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Abstract

We prove that every evolution algebra A is a normed algebra, for an
l1-norm defined in terms of a fixed natural basis. We further show that
a normed evolution algebra A is a Banach algebra if, and only if, A =
A1⊕A0, where A1 is finite dimensional and A0 is a zero product algebra.
In particular, every non-degenerate Banach evolution algebra must be
finite dimensional and the completion of a normed evolution algebra is
therefore not, in general, an evolution algebra. We establish a sufficient
condition for continuity of the evolution operator, LB , of A with respect to
a natural basis B and show that LB need not be continuous. Moreover, if
A is finite dimensional and B = {e1, ..., en} then LB is given by Le, where
e =

∑
i ei and La is the multiplication operator La(b) = ab, for b ∈ A. We

establish necessary and sufficient conditions for convergence of (Ln
a(b))n,

for all b ∈ A, in terms of the multiplicative spectrum, σm(a), of a. Namely,
(Ln

a(b))n converges, for all b ∈ A, if and only if σm(a) ⊆ ∆ ∪ {1} and
ν(1, a) ≤ 1, where ν(1, a) denotes the index of 1 in the spectrum of La.

1 Introduction

The use of algebraic techniques to study genetic inheritance dates from Mendel
in 1856 [21], with subsequent works [10, 11, 12, 14, 25] by various authors over
the next four decades culminating in the algebraic formulation of Mendel’s laws
in terms of non-associative algebras [10, 11]. Since then many algebras, generally
referred to as genetic algebras (Mendelian, gametic, and zygotic algebras, to
name but a few) have provided a mathematical framework for studying various
types of inheritance. On the other hand, certain genetic phenomena such as,
for example, the case of incomplete dominance, systems of multiple alleles and
asexual inheritance, do not follow Mendel’s laws and evolution algebras were
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FQM 199 of the Junta de Andalućıa and European Union FEDER support.

1



introduced by Tian and Vojtechovsky [28] in 2006, partly as an attempt to study
such non-Mendelian behaviour. Evolution algebras are highly non-associative in
general (they are not even power associative) although they are commutative.
For a recent study of evolution algebras in infinite dimensions see [1]. Other
aspects of evolution algebras have been considered in [2, 3, 4, 5, 6, 8, 9, 13, 15,
16, 17, 24, 29].

Recall that an algebra is a vector space A over K (= R or C) provided with
a bilinear map A × A → A, (a, b) → ab, referred to as the multiplication of A
(which, here, is not assumed to be either associative or commutative). When
an algebra A is provided with a basis B = {ei : i ∈ Λ}, such that eiej = 0 if
i 6= j, then we say that A is an evolution algebra and B is a natural basis of A.
In Section 2 we study the existence or otherwise of algebra norms and complete
algebra norms on an evolution algebra. Recall that A is a normed algebra if A
has a norm ‖·‖ such that ‖ab‖ ≤ ‖a‖ ‖b‖, for every a, b ∈ A and A is a Banach
algebra if it has a complete algebra norm. We prove that every evolution algebra
A is a normed algebra, for an l1-norm defined in terms of a fixed natural basis
and also show that a normed evolution algebra A is a Banach algebra if, and
only if, A = A1 ⊕ A0, where A1 is finite dimensional and A0 is a zero product
algebra. In particular, every non-degenerate Banach evolution algebra must be
finite dimensional and the completion of a normed evolution algebra is not, in
general, itself an evolution algebra.

For evolution algebra A and basis B = {ei : i ∈ Λ} as above, the unique
linear map LB : A → A satisfying LB(ei) = e2

i , for all i ∈ Λ, is known as
the evolution operator on A associated to B. This is postulated in [27] as
being central to the dynamics of A. In Section 3 we study the continuity of
the evolution operator, giving a sufficient condition for its continuity and an
example to show that it is not necessarily continuous.

In particular, if dimA < ∞ and B = {e1, · · · , en} then LB is the multi-

plication map Le, for e =
n∑
i=1

ei (of course, LB is then automatically continu-

ous). For b ∈ A and m ∈ N, the element LmB (b) has biological meaning, and a
typical question in this framework is to study possible accumulation points of
(LmB (b))m. Section 4 tackles this topic, and in the light of results in Section 2,
we assume that A is finite dimensional and thus LB = Le. On the other hand,
for λ ∈ K\{0}, ẽ := λe is another evolution element (corresponding to basis

B̃ = {λe1, · · · , λen}) with  Lmẽ = λmLme . Clearly then (Lmẽ )m may not converge
even if (Lme )m does. In other words, the role of the evolution element (even
assuming norm 1) is not central and we study instead convergence of Lma (b), for
arbitrary a, b in A. To this end, we employ the multiplicative spectrum, σm(a),
of a, as introduced in [20]. Section 4 then proves that (Lma (b))m converges for
all b ∈ A if, and only if,

σm(a) ⊆ ∆ ∪ {1} and ν(1, a) ≤ 1,

where ν(1, a) is the index of 1 as an eigenvalue of La, and ∆ is the open unit
disc in C. Alternative formulations of this are given, in Corollaries 34 and 35,
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for example, (Lma (b))m converges for all b ∈ A if, and only if, La = P + S,
for linear maps P, S ∈ L(A) satisfying P = P 2, PS = SP = 0 and ρ(S) < 1.
Moreover, we show that if (Lma (b))m converges for all b ∈ A, then P := limm L

m
a

is projection onto the subspace Aa = ker(La − I) and P = 0 if, and only if
ν(1, a) = 0. Theorem 38 and Corollary 39 examine cases where the dynamical
system Lma (b) displays recurrent states.

2 Evolution algebras as Banach algebras

While finite dimensional evolution algebras were introduced in [28] and evolution
algebras with a countable basis are studied in [27], the first general algebraic
study of evolution algebras of arbitrary dimension is presented in [1]. As the
definition there generalises the earlier ones, we use it throughout this paper.

Definition 1 An evolution algebra is an algebra A provided with a basis B =
{ei : i ∈ Λ}, such that eiej = 0 for i, j ∈ Λ with i 6= j, where Λ is an arbitrary
(possibly uncountable) non-empty set of indices. Such a basis B is said to be
a natural basis of A. The product of A is then determined by the equalities
e2
i =

∑
k∈Λ

ωkiek, for all i ∈ Λ, and, for fixed k ∈ Λ, we note that ωki is non-zero

for only a finite number of indices.

