0.071 0.631 0.065 0.638 0.765 0.804 0.963 0.068

1000 0.881 0.955 0.067 0.894 0.037 0.940 0.889 0.982 0.999 0.088

Power: t(4)

VaR(99%) VaR(95%) ES(99%) ES (95%)

Sample size UC UC IND CC IND CC LR LR LR JB

125 0.041 0.053 0.051 0.024 0.053 0.064 0.018 0.092 0.037 0.050

250 0.009 0.060 0.046 0.025 0.052 0.078 0.038 0.128 0.023 0.047

500 0.063 0.097 0.045 0.085 0.059 0.091 0.154 0.301 0.075 0.078

1000 0.070 0.173 0.060 0.097 0.056 0.206 0.409 0.583 0.144 0.151

Power: GPD

VaR(99%) VaR(95%) ES(99%) ES (95%)

Sample size UC UC IND CC IND CC LR LR LR JB

125 0.053 0.032 0.065 0.032 0.050 0.052 0.057 0.036 0.042 0.054

250 0.013 0.043 0.061 0.034 0.049 0.048 0.044 0.043 0.028 0.046

500 0.052 0.054 0.048 0.073 0.053 0.051 0.071 0.063 0.056 0.053

1000 0.046 0.064 0.059 0.074 0.050 0.111 0.056 0.074 0.061 0.055

Notes:

VaR(95%)

VaR(99%) VaR(95%)

Binomial Test Interval Forecast Backtesting

SRM

SRM

SRM

Density Forecast BacktestingBinomial Test Interval Forecast Backtesting

VaR(99%) VaR(95%)

Binomial Test Interval Forecast Backtesting

SRM

SRM

Binomial Test Interval Forecast Backtesting

VaR(99%) VaR(95%)

Binomial Test Interval Forecast Backtesting

VaR(99%) VaR(95%)

VaR(99%)

4. The first two columns report the rejection rates of a 99% VaR and a 95% VaR using the binomial test. 'UC' indicates the

unconditional coverage test in the binomial backtesting. Columns 3 and 4 report the rejection rates of a 99% VaR and a 95%

VaR using the interval forecast backtesting. 'IND' indicates the independent test, and 'CC' indicates the conditional coverage

test. The last four columns present the rejection rates of a 99% ES, a 95% ES and a SRM in the density forecast backtesting.

'LR' indicates the likelihood ratio test and 'JB' indicates the Jarque and Bera test. LR statistic tests the first two moments that

depart from normality and JB statistic tests the third and forth moments that depart from normality.           

3. The panels labeled ‘power’ display size-adjusted rejection rates for alternative forecast models. The size-adjected rejection

rates are calculated based on the finite-sample critical value in Table 1. For the backtesting procedures, the desired size is 0.05.

1. The Table compares the Monte Carlo rejection rate of alternative backtesting methods - the binomial test, the interval forecast

backtesting, and the density forecast backtesting, over 2000 simulations with four different sample sizes - 125, 250, 500 and

1000 observations. In each simulation, a data generating process is comprised of an unconditional student's t distribution with 6

degree of freedoms, labeled "t(6)" model. The alternative risk models are an unconditional student's t distribution with 4 degree

of freedoms, labeled "t(4)" model, an unconditional normal distribution, labeled "Normal" model, an unconditional Skew-t

distribution, labeled "Skew-t" model and an unconditional Generalized Pareto Distribution, labeled "GPD" model. 

2. ‘Size’ indicates that the forecast model coincides with the true model "t(6)" and the null hypothesis is therefore true.

Density Forecast Backtesting

Density Forecast Backtesting

Density Forecast Backtesting

Density Forecast Backtesting
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Table 2B: The Probability Forecast Backtesting - Left Tail