The map : Λ × Λ → K such that (i, j) → ωij encodes the algebra structure
of A with respect to B. It is therefore useful to represent this map as a Λ× Λ
’matrix’ which we denote by MA(B) = (ωij)i,j and refer to it as the evolution
matrix of A with respect to B.

In this section we are primarily interested in what happens when an evolution
algebra A is endowed with an algebra norm (that is, a norm making the product
continuous). When A is provided with such a norm we will say that A is a
normed evolution algebra and when that norm is also complete we will say that
A is a Banach evolution algebra.

Of course, all finite dimensional normed evolution algebras are automatically
Banach evolution algebras since all norms are then complete. In what follows,
we show that the concept of an infinite dimensional Banach evolution algebra is
not as straightforward as one might expect. In fact, an immediate consequence
of the Baire category theorem is that an infinite dimensional Banach space can-
not have a countable basis and hence an infinite dimensional Banach evolution
algebra can not have a countable natural basis. In particular, this means that
infinite dimensional evolution algebras with countable basis in the sense of [27,
Definition 3] are never Banach algebras.

We first show that every evolution algebra is a normed evolution algebra.

Definition 2 If B = {ei : i ∈ Λ} is a natural basis of an evolution algebra A
then the l1 norm with respect to B is the norm ‖·‖1 defined as follows:

‖a‖1 =
∑
i∈Λa

|αi|
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whenever a =
∑
i∈Λ

αiei =
∑
i∈Λa

αiei, and Λa := {i ∈ Λ : αi 6= 0} is a finite subset

of Λ.

Proposition 3 Let A be an evolution algebra, B = {ei : i ∈ Λ} be a natural
basis and ‖·‖1 be the l1 norm with respect to B. Then ‖·‖1 is an algebra norm
on A if, and only if,

∥∥e2
i

∥∥
1
≤ 1, for every i ∈ Λ.

Proof. If ‖·‖1 is an algebra norm on A then
∥∥e2
i

∥∥
1
≤ ‖ei‖21 = 1. Conversely, if∥∥e2

i

∥∥
1
≤ 1 for every i ∈ Λ then, for a =

∑
i∈Λa

αiei and b =
∑
i∈Λbi

βiei, we have

‖ab‖1 =

∥∥∥∥∥ ∑
i∈Λa∩Λb

αiβie
2
i

∥∥∥∥∥
1

≤
∑
|αiβi| ≤

(∑
i∈Λa

|αi|

)(∑
i∈Λb

|βi|

)
= ‖a‖1 ‖b‖1 ,

namely, ‖·‖1 is an algebra norm on A.

This contrasts with [27, Section 3.3.1], where algebra norms are not consid-
ered. Proposition 3 also motivates the following.

Definition 4 Let A be an evolution algebra and let B = {ei : i ∈ Λ} be a
natural basis. We say that B is a normalized natural basis if

∥∥e2
i

∥∥
1

= 1 for

every i ∈ Λ such that e2
i 6= 0.

It is easy to check that every evolution algebra A has a normalized natural
basis. In fact, given a natural basis B = {ui : i ∈ Λ} of A, for i ∈ Λ, define
ei := 1√

‖u2
i‖1

ui if u2
i 6= 0 and ei = ui otherwise. Then {ei : i ∈ Λ} is

a normalized natural basis which we call the normalized natural basis derived
from B.

The following is now immediate from Proposition 3.

Corollary 5 Every evolution algebra A is a normed evolution algebra, namely,
if B is a normalized natural basis then the l1 norm with respect to B is an
algebra norm on A.

Definition 6 Let ‖·‖ be an algebra norm on an evolution algebra A and B =
{ei : i ∈ Λ} be a natural basis. We say that B is unital if ‖ei‖ = 1, for every
i ∈ Λ.

We may assume, without loss of generality, that for a given algebra norm
the natural basis B is unital.

The following example shows that the completion of a normed evolution
algebra is not, in general, itself an evolution algebra (for the same underlying
product).
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Example 7 Let c00 be the space of infinite sequences of finite support endowed
with the product given by e2

n = en and enem = 0 if n 6= m, for the standard
(natural) basis B = {en : n ∈ N}. Proposition 3 above implies that the l1 norm
is an algebra norm on c00 since

∥∥e2
n

∥∥
1

= ‖en‖1 = 1. The completion of c00 with
respect to this norm is the Banach space l1. Suppose now that l1 is an evolution
algebra with natural basis given by B = {ui : i ∈ Λ}. From earlier, we know
that Λ must be uncountable. For every j ∈ N there exists m ∈ N (depending
on j), elements uj1 ,..., ujm ∈ B and scalars γ1, ..., γm such that

ej = γ1uj1 + ...+ γmujm .

Then B00 := ∪j∈N{uj1 ,..., ujm} is a countable subset of B . Because Λ is not
countable, there exists ui0 ∈ B\B00 and it follows that ejui0 = 0, for every
j ∈ N. Fix k0 ∈ N. If ui0 =

∑
k∈N

γkek with
∑
k∈N
|γk| <∞ then

0 = ek0ui0 = ek0
∑
k∈N

γkek = γk0e
2
k0 = γk0ek0 .

In other words, γk0 = 0 and therefore ui0 = 0. Since this is impossible, it follows
that l1 has no natural basis and is therefore not an evolution algebra.

Lemma 8 Let A be a Banach evolution algebra for norm ‖ · ‖ and natural basis
B = {ei : i ∈ Λ}. Then the set ΛB := {i ∈ Λ : e2

i 6= 0} is finite.

Proof. We may assume, without loss of generality, that B is a unital natural
basis so that, if ‖ · ‖1 denotes the corresponding l1-norm associated to B as
above, then ‖a‖ ≤ ‖a‖1, for all a ∈ A. Suppose now that ΛB is infinite. It is
well known (via the axiom of choice and axiom of countable choice) that every
infinite set has a countably infinite subset, so let {ei : i ∈ N} ⊆ ΛB . Choose

non-zero scalars αn such that
∑
n∈N |αn| <∞. Let un :=

n∑
k=1

αkek. Then (un)n

is a ‖·‖1 -Cauchy sequence and hence, since B is unital, it is therefore also ‖·‖ -
Cauchy and consequently ‖ · ‖-convergent, so that the ‖·‖-limit, u = limn un
exists in A. On the other hand, since B is a basis

u = β1eγ1 + ...+ βkeγk , (1)

for some k ∈ N, non-zero scalars β1, ..., βk, and indices γ1, ..., γk ∈ Λ. Fix now
j ∈ N such that ej /∈ {eγ1 , · · · , eγk}. Since limn ‖u − un‖ = 0 and the product
is ‖ · ‖ continuous, we have

0 = lim
n
‖ej(u− un)‖

= lim
n
‖ej(β1eγ1 + ...+ βkeγk − un)‖

= lim
n
‖ej(un)‖ = ‖αje2

j‖ = |αj |‖e2
j‖.

Since j ∈ ΛB then e2
j 6= 0. In particular then αj = 0. Since the scalars αn were

chosen to be non-zero this contradiction proves that ΛB must be finite.
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Theorem 9 Let (A, ‖·‖) be a Banach evolution algebra. Then A = A0 ⊕ A1,
where A1 is a finite-dimensional evolution algebra and A0 is a zero product
subalgebra.

Proof. Let B = {ei : i ∈ Λ} be a natural basis. By Lemma 8 the set ΛB :=

{i ∈ Λ : e2
i 6= 0} is finite. For i ∈ Λ, if e2

i =
∑
k∈Λ

ωkiek let

Λ̂i := {k ∈ Λ : ωki 6= 0}
⋃
{i}.

Let Λ1 :=
⋃
i∈ΛB

Λ̂i and Λ0 := Λ\Λ1. Then for A0 = lin{ei : i ∈ Λ0} and
A1 = lin{ei : i ∈ Λ1} we have A = A0 ⊕ A1, where A0 is (a possibly infinite-
dimensional) zero product subalgebra and A1 is a finite-dimensional evolution
subalgebra of A.

This motivates the following, originally introduced in [28].

Definition 10 We say that an evolution algebra A is non-degenerate if for some
natural basis B = {ei : i ∈ Λ} then e2

i 6= 0 for every i ∈ Λ.

One sees easily that definition 10 is independent of the choice of natural
basis, for suppose that B = {ei : i ∈ Λ} and B̃ = {ui : i ∈ Ω} are two natural
bases of A and suppose that e2

i0
= 0, for some i0 ∈ Λ. Then ejei0 = 0 for

all j ∈ Λ and hence aei0 = 0 for all a ∈ A. There is a finite subset Ω0 ⊂ Ω
such that ei0 =

∑
j∈Ω0

αjuj , with αj 6= 0 for j ∈ Ω0. For k ∈ Ω0 we then

have 0 = ukei0 = αku
2
k. In other words, u2

k = 0, for all k ∈ Ω0, giving the
required independence. The independence can also be seen as a consequence of
[1, Corollary 2.19], namely, an evolution algebra is non-degenerate if, and only
if, ann(A) = 0, where ann(A) denotes the annihilator of A. The following is
now immediate.

Corollary 11 Non-degenerate Banach evolution algebras are finite-dimensional.
Consequently, the completion of a non-degenerate infinite-dimensional normed
evolution algebra is not an evolution algebra.

If A is a degenerate normed evolution algebra then its completion Â is an
evolution algebra only when Â is an algebra of the type described in Theorem
9, in which case A must also be of the same type.

The above corollary answers in the negative a question raised in [27, p.
18] as to whether or not infinite-dimensional evolution algebras can be Banach
algebras.

3 Continuity of the evolution operator

We continue to study the continuty of the evolution operator, defined as in [27].
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Definition 12 Let A be an evolution algebra and B = {ei : i ∈ Λ} be a natural
basis. The evolution operator of A associated to B is the unique linear map
LB : A→ A such that L(ei) = e2

i .

Remark 13 If dimA < ∞ and B = {e1, · · · , en} is a natural basis of A

then, for a ∈ A, LB(a) = ea, where e =
n∑
i=1

ei. In other words, LB is the

multiplication operator Le. Of course, in infinite-dimensions LB is well defined
even when

∑
i∈Λ

ei is not.

Propositions 3 and 5 guarantee that A always has an algebra norm, namely,
the l1 norm with respect to a normalised natural basis. Moreover we have the
following.

Proposition 14 Let A be an algebra provided with a norm ‖·‖ . Then ‖·‖ is an
algebra norm, if and only if, for every a ∈ A the multiplication operator La is
continuous with ‖La‖ ≤ ‖a‖ .

Proof. If ‖·‖ is an algebra norm then ‖La(b)‖ = ‖ab‖ ≤ ‖a‖ ‖b‖ so La is
continuous and ‖La‖ ≤ ‖a‖ . Conversely, if ‖La‖ ≤ ‖a‖ then,

‖ab‖ = ‖La(b)‖ ≤ ‖La‖ ‖b‖ ≤ ‖a‖ ‖b‖ ,

so that ‖·‖ is an algebra norm.

We show now that the evolution operator is not necessarily continuous for
every algebra norm in the infinite dimensional case (of course, all norms are
equivalent and every linear map is continuous in finite dimensions).

Proposition 15 There exists a normed evolution algebra (A, ‖·‖) with a natural
basis such that LB is not continuous.

Proof. Let A be the space c00 of infinite sequences of finite support, as in
example 7 above. Let B := {en : n ∈ N} where en := (δkn)k∈N. For n,m ∈ N
define e2

n = nen and enem = 0, if n 6= m. Then A is an evolution algebra and B
is a natural basis for A. Let γ : N→ N be such that γ(n) ≥ n, for every n ∈ N.
Let F : A → A be the unique linear operator such that F (ek) = γ(k)ek, for
k ∈ N. For a ∈ A define ‖a‖ = ‖F (a)‖1 , for every a ∈ A. It is straightforward
to check that this is a norm. In fact,

‖ab‖ = ‖F (ab)‖1 =
∥∥∥F (

∑
αnβne

2
n)
∥∥∥

1
=
∥∥∥F (

∑
αnβnnen)

∥∥∥
1

=
∥∥∥∑αnβnnγ(n)en

∥∥∥
1
≤
(∑

|αn| γ(n)
)(∑

|βn| γ(n)
)

=
∥∥∥∑αnF (en)

∥∥∥
1

∥∥∥∑βnF (en)
∥∥∥

1
= ‖a‖ ‖b‖ .
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Obviously ‖·‖ and ‖·‖1 are not equivalent because ‖en‖1 = 1 while ‖en‖ =
γ(n) → ∞. We claim that LB : A → A is not ‖·‖-continuous. For k, n ∈ N let

αk be such that αkγ(k) = 1
k2 and define an :=

n∑
k=1

αkek. Then,

‖an‖ = ‖F (an)‖1 =

∥∥∥∥∥F (

n∑
k=1

αkek)

∥∥∥∥∥
1

=

∥∥∥∥∥
n∑
k=1

αkγ(k)ek

∥∥∥∥∥
1

=

n∑
k=1

|αkγ(k)| =
n∑
k=1

1

k2
<

∞∑
k=1

1

k2
.