Size and Power: True DGP - T(6) model

SRMP

Sample size:125 VaR(99%) VaR(95%) ES(99%) ES(95%) SRM

t (6) 0.020 0.095 0.020 0.072 0.040

Normal 0.035 0.093 0.032 0.083 0.077

t (4) 0.018 0.120 0.021 0.073 0.047

Skew-t 0.086 0.361 0.041 0.112 0.133

GPD 0.020 0.097 0.021 0.074 0.047

Sample size:250 VaR(99%) VaR(95%) ES(99%) ES(95%) SRM

t (6) 0.019 0.094 0.022 0.074 0.023

Normal 0.038 0.096 0.034 0.085 0.065

t (4) 0.018 0.134 0.023 0.075 0.024

Skew-t 0.126 0.574 0.042 0.112 0.093

GPD 0.019 0.094 0.023 0.074 0.024

Sample size:500 VaR(99%) VaR(95%) ES(99%) ES(95%) SRM

t (6) 0.020 0.093 0.021 0.074 0.012

Normal 0.051 0.104 0.034 0.087 0.057

t (4) 0.022 0.096 0.022 0.075 0.016

Skew-t 0.211 0.991 0.048 0.127 0.076

GPD 0.020 0.092 0.023 0.075 0.013

Sample size:1000 VaR(99%) VaR(95%) ES(99%) ES(95%) SRM

t (6) 0.020 0.101 0.022 0.074 0.007

Normal 0.072 0.135 0.034 0.075 0.051

t (4) 0.021 0.223 0.023 0.085 0.013

Skew-t 0.387 1.859 0.043 0.114 0.067

GPD 0.020 0.101 0.022 0.258 0.007

Notes:

3. Quadratic probability score (QPS) has a negative orientation (small values

indicate more accurate forecast). 

Lopez Dowd

2. The first and second columns report the QPS of a 99% VaR and a 95%

VaR. The QPS calculation is based on the loss function that suggested by

Lopez (1999a), and labeled as ‘Lopez’. The third and fourth columns

represent the QPS of a 99% ES and a 95% ES. The QPS calculation is

based on the loss function that proposed by Dowd (2004), labeled as ‘Dowd’.

The last column reports the QPS of a SRM. The QPS calculation is based on

the loss function that we suggest in this paper, and label as "SRMP". 

1. The Table reports sets of comparative accuracy results of the Quadratic

probability score (QPS) using the probability forecast backtesting over 2000

simulations with four different sample sizes - 125, 250, 500 and 1000

observations. In each simulation, a data generating process is comprised of

an unconditional student's t distribution with 6 degree of freedoms, labeled

"t(6)" model. The alternative risk models are an unconditional student's t

distribution with 4 degree of freedoms, labeled "t(4)" model, an unconditional

normal distribution, labeled "Normal" model, an unconditional Skew-t

distribution, labeled "Skew-t" model and an unconditional Generalized Pareto

Distribution, labeled "GPD" model. 
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Table 3A: The Hypothesis-based Backtesting Techniques - Left Tail

Size and Power: True DPG - GARCH-t(6) Model

size

VaR(99%) VaR(95%) ES(99%) ES (95%)

Sample size UC UC IND CC IND CC LR LR LR JB

125 0.028 0.049 0.027 0.026 0.046 0.039 0.017 0.042 0.064 0.068

250 0.053 0.060 0.030 0.031 0.065 0.049 0.016 0.050 0.076 0.105

500 0.056 0.070 0.150 0.042 0.111 0.067 0.016 0.046 0.092 0.224

1000 0.063 0.076 0.235 0.061 0.231 0.083 0.009 0.027 0.099 0.484

Power: Homoskedastic - t(6) 

VaR(99%) VaR(95%) ES(99%) ES (95%)

Sample size UC UC IND CC IND CC LR LR LR JB

125 0.207 0.324 0.144 0.165 0.038 0.234 0.209 0.428 0.675 0.082

250 0.276 0.491 0.226 0.213 0.046 0.396 0.330 0.581 0.823 0.116

500 0.479 0.576 0.290 0.409 0.090 0.543 0.619 0.676 0.960 0.219

1000 0.626 0.698 0.317 0.580 0.216 0.672 0.722 0.806 0.979 0.459

Power: GARCH - normal

VaR(99%) VaR(95%) ES(99%) ES (95%)

Sample size UC UC IND CC IND CC LR LR LR JB

125 0.346 0.450 0.071 0.246 0.033 0.450 0.527 0.627 0.905 0.467

250 0.500 0.567 0.310 0.450 0.067 0.540 0.747 0.767 0.975 0.533

500 0.517 0.733 0.346 0.621 0.100 0.633 0.867 0.870 0.999 0.833

1000 0.692 0.767 0.692 0.692 0.233 0.733 0.933 0.980 1.000 0.967

Power: EWMA 

VaR(99%) VaR(95%) ES(99%) ES (95%)