On the other hand,

‖LB(an)‖ =

∥∥∥∥∥
n∑
k=1

αke
2
k

∥∥∥∥∥ =

∥∥∥∥∥F (

n∑
k=1

αke
2
k)

∥∥∥∥∥
1

=

∥∥∥∥∥F (

n∑
k=1

αkkek)

∥∥∥∥∥
1

=

∥∥∥∥∥
n∑
k=1

αkkγ(k)ek

∥∥∥∥∥
1

=

n∑
k=1

|αkkγ(k)| =
n∑
k=1

1

k
.

Therefore the sequence LB(an) is not ‖ · ‖-bounded, which proves the claim.

The next result provides a sufficient condition for continuity of LB .

Proposition 16 Let A be a normed evolution algebra and B = {ei : i ∈ Λ} be
a unital natural basis. If sup{‖

∑
i∈F ei‖ : F ⊂ Λ, F finite} < ∞ then LB is

continuous.

Proof. Let M := sup{‖
∑
i∈F ei‖ : F ⊂ Λ, F finite}. If a =

∑
i∈Λa

αiei then

‖LB(a)‖ = ‖
∑
i∈Λa

αie
2
i ‖ = ‖(

∑
i∈Λa

ei)a‖ ≤ ‖
∑
i∈Λa

ei‖ ‖a‖ ≤M ‖a‖ ,

as desired.

4 Dynamics of the evolution operator

Corollary 11 above shows that non-degenerate infinite-dimensional Banach evo-
lution algebras do not exist, so we assume henceforth that A is a finite dimen-
sional normed evolution algebra with given algebra norm, ‖ · ‖.

Throughout, L(A) denotes the algebra (under function composition) of all
linear maps on A endowed with the usual operator norm; La denotes the
multiplication operator, La(b) = ab, for a, b ∈ A, while Mn,m is the space of
all n ×m matrices over K and Mn := Mn,n. Although A is non-associative in
general and am is therefore not well defined for a ∈ A, L(A) is an associative
algebra and we may therefore consider the iterates of La, namely, L1

a := La and
Lma := La ◦ Lm−1

a , for m ≥ 2.
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Definition 17 Let B = {e1, · · · , en} be a fixed natural basis of A and e :=
e1 + · · ·+ en. We call e the evolution element of B.

Since A is finite dimensional, the evolution operator LB of A (with respect
to the basis B) is the multiplication operator Le, cf. Remark 13.

For b ∈ A, we may postulate, to some extent, (Lme (b))m as a discrete time
dynamical system, whose limit points may help to describe the long-term evolu-
tionary state of b. Our goal therefore is to determine when (Lme (b))m converges
and, more crucially, to then locate its limit. In fact, the role played by e is not
so central, since any non-zero multiple of e is an evolution element for another
basis. We examine therefore the more general question of the convergence or
otherwise of the sequence (Lma (b))m, and the determination of the limit where
it exists, for arbitrary a, b ∈ A.

Definition 18 We say a ∈ A is an equilibrium generator if (Lma (b))m∈N con-
verges, for all b ∈ A.

We note that since A is finite dimensional, all norms on A are equivalent so
the definition is independent of the choice of norm on A.

Let MA(B) = (ωij)ij ∈Mn be the evolution matrix of A with respect to B,

as described in section 2. It is straightforward to check that, for a =
n∑
i=1

αiei,

the matrix of La with respect to B is given by

WB
a :=

 ω11 · · · ω1n

...
. . .

...
ωn1 · · · ωnn


 α1 · · · 0

...
. . .

...
0 · · · αn

 . (2)

We call WB
a the evolution matrix of a (with respect to B) and write Wa := WB

a

when the basis is clear from the context. We note that We is MB(A). As usual
we write σ(Wa) for the set of eigenvalues of Wa and ρ(Wa) for its spectral radius.

We recall a concept of spectrum for non-associative algebras, introduced in
[20] for general algebras and in [31] for evolution algebras and to which we refer
for all details (see also [18, 19, 30]). We recall for a complex algebra E that
a ∈ E is said to be m-invertible if La and Ra are bijective, where Ra denotes
the right multiplication map Ra(b) = ba, for a, b ∈ A.

Definition 19 Let E be a complex algebra with unit e. The m-spectrum of a
in E is

σEm(a) := {λ ∈ C : a− λe is not m-invertible}.

If E is a complex algebra without unit, σEm(a) := σE1
m (a), where E1 denotes the

unitization of E and if E is a real algebra σEm(a) := σEC
m (a), where EC denotes

the complexification of E.
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When the context is clear, we write σm(a) for σEm(a). For a linear map
T : E → E, σ(T ) denotes its usual spectrum

σ(T ) := {λ ∈ C : T − λI is not bijective}.

Then σm(a) = σ(La)∪ σ(Ra) whenever E is unital and, otherwise, σm(a) =
σ(La) ∪ σ(Ra) ∪ {0}. Thus, for commutative A, and evolution algebras in
particular, we have σm(a) = σ(La) if A is unital and σ(La)∪{0} otherwise. We
recall [31, Corollary 2.12] that an evolution algebra A is unital if, and only if,
A is a finite-dimensional non-zero trivial evolution algebra.

Definition 20 The m-spectral radius of a ∈ E is ρ(a) := sup{|λ| : λ ∈ σm(a)}
if σm(a) 6= ∅ and ρ(a) := 0 otherwise.

An m-spectral radius formula is given in [20, Proposition 2.2].
Returning now to evolution algebras we note that if E is a real evolution

algebra, its complexification, EC, is also an evolution algebra and every natural
basis of E is a natural basis of EC so that LB can also be regarded as an
element of L(EC). In particular, we have the following, stated implictly in [31,
Proposition 5.1 and Proposition 5.3].

Proposition 21 Let A be a finite-dimensional evolution algebra with natural
basis B = {e1, ..., en} and a ∈ A. Let Wa be the evolution matrix of a with
respect to B. Then σm(a) = σ(Wa) if A is unital and σm(a) = σ(Wa) ∪ {0}
otherwise.

Definition 22 Let φ be the natural isomorphism from A to Cn given by

φ(
∑
i

βiei) =

 β1

...
βn

 .

From (2) above we have φ(La(b)) = Waφ(b) for a, b ∈ A, or equivalently, as
operators, La = φ−1Waφ and hence by induction

Lma = φ−1Wm
a φ (3)

for a ∈ A and m ∈ N. Since the spectrum of a linear map is independent of its
matrix representation σ(La) = σ(Wa) and hence from Proposition 21

ρ(a) = ρ(La) = ρ(Wa).

Using the natural isomorphism φ, every norm on A induces a corresponding
norm on Cn by ‖x‖ := ‖φ−1(x)‖, for x ∈ Cn, and for this norm on Cn the
isomorphism φ then becomes an isometry. In addition, every norm on A gives
a unique operator norm on L(A), namely,

‖T‖ = sup
‖b‖≤1

‖T (b)‖, for T ∈ L(A), b ∈ A.

10



In fact, since A is finite dimensional this supremum is achieved. In exactly the
same way, every norm on Cn (and, in particular, the norm induced from A via
φ above) gives a unique operator norm on L(Cn) and we may identify L(Cn)
with Mn in the usual way.

Of course, for any algebra norm on A, we have

‖Lma ‖ ≤ ‖La‖m ≤ ‖a‖m, for all m ∈ N,

so that ‖a‖ < 1 implies limm L
m
a = 0. Furthermore, we get the following (for

the given norm on A and the above induced norms on Cn, L(A) and Mn re-
spectively).

Proposition 23 Let A be a finite dimensional evolution algebra. Let Wa be the
evolution matrix of a ∈ A with respect to a fixed natural basis B. The following
are equivalent.

(i) a is an equilibrium generator, that is, (Lma (b)) converges, for all b ∈ A;

(ii) limm L
m
a exists in L(A);

(iii) limmW
m
a exists in Mn.

(iv) limm(Wm
a )ij exists, for all 1 ≤ i, j ≤ n (where Tij denotes the ij coordinate

of T ∈Mn).

Proof. Equivalence of (ii) and (iii) is immediate from (3) above. The opera-
tor norm on Mn is equivalent to the norm defined co-ordinatewise by ‖T‖ :=
max1≤i,j≤n |Tij | giving (iii) equivalent to (iv). Clearly (ii) implies (i). We fin-
ish by showing (i) implies (ii). Assume therefore that (Lma (b))m converges, for
all b ∈ A. Define T : A → A by T (b) := limm L

m
a (b). Clearly T is linear and

hence bounded. Moreover since, for all b ∈ A, supm ‖Lma (b)‖ <∞, the uniform
boundedness principle implies supm ‖Lma ‖ <∞ and, in fact, ‖T‖ ≤ supm ‖Lma ‖.
We finish with a standard compactness argument, given for completeness. Let
K = supm ‖Lma ‖. Fix ε arbitrary. By compactness of D = {x ∈ A : ‖x‖ ≤ 1}
there exists x1, . . . , xk ∈ D such that

D ⊂
k⋃
j=1

B(xj , ε/K)

where B(x, α) = {y ∈ A : ‖x − y‖ < α}. For 1 ≤ j ≤ k, there exists Mj such
that ‖Lma (xj) − T (xj)‖ < ε, for all m ≥ Mj . Let M := maxjMj . Now take
x ∈ D and m > M . Then x ∈ B(xj , ε/K) for some 1 ≤ j ≤ k and therefore

‖Lma (x)− T (x)‖ ≤ ‖Lma (x)− Lma (xj)‖+ ‖Lma (xj)− T (xj)‖+ ‖T (xj)− T (x)‖
≤ ‖Lma ‖‖x− xj‖+ ‖Lma (xj)− T (xj)‖+ ‖T‖‖x− xj‖
≤ K(ε/K) + ε+K(ε/K) = 3ε

giving the result.

11



The concept of equilibrium generator is clearly independent of the natural
basis chosen. As mentioned earlier however, given two evolution elements e and
ẽ (corresponding to different bases), one may be an equilibrium generator, while
the other may not, as the following example further demonstrates.

Example 24 Let A be the linear span of e1 and e2 with multiplication defined
by e1e2 = e2e1 = 0 and e2

1 = e2
2 = e1. Then A is an evolution algebra with

natural basis B = {e1, e2} and evolution element e = e1 + e2. Let now B̃ =
{ẽ1, ẽ2}, for ẽ1 = e1 + e2, ẽ2 = e1 − e2, then B̃ is also a natural basis with

evolution element ẽ = ẽ1 + ẽ2 = 2e1. Then We = WB
e =

(
1 1
0 0

)
and Wẽ =

WB
ẽ =

(
2 0
0 0

)
are the evolution matrices of e and ẽ (each taken with respect

to B). Clearly limmW
m
e = We, while Wm

ẽ =

(
2m 0
0 0

)
does not converge, so

e is an equilibrium generator while ẽ is not.

Therefore, while the concept of equilibrium generator is independent of the
basis chosen, the concept of ”an evolution element (of a basis) being an equilib-
rium generator” is not. This suggests, in contrast to comments in [27, Section
3.2.1], that other operators apart from the evolution operator LB(= Le) may be
more relevant to the study of A. Nonetheless, we introduce the following (basis
dependent) definition.

Definition 25 Let A be a finite dimensional evolution algebra with fixed nat-
ural basis B. Let e be the evolution element of B. We say that A reaches
B-equilibrium if e is an equilibrium generator.

We say that T ∈ L(A) is a projection if T 2 = T and, similarly, C ∈Mn is a
projection if C2 = C. Recall that the rank of a linear map T is well-defined as
the rank of any matrix representation of T .

Proposition 26 Let A be a finite dimensional evolution algebra and a ∈ A. If
a is an equilibrium generator then P := limm L

m
a commutes with La and is a

projection onto the subspace ker(La − I). In particular, rank(P ) = dimP (A) =
dim ker(La − I) and if P 6= 0 then 1 ∈ σm(a).

Proof. Let a be an equilibrium generator. From Proposition 23 then P =
limm L

m
a exists in L(A). The subsequence (L2m

a ) must then also converge to P ,
so that by continuity of composition in L(A) we have

P = lim
m
L2m
a = lim

m
Lma ◦ lim

m
Lma = P ◦ P = P 2.