Sample size UC UC IND CC IND CC LR LR LR JB

125 0.344 0.427 0.184 0.383 0.052 0.429 0.584 0.628 0.949 0.340

250 0.455 0.635 0.288 0.412 0.054 0.548 0.747 0.844 0.986 0.524

500 0.483 0.729 0.383 0.512 0.106 0.689 0.871 0.908 1.000 0.773

1000 0.608 0.738 0.438 0.661 0.228 0.815 0.931 0.994 1.000 0.957

Notes:

Binomial Test Interval Forecast Backtesting Density Forecast Backtesting

VaR(99%) VaR(95%) SRM

Binomial Test Interval Forecast Backtesting Density Forecast Backtesting

VaR(99%) VaR(95%) SRM

Binomial Test Interval Forecast Backtesting Density Forecast Backtesting

VaR(99%) VaR(95%) SRM

Binomial Test Interval Forecast Backtesting Density Forecast Backtesting

VaR(99%) VaR(95%) SRM

1. The Table compares the Monte Carlo rejection rate of alternative backtesting methods - the binomial test, the interval forecast

backtesting, and the density forecast backtesting, over 2000 simulations with four different sample sizes - 125, 250, 500 and

1000 observations. In each simulation, a data generating process is comprised of a GARCH(1,1) model with t(6) innovations,

labeled "GARCH-t(6)" model. The alternative risk models are a GARCH(1,1) model with normal innovations, labeled "GARCH-

normal" model, a homoskedastic model with t(6) innovations, labeled "Homoskedasitic-t(6)" model, and an Exponential Weight

Moving Average model, labled "EWMA" model. 

2. ‘Size’ indicates that the forecast model coincides with the true model "t(6)" and the null hypothesis is therefore true.

3. The panels labeled ‘power’ display size-adjusted rejection rates for alternative forecast models. The size-adjected rejection

rates are calculated based on the finite-sample critical value in Table 1. For the backtesting procedures, the desired size is 0.05.

4. The first two columns report the rejection rates of a 99% VaR and a 95% VaR using the binomial test. 'UC' indicates the

unconditional coverage test in the binomial backtesting. Columns 3 and 4 report the rejection rates of a 99% VaR and a 95%

VaR using the interval forecast backtesting. 'IND' indicates the independent test, and 'CC' indicates the conditional coverage

test. The last four columns present the rejection rates of a 99% ES, a 95% ES and a SRM in the density forecast backtesting.

'LR' indicates the likelihood ratio test and 'JB' indicates the Jarque and Bera test. LR statistic tests the first two moments that

depart from normality and JB statistic tests the third and forth moments that depart from normality.            
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Table 3B: The Probability Forecast Backtesting - Left Tail

Size and Power: True DPG - GARCH -t(6) Model

SRMP
Sample size:100 VaR(99%) VaR(95%) ES(99%) ES(95%) SRM

GARCH - t(6) 0.123 0.245 0.184 0.353 0.170

Homoskedastic-t(6) 0.098 0.384 0.163 0.394 0.187

GARCH - normal 0.150 0.254 0.215 0.372 0.352

EWMA 0.125 0.230 0.190 0.333 0.361

Sample size:250 VaR(99%) VaR(95%) ES(99%) ES(95%) SRM

GARCH - t(6) 0.199 0.709 0.214 0.468 0.144

Homoskedastic-t(6) 0.147 0.657 0.183 0.414 0.170

GARCH - normal 0.512 0.790 0.358 0.582 0.456

EWMA 0.472 0.700 0.344 0.559 0.461

Sample size:500 VaR(99%) VaR(95%) ES(99%) ES(95%) SRM

GARCH - t(6) 0.302 0.977 0.175 0.352 0.107

Homoskedastic-t(6) 0.174 0.893 0.177 0.410 0.176

GARCH - normal 1.607 2.300 0.517 0.789 0.725

EWMA 1.993 2.722 0.559 0.836 0.960

Sample size:1000 VaR(99%) VaR(95%) ES(99%) ES(95%) SRM

GARCH - t(6) 0.350 1.126 0.112 0.387 0.085

Homoskedastic-t(6) 0.214 1.111 0.166 0.402 0.136

GARCH - normal 3.159 4.464 0.539 0.821 0.746

EWMA 4.319 5.835 0.595 0.884 1.083

Notes:

3. Quadratic probability score (QPS) has a negative orientation (small values

indicate more accurate forecast). 