Moreover, for x ∈ A, then

La(P (x)) = La((lim
m
Lma )(x)) = (lim

m
Lm+1
a )(x) = P (x),

12



so that P (A) ⊆ ker(La − I). In particular, if P 6= 0 then ker(La − I) 6= ∅ so
1 ∈ σ(La) and hence 1 ∈ σm(a). For y ∈ ker(La − I), we have y = La(y), so
y = Lma (y), for all m ∈ N and hence y = P (y) ∈ P (A) so ker(La − I) ⊆ P (A)
giving P (A) = ker(La − I).

Proposition 26 motivates the following.

Definition 27 Let A be an evolution algebra and a ∈ A be an equilibrium
generator. We then define the equilibrium subspace of a as Aa := ker(La − I)
and we define the equilibrium rank of a as r(a) := dim(ker(La−I)) if Aa 6= {0},
and r(a) = 0 otherwise.

We note from [22] that since L(A) and Mn are finite dimensional the spectral
radius function is continuous.

Proposition 28 Let A be a finite dimensional evolution algebra and a ∈ A.

(i) If ρ(a) > 1 then a is not an equilibrium generator and, in particular, (Lma )m
has no convergent subsequences.

(ii) limm L
m
a = 0 if, and only if, ρ(a) < 1.

Proof. For (i) let us first suppose that a subsequence (Lmka )k converges in
L(A), to P̃ , say. Then ρ(P̃ ) = limk ρ(Lmka ). As A is finite dimensional, it is
easy to see from the spectral radius formula that ρ(Lmka ) = ρ(La)mk so ρ(P̃ ) =
limk ρ(Lmka ) = limk ρ(La)mk = limk ρ(a)mk . This is impossible if ρ(a) > 1 giving
(i).

For (ii) let us assume that ρ(a) < 1. Then ρ(La) < 1 and hence ‖Lma ‖ < 1,
for all m sufficiently large (otherwise ‖Lmka ‖ ≥ 1, for some subsequence (mk)k,
and then ρ(La) = limk ‖Lmka ‖1/mk ≥ 1). Then Lma , for m large, lies in the
closed unit ball of L(A) which is compact and thus every subsequence of (Lma )
has itself a convergent subsequence. Consider the limit of any such convergent
subsequence, say, P̃ := limk L

mk
a . As in (i) above, ρ(P̃ ) = limk ρ(a)mk and

hence P̃ = 0. Since the limit of all such convergent subsequences of (Lma ) is
thus 0, it follows by compactness that the sequence (Lma ) itself must converge
also to 0. In other words, ρ(a) < 1 implies limm L

m
a = 0. In the opposite

direction, if limm L
m
a = 0 then continuity of the spectral radius gives 0 = ρ(0) =

limm ρ(Lma ) = limm ρ(La)m = limm ρ(a)m and hence ρ(a) < 1 and we are done.

It remains to examine the case ρ(a) = 1. To this end we use the Jordan
normal form of a matrix, part of literature folklore [26], but recalled here for
convenience.

13



Proposition 29 For W ∈Mn, there exists an invertible matrix Q and Jordan
block matrix, J , such that W = Q−1JQ, where

J =

 J1 · · · 0
...

. . .
...

0 · · · Jt

 .

Each Ji is a Jordan matrix corresponding to eigenvalue λi, that is, a square
matrix with λi on the diagonal, 1 on the super-diagonal, and zeros elsewhere.
Moreover, the eigenvalues of the blocks J1, . . . , Jt, counting multiplicities, are
precisely the eigenvalues of the matrix J and hence of W. In particular, for
eigenvalue λi, we recall the following:

(i) the geometric multiplicity, mg(λi,W ) = dim(ker(W −λiI)), gives the num-
ber of Jordan blocks corresponding to λi;

(ii) the algebraic multiplicty, ma(λi,W ), gives the sum of the sizes of all Jordan
blocks corresponding to λi;

(iii) the index, denoted ν(λi,W ), gives the size of the largest Jordan block
corresponding to λi.

(iv) In particular then ν(λi,W ) = 1 if, and only if,

dim(ker(W − λiI)) = mg(λi,W ) = ma(λi,W ).

In this case, putting together all the Jordan matrices corresponding to λi
gives λiIri , a diagonal matrix of size ri := dim(ker(W − λiI)).

Since the eigenvalues of Wa determine the multiplicative spectrum σm(a) of
a (Proposition 21 above), the following definitions are natural.

Definition 30 For a ∈ A and λ an eigenvalue ofWa we define the multiplicative
a-index of λ as ν(λ, a) := ν(λ,Wa). If λ ∈ C is not an eigenvalue of W we define
the multiplicative a-index of λ as ν(λ, a) := 0.

Since Wa is unique up to similarity and the Jordan form is unique up to order
of its blocks, the index ν(λ, a) is well defined and independent of the basis.

Proposition 31 Let A be a finite dimensional evolution algebra and a ∈ A.
Let ρ(a) = 1. Then a is an equilibrium generator if, and only if, σm(a) ∩ ∂∆ =
{1} and ν(1, a) = 1.

Proof. Let a ∈ A and ρ(a) = 1. Let Wa be the evolution matrix of a as above.
Let λ ∈ σm(a) ∩ ∂∆. From Proposition 21 λ ∈ σ(Wa). Consider the Jordan
normal form of Wa as above and let J be any Jordan matrix corresponding to
λ. The (1, 1) entry of Jm is λm, for m ∈ N. Since limm λ

m only exists if, and
only if, λ = 1 we have that if λ 6= 1 then (Jm)1,1 cannot converge and hence Wm

a
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cannot converge and from Proposition 23 then a is not an equilibrium generator.
If on the other hand, λ = 1 and ν(1, a) = ν(1,Wa) > 1 it means that there is a
Jordan matrix J corresponding to eigenvalue 1 of size s > 1. Then Jm has m on
its first super diagonal, so (Jm)m and hence also (Wm

a )m cannot converge and
again a is not an equilibrium generator. In other words, if a is an equilibrium
generator then σm(a) ∩ ∂∆ = {1} and ν(1, a) = 1.
In the opposite direction, if ρ(a) = 1 and σm(a) ∩ ∂∆ = {1} and ν(1, a) =
1 then, from Proposition 29 (iv), putting all Jordan blocks corresponding to
eigenvalue 1 together gives the r × r identity matrix Ir ∈Mr, where

r = dim(ker(Wa − I)) = dim(ker(La − I)) = r(a).

Write R ⊕ T for the matrix

(
R 0
0 T

)
, for R ∈ Mr and T ∈ Mn−r. Then

we have Wa = Q−1(I ⊕ T )Q, for I ∈ Mr, T ∈ Mn−r with ρ(T ) < 1, and some
invertible Q ∈Mn. Then

Wm
a = Q−1(I ⊕ Tm)Q.

Since ρ(T ) < 1 gives limm T
m = 0 (see Proposition 28 (ii)) we then have

limmW
m
a = Q−1 (I ⊕ 0)Q. From (3)

lim
m
Lma = lim

m

(
φ−1 ◦Wm

a ◦ φ
)

= φ−1 ◦Q−1 (I ⊕ 0)Q ◦ φ

and we are done.

We note that Propositions 28 and 31 can also be derived from Proposition
23 and known results in different formats for matrices, see for instance [23].
Propositions 26, 28 and 31 together now give the following.

Theorem 32 Let A be a finite-dimensional evolution algebra and a ∈ A. Then
a is an equilibrium generator if, and only if,

σm(a) ⊆ ∆ ∪ {1} and ν(1, a) ≤ 1.

Moreover, if a is an equilibrium generator, then P = limm L
m
a is projection onto

the a-equilibrium subspace Aa = ker(La − I), and if ν(1, a) = 0 then P = 0.

Note that if ρ(a) < 1 then trivially ν(1, a) = 0.

Corollary 33 Let A be a finite-dimensional evolution algebra with evolution
element e with respect to a natural basis B. Then A reaches B-equilibrium if,
and only if,

σm(e) ⊆ ∆ ∪ {1} and ν(1, e) ≤ 1.

The following two corollaries are reformulations of the above two results
using the Jordan normal form and, in particular, (iv) of Proposition 29. Recall
also definitions 25 and 27.
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We write Ir ⊕ T to denote the matrix

(
Ir 0
0 T

)
if r 6= 0 and Ir ⊕ T = T

if r = 0.

Corollary 34 Let A be a finite dimensional evolution algebra and a ∈ A. Then
a ∈ A is an equilibrium generator if, and only if, its evolution matrix Wa (with
respect to any basis B) is similar to a matrix of the form

Ir ⊕ T, where ρ(T ) < 1, r = r(a), Ir ∈Mr, T ∈Mn−r, n = dim(A).

Corollary 35 Let A be a finite dimensional evolution algebra and a ∈ A.Then
a is an equilibrium generator if, and only if,

La = P + S, for linear maps P, S in L(A)

satisfying P 2 = P, PS = SP = 0 and ρ(S) < 1.

Proof. If a is an equilibrium generator then from Corollary 34 and the proof
of Theorem 31, there is an invertible matrix Q ∈Mn such that

Wa = Q−1 (Ir ⊕ T )Q,

where ρ(T ) < 1, r = r(a), Ir ∈Mr, T ∈Mn−r. Then, from (3),

La = φ−1Q−1 (I ⊕ T )Qφ.

Let
P := φ−1Q−1 (Ir ⊕ 0)Qφ and S := φ−1Q−1 (0⊕ T )Qφ,

(recall P = 0 if r = 0).
Then La = P+S and it is easy to see that P and S have the required properties.
In the opposite direction, if La = P + S with properties as stated then Lma =
P + Sm and, since ρ(S) = ρ(T ) < 1, then limm S

m = 0 giving limm L
m
a = P

and a is an equilibrium generator.

We now examine the situation where a type of recurrent behaviour can arise,
namely, when Wa has eigenvalues that are p-th roots of unity. Let

Ω = {e
2πi
p : p ∈ N}.

Lemma 36 Let W ∈Mn with σ(W ) ⊂ ∆ ∪ Ω and

σ(W ) ∩ Ω = {e
2πi
p1 , . . . , e

2πi
ps } 6= ∅.

Let λk := e
2πi
pk , 1 ≤ k ≤ s. If

ν(λk,W ) = 1, for 1 ≤ k ≤ s
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then for any choice of i and ki, 1 ≤ i ≤ s, 1 ≤ ki ≤ pi, there exists a subsequence
(ml)l of N and coefficients αj ∈ {1, λj , . . . , λ

pj−1
j }, for j 6= i, 1 ≤ j ≤ s, such

that
lim
l
Wml = λkii P̃i +

∑
j 6=i

αjP̃j

where P̃1, . . . , P̃s are mutually orthogonal projections onto the eigenspaces of W
for λ1, . . . , λs respectively.

Proof. Let W ∈Mn satisfy the conditions in the statement of the lemma. We
note that the case s = 1, p1 = 1 is covered by Theorem 32. Writing R1⊕· · ·⊕Rt
for the block diagonal matrix with blocks R1, . . . , Rt, Proposition 29 gives an
invertible Q ∈Mn such that

W = Q−1JQ, and J = J1 ⊕ · · · ⊕ Jt,

where each J1, . . . , Jt is a Jordan matrix corresponding to some eigenvalue of

W , 1 ≤ t ≤ n. Let λk := e
2πi
pk , for 1 ≤ k ≤ s, as in the statement. Since

ν(λk,W ) = 1, Proposition 29 (iv) implies that putting together all Jordan
matrices corresponding to eigenvalue λk gives a diagonal matrix λkIrk of size
rk := dim(ker(W − λkI)).

If
∑s
k=1 rk < n then σ(W ) ∩∆ 6= ∅. In this case, for q = n−

∑s
k=1 rk, then

putting together all Jordan matrices corresponding to eigenvalues in ∆ gives a
matrix T ∈Mq (also block diagonal) with ρ(T ) < 1. We may therefore assume,
without loss of generality, that

W = Q−1 (λ1Ir1 ⊕ · · · ⊕ λsIrs ⊕ T )Q, if q 6= 0

and
W = Q−1 (λ1Ir1 ⊕ · · · ⊕ λsIrs)Q, if q = 0.

Fix now i and ki, 1 ≤ i ≤ s, 1 ≤ ki ≤ pi. Then

(λiIri)
ki+mpi = λkii Iri , for all m ∈ N.