Lopez Dowd

1. The Table reports sets of comparative accuracy results of the Quadratic

probability score (QPS) using the probability forecast backtesting over 2000

simulations with four different sample sizes - 125, 250, 500 and 1000

observations. In each simulation, a data generating process is comprised of a

GARCH(1,1) model with t(6) innovations, labeled "GARCH-t(6)" model. The

alternative risk models are a GARCH(1,1) model with normal innovations,

labeled "GARCH-normal" model, a homoskedastic model with t(6) innovations,

labeled "Homoskedasitic-t(6)" model, and an Exponential Weight Moving

Average model, labled "EWMA" model. 

2. The first and second columns report the QPS of a 99% VaR and a 95%

VaR. The QPS calculation is based on the loss function that suggested by

Lopez (1999a), and labeled as ‘Lopez’. The third and fourth columns represent

the QPS of a 99% ES and a 95% ES. The QPS calculation is based on the

loss function that proposed by Dowd (2004), labeled as ‘Dowd’. The last

column reports the QPS of a SRM. The QPS calculation is based on the loss

function that we suggested in this paper. 
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S&P 500 FTSE 100 NIKKEI 225

Mean 0.000 0.000 0.000

Standard Deviation 0.011 0.012 0.014

Skewness 0.044 -0.169 -0.105

Kurtosis 5.455 5.869 4.854

Kolmogorov - Smirnov 0.483 0.481 0.481

P - Value 0.000 0.000 0.000

Summary Statistics for Daily Returns of Futures Series

Table 4

Note: The summary statistics are presented for each futures

index. With the exception of skewness and kurtosis coefficients,

all values are expressed in percentage form. The skewness

statistic is a measure of distribution asymmetry with symmetric

returns having a value of zero. The kurtosis statistic measures

the shape of a distribution vis-á-vis a normal distribution with

Gaussian density function having a value of three. Normality is

formally examined with Kolmogorov-Smirnov test which

indicates a null hypothesis of normality is rejected at standard

confidence levles for all series. 
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Table 5A:  Power of Hypothesis-based Backtesting Techniques - Left Tail

S&P 500 

VaR(99%) VaR(95%) ES (99%) ES(95%)

UC UC IND CC IND CC LR LR LR JB

GARCH-normal 0.217 0.711 0.081 0.298 4.973 6.684 6.185** 5.811** 8.328** 4.262

GARCH - t 0.943 1.127 0.048 0.991 5.697 6.824 5.676 5.995** 9.246** 3.398

EWMA 5.419** 4.365** 1.474 6.893** 6.208** 7.573** 5.967** 6.839** 8.611** 5.658

FTSE 100 

VaR(99%) VaR(95%) ES (99%) ES(95%)

UC UC IND CC IND CC LR LR LR JB

GARCH-normal 0.000 0.394 0.121 0.121 3.219 3.613 0.489 0.669 8.737** 3.320

GARCH - t 0.000 0.043 0.121 0.121 2.452 2.495 1.955 4.160 11.284** 1.461

EWMA 2.613 3.992** 2.163** 4.875** 0.890 1.882 5.982** 6.357** 8.534** 5.531

NIKKEI 225

VaR(99%) VaR(95%) ES (99%) ES(95%)

UC UC IND CC IND CC LR LR LR JB

GARCH-normal 0.190 2.277 0.170 0.360 2.092 4.368 1.561 5.253 10.591** 14.848**

GARCH - t 0.217 0.711 0.081 0.298 1.249 1.960 1.411 8.641** 15.051** 4.566

EWMA 1.538 0.394 2.598** 4.137 1.030 1.424 12.334** 14.221** 8.423** 26.381**

Notes:

2. The first two columns report the likelihood value of a 99% VaR and a 95% VaR using the binomial test. 'UC' indicates the

unconditional coverage test in the binomial backtesting. Columns 3 and 4 report the likelihood value of a 99% VaR and a 95% VaR

using the interval forecast backtesting. 'IND' indicates the independent test, and 'CC' indicates the conditional coverage test. The

last four columns present the likelihood value of a 99% ES, a 95% ES and a SRM in the density forecast backtesting. 'LR' indicates

the likelihood ratio test and 'JB' indicates the Jarque and Bera test. LR statistic tests the first two moments that depart from

normality and JB statistic tests the third and forth moments that depart from normality. 

3. "**" represents the null hypothesis is rejected at 5% significant level, based on the finite-sample critical value at Table 1.

VaR(99%) VaR(95%) SRM

Binomial Test

Binomial Test

VaR(99%) VaR(95%)

Interval Forecast Backtesting Density Forecast Backtesting

VaR(99%) VaR(95%) SRM

1. The Table reports the Likelihood values of three hypothesis-based backtesting methods - the binomial test, the interval forecast

backtesting and the density forecast backtesting based on three futures index contracts - the S&P 500, the FTSE 100 and the

NIKKEI 225. The data generate process are comprised of a GARCH(1,1) model with t innovations, labeled as "GARCH-t" and a

GARCH(1,1) model with normal innovations, labeled as "GARCH-normal", and an EWMA model, labeled as "EWMA".

Density Forecast Backtesting

Density Forecast BacktestingBinomial Test

Interval Forecast Backtesting

SRM

Interval Forecast Backtesting
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Table 5B: The Probability Forecast Backtesting - Left Tail

S&P 500 SRMP

VaR(99%) VaR(95%) ES(99%) ES(95%) SRM

GARCH-normal 0.004 0.004 0.085 0.085 0.080

GARCH - t 0.016 0.016 0.036 0.036 0.056

EWMA 0.144 0.144 0.246 0.246 0.096

FTSE 100

GARCH-normal 0.000 0.000 0.095 0.095 0.064

GARCH - t 0.000 0.000 0.064 0.064 0.055

EWMA 0.064 0.064 0.341 0.341 0.076

NIKKEI 225

GARCH-normal 0.004 0.004 0.807 0.807 0.112

GARCH - t 0.004 0.004 0.304 0.304 0.096

EWMA 0.036 0.036 1.554 1.554 0.120

Notes:

2. The first and second columns report the QPS of a 99% VaR and a 95%

VaR. The QPS calculation is based on the loss function that suggested by

Lopez (1999a), and labeled as ‘Lopez’. The third and fourth columns

represent the QPS of a 99% ES and a 95% ES. The QPS calculation is

based on the loss function that proposed by Dowd (2004), labeled as

‘Dowd’. The last column reports the QPS of a SRM. The QPS calculation

is based on the loss function that we suggested in this paper. 

Lopez Dowd

1. The Table reports sets of comparative accuracy results of the

Quadratic probability score (QPS) for three index futures contracts - the

S&P 500, the FTSE 100 and the NIKKEI 225, based on the probability

forecast backtesting. The data generate process are comprised of a

GARCH(1,1) model with t innovations, labeled as "GARCH-t", a

GARCH(1,1) model with normal innovations, labeled as "GARCH-normal'

and an EWMA model, labeled as "EWMA". 

3. Quadratic probability score (QPS) has a negative orientation (small

values indicate more accurate forecast).  
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Figure 1 
 

 
Figure 1 is a graphical representation of time series properties of daily logarithmic price 

changes in the three index futures and squared daily logarithmic price changes from the 

period 01/11/1998 through 31/10/2006. 
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Figure 2 
 

 
 

 

 

 
 

 

 

 
 

Figure 2 shows that the QQ plots of normal transform variables (i.e., using Berkowitz 

normal transformation, as discussed in section3.2)  of GARCH-t(6) process, GARCH-

normal process and EWMA process with the three index futures contract. For each index 

futures, we scatter plot the empirical quantile of the normal transform variable from the t 

density forecast, and normal density forecast against the corresponding quantile of the 

normal distribution. The diagonal line denotes a perfect fit. 

 

 