Moreover, for 1 ≤ k ≤ s, each of the following sets is finite

{(λkIrk)
m

: m ∈ N} = {Irk , λkIrk , . . . , λ
pk−1
k Irk}.

Therefore there is a subsequence (ml)l of (ki + mpi)m such that for all j 6=
i, 1 ≤ j ≤ s, there is αj ∈ {1, λj , . . . , λ

pj−1
j } with(

λjIrj
)ml = αjIrj .

Of course, αj may depend on the fixed i and ki chosen. For convenience (re-
ordering if necessary), we’ll assume i = 1. Then

(λ1Ir1 ⊕ · · · ⊕ λsIrs ⊕ T )
ml = λk11 Ir1 ⊕ α2Ir2 ⊕ · · · ⊕ αsIrs ⊕ Tml , if q 6= 0
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and equals
λk11 Ir1 ⊕ α2Ir2 ⊕ · · · ⊕ αsIrs, if q = 0.

Let now, for 1 ≤ k ≤ s,

P̃k := Q−1
(
0r1 ⊕ · · · 0rk−1

⊕ Irk ⊕ 0rk+1
· · · ⊕ 0rs ⊕ 0q

)
Q ∈Mn, if q 6= 0

and
P̃k := Q−1

(
0r1 ⊕ · · · 0rk−1

⊕ Irk ⊕ 0rk+1
· · · ⊕ 0rs

)
Q, if q = 0.

Clearly then P̃1, . . . , P̃s are mutually orthogonal projections in Mn (and P̃k(Cn)
is exactly the λk-eigenspace of W ). Then

Wml = λk11 P̃1 + α2P̃2 + · · ·+ αsP̃s +Q−1 (0n−q ⊕ Tml)Q, for l ∈ N, if q 6= 0

and
Wml = λk11 P̃1 + α2P̃2 + · · ·+ αsP̃s, for all l ∈ N, if q = 0. (4)

Of course, if q 6= 0, then T ∈ Mq has ρ(T ) < 1 and hence liml T
ml = 0 giving

the required result.

Lemma 36 also covers the case where the spectrum contains only p-th roots
of unity and since then q = 0 the next result follows immediately from (4).

Corollary 37 Let W ∈Mn with σ(W ) ⊂ Ω and

σ(W ) ∩ Ω = {e
2πi
p1 , . . . , e

2πi
ps }.

Let λk := e
2πi
pk , 1 ≤ k ≤ s. If

ν(λk,W ) = 1, for 1 ≤ k ≤ s

then for any choice of i and ki, 1 ≤ i ≤ s, 1 ≤ ki ≤ pi, there exists a subsequence
(ml)l of N and coefficients αj ∈ {1, λj , . . . , λ

pj−1
j }, for j 6= i, 1 ≤ j ≤ s, such

that
Wml = λkii P̃i +

∑
j 6=i

αjP̃j , for all l ∈ N (5)

where P̃1, . . . , P̃s are mutually orthogonal projections onto the eigenspaces of W
for λ1, . . . , λs respectively.

Lemma 36 and Proposition 23 now give the following.

Theorem 38 Let A be a finite-dimensional evolution algebra and a ∈ A with
σm(a) ⊂ ∆ ∪ Ω and

σm(a) ∩ Ω = {e
2πi
p1 , . . . , e

2πi
ps } 6= ∅.
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Let λk := e
2πi
pk , 1 ≤ k ≤ s. If

ν(λk, a) = 1, for 1 ≤ k ≤ s

then for any choice of i and ki, 1 ≤ i ≤ s, 1 ≤ ki ≤ pi, there exists a subsequence
(ml)l of N and coefficients αj ∈ {1, λj , . . . , λ

pj−1
j }, for j 6= i, 1 ≤ j ≤ s, such

that
lim
l
Lmla = λkii Pi +

∑
j 6=i

αjPj

where P1, . . . , Ps are mutually orthogonal projections onto the La-eigenspaces
for λ1, . . . , λs respectively.

Proof. Let a ∈ A satisfy the conditions in the statement of the theorem and
let Wa be its evolution matrix with respect to a fixed natural basis. Then Wa

satisfies the conditions of Lemma 36. Fixing i and ki, 1 ≤ i ≤ s, 1 ≤ ki ≤ pi,
Lemma 36 then yields a subsequence (ml)l of N, mutually orthogonal projection

matrices P̃1, . . . , P̃s and scalars αj ∈ {1, λj , . . . , λ
pj−1
j }, for j 6= i, 1 ≤ j ≤ s,

such that (5) holds, namely,

lim
l
Wml
a = λkii P̃i +

∑
j 6=i

αjP̃j .

For 1 ≤ k ≤ s, let
Pk := φ−1 ◦ P̃k ◦ φ, (6)

where φ is the isometry in (3) above. It follows that P1, . . . , Ps are mutu-
ally orthogonal projections onto the La-eigenspaces for λ1, . . . , λs respectively.
Proposition 23 and (3) then give

lim
l
Lmla = λkii Pi +

∑
j 6=i

αjPj

as required.

If σm(a) contains only p-th roots of unity the next result follows from (6) in
Theorem 38 and (4) in Lemma 36 above.

Corollary 39 Let A be a finite-dimensional evolution algebra and a ∈ A with
σm(a) ⊂ Ω and

σm(a) ∩ Ω = {e
2πi
p1 , . . . , e

2πi
ps }.

Let λk := e
2πi
pk , 1 ≤ k ≤ s. If

ν(λk, a) = 1, for 1 ≤ k ≤ s

then for any choice of i and ki, 1 ≤ i ≤ s, 1 ≤ ki ≤ pi, there exists a subsequence
(ml)l of N and coefficients αj ∈ {1, λj , . . . , λ

pj−1
j }, for j 6= i, 1 ≤ j ≤ s, such

that
Lmla = λkii Pi +

∑
j 6=i

αj Pj , for all l ∈ N (7)
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where P1, . . . , Ps are mutually orthogonal projections onto the La-eigenspaces
for λ1, . . . , λs respectively.

In Corollary 39 above, for fixed i and ki, 1 ≤ i ≤ s, 1 ≤ ki ≤ pi then the
subsequence in L(A) obtained in (7) above, namely,

La,i,ki := (Lmla )l

is constant. In particular, this means that for all b ∈ A, the sequence (Lna(b))n
will return to the value La,i,ki(b) infinitely often. Borrowing from the languauge
of Markov processes, we would say that La,i,ki(b) is a recurrent state of the
system.
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